1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
|
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
#
# Authors: Danny Sullivan <dbsullivan23@gmail.com>
# Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
# Arthur Mensch <arthur.mensch@m4x.org
#
# License: BSD 3 clause
cimport numpy as np
import numpy as np
from libc.math cimport fabs, exp, log
from libc.time cimport time, time_t
from .sgd_fast cimport LossFunction
from .sgd_fast cimport Log, SquaredLoss
from ..utils.seq_dataset cimport SequentialDataset
from libc.stdio cimport printf
cdef extern from "sgd_fast_helpers.h":
bint skl_isfinite(double) nogil
cdef inline double fmax(double x, double y) nogil:
if x > y:
return x
return y
cdef double _logsumexp(double* arr, int n_classes) nogil:
"""Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
"""
# Use the max to normalize, as with the log this is what accumulates
# the less errors
cdef double vmax = arr[0]
cdef double out = 0.0
cdef int i
for i in range(1, n_classes):
if vmax < arr[i]:
vmax = arr[i]
for i in range(n_classes):
out += exp(arr[i] - vmax)
return log(out) + vmax
cdef class MultinomialLogLoss:
cdef double _loss(self, double* prediction, double y, int n_classes,
double sample_weight) nogil:
r"""Multinomial Logistic regression loss.
The multinomial logistic loss for one sample is:
loss = - sw \sum_c \delta_{y,c} (prediction[c] - logsumexp(prediction))
= sw (logsumexp(prediction) - prediction[y])
where:
prediction = dot(x_sample, weights) + intercept
\delta_{y,c} = 1 if (y == c) else 0
sw = sample_weight
Parameters
----------
prediction : pointer to a np.ndarray[double] of shape (n_classes,)
Prediction of the multinomial classifier, for current sample.
y : double, between 0 and n_classes - 1
Indice of the correct class for current sample (i.e. label encoded).
n_classes : integer
Total number of classes.
sample_weight : double
Weight of current sample.
Returns
-------
loss : double
Multinomial loss for current sample.
Reference
---------
Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer. (Chapter 4.3.4)
"""
cdef double logsumexp_prediction = _logsumexp(prediction, n_classes)
cdef double loss
# y is the indice of the correct class of current sample.
loss = (logsumexp_prediction - prediction[int(y)]) * sample_weight
return loss
cdef void _dloss(self, double* prediction, double y, int n_classes,
double sample_weight, double* gradient_ptr) nogil:
r"""Multinomial Logistic regression gradient of the loss.
The gradient of the multinomial logistic loss with respect to a class c,
and for one sample is:
grad_c = - sw * (p[c] - \delta_{y,c})
where:
p[c] = exp(logsumexp(prediction) - prediction[c])
prediction = dot(sample, weights) + intercept
\delta_{y,c} = 1 if (y == c) else 0
sw = sample_weight
Note that to obtain the true gradient, this value has to be multiplied
by the sample vector x.
Parameters
----------
prediction : pointer to a np.ndarray[double] of shape (n_classes,)
Prediction of the multinomial classifier, for current sample.
y : double, between 0 and n_classes - 1
Indice of the correct class for current sample (i.e. label encoded)
n_classes : integer
Total number of classes.
sample_weight : double
Weight of current sample.
gradient_ptr : pointer to a np.ndarray[double] of shape (n_classes,)
Gradient vector to be filled.
Reference
---------
Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer. (Chapter 4.3.4)
"""
cdef double logsumexp_prediction = _logsumexp(prediction, n_classes)
cdef int class_ind
for class_ind in range(n_classes):
gradient_ptr[class_ind] = exp(prediction[class_ind] -
logsumexp_prediction)
# y is the indice of the correct class of current sample.
if class_ind == y:
gradient_ptr[class_ind] -= 1.0
gradient_ptr[class_ind] *= sample_weight
def __reduce__(self):
return MultinomialLogLoss, ()
def _multinomial_grad_loss_all_samples(
SequentialDataset dataset,
np.ndarray[double, ndim=2, mode='c'] weights_array,
np.ndarray[double, ndim=1, mode='c'] intercept_array,
int n_samples, int n_features, int n_classes):
"""Compute multinomial gradient and loss across all samples.
Used for testing purpose only.
