1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause
import numpy as np
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_less
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import SkipTest
from sklearn.utils import check_random_state
from sklearn.linear_model.bayes import BayesianRidge, ARDRegression
from sklearn.linear_model import Ridge
from sklearn import datasets
def test_bayesian_on_diabetes():
# Test BayesianRidge on diabetes
raise SkipTest("test_bayesian_on_diabetes is broken")
diabetes = datasets.load_diabetes()
X, y = diabetes.data, diabetes.target
clf = BayesianRidge(compute_score=True)
# Test with more samples than features
clf.fit(X, y)
# Test that scores are increasing at each iteration
assert_array_equal(np.diff(clf.scores_) > 0, True)
# Test with more features than samples
X = X[:5, :]
y = y[:5]
clf.fit(X, y)
# Test that scores are increasing at each iteration
assert_array_equal(np.diff(clf.scores_) > 0, True)
def test_bayesian_ridge_parameter():
# Test correctness of lambda_ and alpha_ parameters (GitHub issue #8224)
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
# A Ridge regression model using an alpha value equal to the ratio of
# lambda_ and alpha_ from the Bayesian Ridge model must be identical
br_model = BayesianRidge(compute_score=True).fit(X, y)
rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(X, y)
assert_array_almost_equal(rr_model.coef_, br_model.coef_)
assert_almost_equal(rr_model.intercept_, br_model.intercept_)
def test_bayesian_sample_weights():
# Test correctness of the sample_weights method
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
w = np.array([4, 3, 3, 1, 1, 2, 3]).T
# A Ridge regression model using an alpha value equal to the ratio of
# lambda_ and alpha_ from the Bayesian Ridge model must be identical
br_model = BayesianRidge(compute_score=True).fit(X, y, sample_weight=w)
rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(
X, y, sample_weight=w)
assert_array_almost_equal(rr_model.coef_, br_model.coef_)
assert_almost_equal(rr_model.intercept_, br_model.intercept_)
def test_toy_bayesian_ridge_object():
# Test BayesianRidge on toy
X = np.array([[1], [2], [6], [8], [10]])
Y = np.array([1, 2, 6, 8, 10])
clf = BayesianRidge(compute_score=True)
clf.fit(X, Y)
# Check that the model could approximately learn the identity function
test = [[1], [3], [4]]
assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
def test_prediction_bayesian_ridge_ard_with_constant_input():
# Test BayesianRidge and ARDRegression predictions for edge case of
# constant target vectors
n_samples = 4
n_features = 5
random_state = check_random_state(42)
constant_value = random_state.rand()
X = random_state.random_sample((n_samples, n_features))
y = np.full(n_samples, constant_value,
dtype=np.array(constant_value).dtype)
expected = np.full(n_samples, constant_value,
dtype=np.array(constant_value).dtype)
for clf in [BayesianRidge(), ARDRegression()]:
y_pred = clf.fit(X, y).predict(X)
assert_array_almost_equal(y_pred, expected)
def test_std_bayesian_ridge_ard_with_constant_input():
# Test BayesianRidge and ARDRegression standard dev. for edge case of
# constant target vector
# The standard dev. should be relatively small (< 0.01 is tested here)
n_samples = 4
n_features = 5
random_state = check_random_state(42)
constant_value = random_state.rand()
X = random_state.random_sample((n_samples, n_features))
y = np.full(n_samples, constant_value,
dtype=np.array(constant_value).dtype)
expected_upper_boundary = 0.01
for clf in [BayesianRidge(), ARDRegression()]:
_, y_std = clf.fit(X, y).predict(X, return_std=True)
assert_array_less(y_std, expected_upper_boundary)
def test_update_of_sigma_in_ard():
# Checks that `sigma_` is updated correctly after the last iteration
# of the ARDRegression algorithm. See issue #10128.
X = np.array([[1, 0],
[0, 0]])
y = np.array([0, 0])
clf = ARDRegression(n_iter=1)
clf.fit(X, y)
# With the inputs above, ARDRegression prunes one of the two coefficients
# in the first iteration. Hence, the expected shape of `sigma_` is (1, 1).
assert_equal(clf.sigma_.shape, (1, 1))
# Ensure that no error is thrown at prediction stage
clf.predict(X, return_std=True)
def test_toy_ard_object():
# Test BayesianRegression ARD classifier
X = np.array([[1], [2], [3]])
Y = np.array([1, 2, 3])
clf = ARDRegression(compute_score=True)
clf.fit(X, Y)
# Check that the model could approximately learn the identity function
test = [[1], [3], [4]]
assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
def test_return_std():
# Test return_std option for both Bayesian regressors
def f(X):
return np.dot(X, w) + b
def f_noise(X, noise_mult):
return f(X) + np.random.randn(X.shape[0]) * noise_mult
d = 5
n_train = 50
n_test = 10
w = np.array([1.0, 0.0, 1.0, -1.0, 0.0])
b = 1.0
X = np.random.random((n_train, d))
X_test = np.random.random((n_test, d))
for decimal, noise_mult in enumerate([1, 0.1, 0.01]):
y = f_noise(X, noise_mult)
m1 = BayesianRidge()
m1.fit(X, y)
y_mean1, y_std1 = m1.predict(X_test, return_std=True)
assert_array_almost_equal(y_std1, noise_mult, decimal=decimal)
m2 = ARDRegression()
m2.fit(X, y)
y_mean2, y_std2 = m2.predict(X_test, return_std=True)
assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)
|