"""
cdef double* weights = <double * >weights_array.data
cdef double* intercept = <double * >intercept_array.data
cdef double *x_data_ptr = NULL
cdef int *x_ind_ptr = NULL
cdef int xnnz = -1
cdef double y
cdef double sample_weight
cdef double wscale = 1.0
cdef int i, j, class_ind, feature_ind
cdef double val
cdef double sum_loss = 0.0
cdef MultinomialLogLoss multiloss = MultinomialLogLoss()
cdef np.ndarray[double, ndim=2] sum_gradient_array = \
np.zeros((n_features, n_classes), dtype=np.double, order="c")
cdef double* sum_gradient = <double*> sum_gradient_array.data
cdef np.ndarray[double, ndim=1] prediction_array = \
np.zeros(n_classes, dtype=np.double, order="c")
cdef double* prediction = <double*> prediction_array.data
cdef np.ndarray[double, ndim=1] gradient_array = \
np.zeros(n_classes, dtype=np.double, order="c")
cdef double* gradient = <double*> gradient_array.data
with nogil:
for i in range(n_samples):
# get next sample on the dataset
dataset.next(&x_data_ptr, &x_ind_ptr, &xnnz,
&y, &sample_weight)
# prediction of the multinomial classifier for the sample
predict_sample(x_data_ptr, x_ind_ptr, xnnz, weights, wscale,
intercept, prediction, n_classes)
# compute the gradient for this sample, given the prediction
multiloss._dloss(prediction, y, n_classes, sample_weight, gradient)
# compute the loss for this sample, given the prediction
sum_loss += multiloss._loss(prediction, y, n_classes, sample_weight)
# update the sum of the gradient
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
val = x_data_ptr[j]
for class_ind in range(n_classes):
sum_gradient[feature_ind * n_classes + class_ind] += \
gradient[class_ind] * val
return sum_loss, sum_gradient_array
cdef inline double _soft_thresholding(double x, double shrinkage) nogil:
return fmax(x - shrinkage, 0) - fmax(- x - shrinkage, 0)
def sag(SequentialDataset dataset,
np.ndarray[double, ndim=2, mode='c'] weights_array,
np.ndarray[double, ndim=1, mode='c'] intercept_array,
int n_samples,
int n_features,
int n_classes,
double tol,
int max_iter,
str loss_function,
double step_size,
double alpha,
double beta,
np.ndarray[double, ndim=2, mode='c'] sum_gradient_init,
np.ndarray[double, ndim=2, mode='c'] gradient_memory_init,
np.ndarray[bint, ndim=1, mode='c'] seen_init,
int num_seen,
bint fit_intercept,
np.ndarray[double, ndim=1, mode='c'] intercept_sum_gradient_init,
double intercept_decay,
bint saga,
bint verbose):
"""Stochastic Average Gradient (SAG) and SAGA solvers.
Used in Ridge and LogisticRegression.
Reference
---------
Schmidt, M., Roux, N. L., & Bach, F. (2013).
Minimizing finite sums with the stochastic average gradient
https://hal.inria.fr/hal-00860051/document
(section 4.3)
Defazio, A., Bach, F., Lacoste-Julien, S. (2014),
SAGA: A Fast Incremental Gradient Method With Support
for Non-Strongly Convex Composite Objectives
https://arxiv.org/abs/1407.0202
"""
# the data pointer for x, the current sample
cdef double *x_data_ptr = NULL
# the index pointer for the column of the data
cdef int *x_ind_ptr = NULL
# the number of non-zero features for current sample
cdef int xnnz = -1
# the label value for current sample
cdef double y
# the sample weight
cdef double sample_weight
# helper variable for indexes
cdef int f_idx, s_idx, feature_ind, class_ind, j
# the number of pass through all samples
cdef int n_iter = 0
# helper to track iterations through samples
cdef int sample_itr
# the index (row number) of the current sample
cdef int sample_ind
# the maximum change in weights, used to compute stopping criteria
cdef double max_change
# a holder variable for the max weight, used to compute stopping criteria
cdef double max_weight
# the start time of the fit
cdef time_t start_time
# the end time of the fit
cdef time_t end_time
# precomputation since the step size does not change in this implementation
cdef double wscale_update = 1.0 - step_size * alpha
# vector of booleans indicating whether this sample has been seen
cdef bint* seen = <bint*> seen_init.data
# helper for cumulative sum
cdef double cum_sum
# the pointer to the coef_ or weights
cdef double* weights = <double * >weights_array.data
# the pointer to the intercept_array
cdef double* intercept = <double * >intercept_array.data
# the pointer to the intercept_sum_gradient
cdef double* intercept_sum_gradient = \
<double * >intercept_sum_gradient_init.data
# the sum of gradients for each feature
cdef double* sum_gradient = <double*> sum_gradient_init.data
# the previously seen gradient for each sample
cdef double* gradient_memory = <double*> gradient_memory_init.data
# the cumulative sums needed for JIT params
cdef np.ndarray[double, ndim=1] cumulative_sums_array = \
np.empty(n_samples, dtype=np.double, order="c")
cdef double* cumulative_sums = <double*> cumulative_sums_array.data
# the index for the last time this feature was updated
cdef np.ndarray[int, ndim=1] feature_hist_array = \
np.zeros(n_features, dtype=np.int32, order="c")
cdef int* feature_hist = <int*> feature_hist_array.data
# the previous weights to use to compute stopping criteria
cdef np.ndarray[double, ndim=2] previous_weights_array = \
np.zeros((n_features, n_classes), dtype=np.double, order="c")
cdef double* previous_weights = <double*> previous_weights_array.data
cdef np.ndarray[double, ndim=1] prediction_array = \
np.zeros(n_classes, dtype=np.double, order="c")
cdef double* prediction = <double*> prediction_array.data
cdef np.ndarray[double, ndim=1] gradient_array = \
np.zeros(n_classes, dtype=np.double, order="c")
cdef double* gradient = <double*> gradient_array.data
# Bias correction term in saga
cdef double gradient_correction
# the scalar used for multiplying z
cdef double wscale = 1.0
# the cumulative sums for each iteration for the sparse implementation
cumulative_sums[0] = 0.0
# the multipliative scale needed for JIT params
cdef np.ndarray[double, ndim=1] cumulative_sums_prox_array
cdef double* cumulative_sums_prox
cdef bint prox = beta > 0 and saga
# Loss function to optimize
cdef LossFunction loss
# Wether the loss function is multinomial
cdef bint multinomial = False
# Multinomial loss function
cdef MultinomialLogLoss multiloss
if loss_function == "multinomial":
multinomial = True
multiloss = MultinomialLogLoss()
elif loss_function == "log":
loss = Log()
elif loss_function == "squared":
loss = SquaredLoss()
else:
raise ValueError("Invalid loss parameter: got %s instead of "
"one of ('log', 'squared', 'multinomial')"
% loss_function)
if prox:
cumulative_sums_prox_array = np.empty(n_samples,
dtype=np.double, order="c")
cumulative_sums_prox = <double*> cumulative_sums_prox_array.data
else:
cumulative_sums_prox = NULL
with nogil:
start_time = time(NULL)
for n_iter in range(max_iter):
for sample_itr in range(n_samples):
# extract a random sample
sample_ind = dataset.random(&x_data_ptr, &x_ind_ptr, &xnnz,
&y, &sample_weight)
# cached index for gradient_memory
s_idx = sample_ind * n_classes
# update the number of samples seen and the seen array
if seen[sample_ind] == 0:
num_seen += 1
seen[sample_ind] = 1
# make the weight updates
if sample_itr > 0:
lagged_update(weights, wscale, xnnz,
n_samples, n_classes, sample_itr,
cumulative_sums,
cumulative_sums_prox,
feature_hist,
prox,
sum_gradient,
x_ind_ptr,
False,
n_iter)
# find the current prediction
predict_sample(x_data_ptr, x_ind_ptr, xnnz, weights, wscale,
intercept, prediction, n_classes)
# compute the gradient for this sample, given the prediction
if multinomial:
multiloss._dloss(prediction, y, n_classes, sample_weight,
gradient)
else:
gradient[0] = loss._dloss(prediction[0], y) * sample_weight
# L2 regularization by simply rescaling the weights
wscale *= wscale_update
# make the updates to the sum of gradients
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
val = x_data_ptr[j]
f_idx = feature_ind * n_classes
for class_ind in range(n_classes):
gradient_correction = \
val * (gradient[class_ind] -
gradient_memory[s_idx + class_ind])
if saga:
weights[f_idx + class_ind] -= \
(gradient_correction * step_size
* (1 - 1. / num_seen) / wscale)
sum_gradient[f_idx + class_ind] += gradient_correction
# fit the intercept
if fit_intercept:
for class_ind in range(n_classes):
gradient_correction = (gradient[class_ind] -
gradient_memory[s_idx + class_ind])
intercept_sum_gradient[class_ind] += gradient_correction
gradient_correction *= step_size * (1. - 1. / num_seen)
if saga:
intercept[class_ind] -= \
(step_size * intercept_sum_gradient[class_ind] /
num_seen * intercept_decay) + gradient_correction
else:
intercept[class_ind] -= \
(step_size * intercept_sum_gradient[class_ind] /
num_seen * intercept_decay)
# check to see that the intercept is not inf or NaN
if not skl_isfinite(intercept[class_ind]):
with gil:
raise_infinite_error(n_iter)
# update the gradient memory for this sample
for class_ind in range(n_classes):
gradient_memory[s_idx + class_ind] = gradient[class_ind]
if sample_itr == 0:
cumulative_sums[0] = step_size / (wscale * num_seen)
if prox:
cumulative_sums_prox[0] = step_size * beta / wscale
else:
cumulative_sums[sample_itr] = \
(cumulative_sums[sample_itr - 1] +
step_size / (wscale * num_seen))
if prox:
cumulative_sums_prox[sample_itr] = \
(cumulative_sums_prox[sample_itr - 1] +
step_size * beta / wscale)
# If wscale gets too small, we need to reset the scale.
if wscale < 1e-9:
if verbose:
with gil:
print("rescaling...")
wscale = scale_weights(
weights, wscale, n_features, n_samples, n_classes,
sample_itr, cumulative_sums,
cumulative_sums_prox,
feature_hist,
prox, sum_gradient, n_iter)
# we scale the weights every n_samples iterations and reset the
# just-in-time update system for numerical stability.
wscale = scale_weights(weights, wscale, n_features, n_samples,
n_classes, n_samples - 1, cumulative_sums,
cumulative_sums_prox,
feature_hist,
prox, sum_gradient, n_iter)
# check if the stopping criteria is reached
max_change = 0.0
max_weight = 0.0
for idx in range(n_features * n_classes):
max_weight = fmax(max_weight, fabs(weights[idx]))
max_change = fmax(max_change,
fabs(weights[idx] -
previous_weights[idx]))
previous_weights[idx] = weights[idx]
if ((max_weight != 0 and max_change / max_weight <= tol)
or max_weight == 0 and max_change == 0):
if verbose:
end_time = time(NULL)
with gil:
print("convergence after %d epochs took %d seconds" %
(n_iter + 1, end_time - start_time))
break
elif verbose:
printf('Epoch %d, change: %.8f\n', n_iter + 1,
max_change / max_weight)
n_iter += 1
if verbose and n_iter >= max_iter:
end_time = time(NULL)
print(("max_iter reached after %d seconds") %
(end_time - start_time))
return num_seen, n_iter
cdef void raise_infinite_error(int n_iter):
raise ValueError("Floating-point under-/overflow occurred at "
"epoch #%d. Lowering the step_size or "
"scaling the input data with StandardScaler "
"or MinMaxScaler might help." % (n_iter + 1))
cdef double scale_weights(double* weights, double wscale, int n_features,
int n_samples, int n_classes, int sample_itr,
double* cumulative_sums,
double* cumulative_sums_prox,
int* feature_hist,
bint prox,
double* sum_gradient,
int n_iter) nogil:
"""Scale the weights with wscale for numerical stability.
wscale = (1 - step_size * alpha) ** (n_iter * n_samples + sample_itr)
can become very small, so we reset it every n_samples iterations to 1.0 for
numerical stability. To be able to scale, we first need to update every
coefficients and reset the just-in-time update system.
This also limits the size of `cumulative_sums`.
"""
lagged_update(weights, wscale, n_features,
n_samples, n_classes, sample_itr + 1,
cumulative_sums,
cumulative_sums_prox,
feature_hist,
prox,
sum_gradient,
NULL,
True,
n_iter)
# reset wscale to 1.0
return 1.0
cdef void lagged_update(double* weights, double wscale, int xnnz,
int n_samples, int n_classes, int sample_itr,
double* cumulative_sums,
double* cumulative_sums_prox,
int* feature_hist,
bint prox,
double* sum_gradient,
int* x_ind_ptr,
bint reset,
int n_iter) nogil:
"""Hard perform the JIT updates for non-zero features of present sample.
The updates that awaits are kept in memory using cumulative_sums,
cumulative_sums_prox, wscale and feature_hist. See original SAGA paper
(Defazio et al. 2014) for details. If reset=True, we also reset wscale to
1 (this is done at the end of each epoch).
"""
cdef int feature_ind, class_ind, idx, f_idx, lagged_ind, last_update_ind
cdef double cum_sum, grad_step, prox_step
for feature_ind in range(xnnz):
if not reset:
feature_ind = x_ind_ptr[feature_ind]
f_idx = feature_ind * n_classes
cum_sum = cumulative_sums[sample_itr - 1]
if prox:
cum_sum_prox = cumulative_sums_prox[sample_itr - 1]
if feature_hist[feature_ind] != 0:
cum_sum -= cumulative_sums[feature_hist[feature_ind] - 1]
if prox:
cum_sum_prox -= cumulative_sums_prox[feature_hist[feature_ind] - 1]
if not prox:
for class_ind in range(n_classes):
idx = f_idx + class_ind
weights[idx] -= cum_sum * sum_gradient[idx]
if reset:
weights[idx] *= wscale
if not skl_isfinite(weights[idx]):
with gil:
raise_infinite_error(n_iter)
else:
for class_ind in range(n_classes):
idx = f_idx + class_ind
if fabs(sum_gradient[idx] * cum_sum) < cum_sum_prox:
# In this case, we can perform all the gradient steps and
# all the proximal steps in this order, which is more
# efficient than unrolling all the lagged updates.
# Idea taken from scikit-learn-contrib/lightning.
weights[idx] -= cum_sum * sum_gradient[idx]
weights[idx] = _soft_thresholding(weights[idx],
cum_sum_prox)
else:
last_update_ind = feature_hist[feature_ind] - 1
if last_update_ind == -1:
last_update_ind = sample_itr - 1
for lagged_ind in range(sample_itr - 1,
last_update_ind - 1, -1):
if lagged_ind > 0:
grad_step = (cumulative_sums[lagged_ind]
- cumulative_sums[lagged_ind - 1])
prox_step = (cumulative_sums_prox[lagged_ind]
- cumulative_sums_prox[lagged_ind - 1])
else:
grad_step = cumulative_sums[lagged_ind]
prox_step = cumulative_sums_prox[lagged_ind]
weights[idx] -= sum_gradient[idx] * grad_step
weights[idx] = _soft_thresholding(weights[idx],
prox_step)
if reset:
weights[idx] *= wscale
# check to see that the weight is not inf or NaN
if not skl_isfinite(weights[idx]):
with gil:
raise_infinite_error(n_iter)
if reset:
feature_hist[feature_ind] = sample_itr % n_samples
else:
feature_hist[feature_ind] = sample_itr
if reset:
cumulative_sums[sample_itr - 1] = 0.0
if prox:
cumulative_sums_prox[sample_itr - 1] = 0.0
cdef void predict_sample(double* x_data_ptr, int* x_ind_ptr, int xnnz,
double* w_data_ptr, double wscale, double* intercept,
double* prediction, int n_classes) nogil:
"""Compute the prediction given sparse sample x and dense weight w.
Parameters
----------
x_data_ptr : pointer
Pointer to the data of the sample x
x_ind_ptr : pointer
Pointer to the indices of the sample x
xnnz : int
Number of non-zero element in the sample x
w_data_ptr : pointer
Pointer to the data of the weights w
wscale : double
Scale of the weights w
intercept : pointer
Pointer to the intercept
prediction : pointer
Pointer to store the resulting prediction
n_classes : int
Number of classes in multinomial case. Equals 1 in binary case.
"""
cdef int feature_ind, class_ind, j
cdef double innerprod
for class_ind in range(n_classes):
innerprod = 0.0
# Compute the dot product only on non-zero elements of x
for j in range(xnnz):
feature_ind = x_ind_ptr[j]
innerprod += (w_data_ptr[feature_ind * n_classes + class_ind] *
x_data_ptr[j])
prediction[class_ind] = wscale * innerprod + intercept[class_ind]
|