File: test_huber.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (203 lines) | stat: -rw-r--r-- 7,830 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Authors: Manoj Kumar mks542@nyu.edu
# License: BSD 3 clause

import numpy as np
from scipy import optimize, sparse
import pytest

from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_false

from sklearn.datasets import make_regression
from sklearn.linear_model import (
    HuberRegressor, LinearRegression, SGDRegressor, Ridge)
from sklearn.linear_model.huber import _huber_loss_and_gradient


def make_regression_with_outliers(n_samples=50, n_features=20):
    rng = np.random.RandomState(0)
    # Generate data with outliers by replacing 10% of the samples with noise.
    X, y = make_regression(
        n_samples=n_samples, n_features=n_features,
        random_state=0, noise=0.05)

    # Replace 10% of the sample with noise.
    num_noise = int(0.1 * n_samples)
    random_samples = rng.randint(0, n_samples, num_noise)
    X[random_samples, :] = 2.0 * rng.normal(0, 1, (num_noise, X.shape[1]))
    return X, y


def test_huber_equals_lr_for_high_epsilon():
    # Test that Ridge matches LinearRegression for large epsilon
    X, y = make_regression_with_outliers()
    lr = LinearRegression(fit_intercept=True)
    lr.fit(X, y)
    huber = HuberRegressor(fit_intercept=True, epsilon=1e3, alpha=0.0)
    huber.fit(X, y)
    assert_almost_equal(huber.coef_, lr.coef_, 3)
    assert_almost_equal(huber.intercept_, lr.intercept_, 2)


def test_huber_max_iter():
    X, y = make_regression_with_outliers()
    huber = HuberRegressor(max_iter=1)
    huber.fit(X, y)
    assert huber.n_iter_ == huber.max_iter


def test_huber_gradient():
    # Test that the gradient calculated by _huber_loss_and_gradient is correct
    rng = np.random.RandomState(1)
    X, y = make_regression_with_outliers()
    sample_weight = rng.randint(1, 3, (y.shape[0]))
    loss_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[0]
    grad_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[1]

    # Check using optimize.check_grad that the gradients are equal.
    for _ in range(5):
        # Check for both fit_intercept and otherwise.
        for n_features in [X.shape[1] + 1, X.shape[1] + 2]:
            w = rng.randn(n_features)
            w[-1] = np.abs(w[-1])
            grad_same = optimize.check_grad(
                loss_func, grad_func, w, X, y, 0.01, 0.1, sample_weight)
            assert_almost_equal(grad_same, 1e-6, 4)


def test_huber_sample_weights():
    # Test sample_weights implementation in HuberRegressor"""

    X, y = make_regression_with_outliers()
    huber = HuberRegressor(fit_intercept=True)
    huber.fit(X, y)
    huber_coef = huber.coef_
    huber_intercept = huber.intercept_

    # Rescale coefs before comparing with assert_array_almost_equal to make sure
    # that the number of decimal places used is somewhat insensitive to the
    # amplitude of the coefficients and therefore to the scale of the data
    # and the regularization parameter
    scale = max(np.mean(np.abs(huber.coef_)),
                np.mean(np.abs(huber.intercept_)))

    huber.fit(X, y, sample_weight=np.ones(y.shape[0]))
    assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale)
    assert_array_almost_equal(huber.intercept_ / scale,
                              huber_intercept / scale)

    X, y = make_regression_with_outliers(n_samples=5, n_features=20)
    X_new = np.vstack((X, np.vstack((X[1], X[1], X[3]))))
    y_new = np.concatenate((y, [y[1]], [y[1]], [y[3]]))
    huber.fit(X_new, y_new)
    huber_coef = huber.coef_
    huber_intercept = huber.intercept_
    sample_weight = np.ones(X.shape[0])
    sample_weight[1] = 3
    sample_weight[3] = 2
    huber.fit(X, y, sample_weight=sample_weight)

    assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale)
    assert_array_almost_equal(huber.intercept_ / scale,
                              huber_intercept / scale)

    # Test sparse implementation with sample weights.
    X_csr = sparse.csr_matrix(X)
    huber_sparse = HuberRegressor(fit_intercept=True)
    huber_sparse.fit(X_csr, y, sample_weight=sample_weight)
    assert_array_almost_equal(huber_sparse.coef_ / scale,
                              huber_coef / scale)


def test_huber_sparse():
    X, y = make_regression_with_outliers()
    huber = HuberRegressor(fit_intercept=True, alpha=0.1)
    huber.fit(X, y)

    X_csr = sparse.csr_matrix(X)
    huber_sparse = HuberRegressor(fit_intercept=True, alpha=0.1)
    huber_sparse.fit(X_csr, y)
    assert_array_almost_equal(huber_sparse.coef_, huber.coef_)
    assert_array_equal(huber.outliers_, huber_sparse.outliers_)


def test_huber_scaling_invariant():
    # Test that outliers filtering is scaling independent.
    X, y = make_regression_with_outliers()
    huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100)
    huber.fit(X, y)
    n_outliers_mask_1 = huber.outliers_
    assert_false(np.all(n_outliers_mask_1))

    huber.fit(X, 2. * y)
    n_outliers_mask_2 = huber.outliers_
    assert_array_equal(n_outliers_mask_2, n_outliers_mask_1)

    huber.fit(2. * X, 2. * y)
    n_outliers_mask_3 = huber.outliers_
    assert_array_equal(n_outliers_mask_3, n_outliers_mask_1)


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_huber_and_sgd_same_results():
    # Test they should converge to same coefficients for same parameters

    X, y = make_regression_with_outliers(n_samples=10, n_features=2)

    # Fit once to find out the scale parameter. Scale down X and y by scale
    # so that the scale parameter is optimized to 1.0
    huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100,
                           epsilon=1.35)
    huber.fit(X, y)
    X_scale = X / huber.scale_
    y_scale = y / huber.scale_
    huber.fit(X_scale, y_scale)
    assert_almost_equal(huber.scale_, 1.0, 3)

    sgdreg = SGDRegressor(
        alpha=0.0, loss="huber", shuffle=True, random_state=0, max_iter=10000,
        fit_intercept=False, epsilon=1.35, tol=None)
    sgdreg.fit(X_scale, y_scale)
    assert_array_almost_equal(huber.coef_, sgdreg.coef_, 1)


def test_huber_warm_start():
    X, y = make_regression_with_outliers()
    huber_warm = HuberRegressor(
        fit_intercept=True, alpha=1.0, max_iter=10000, warm_start=True, tol=1e-1)
    huber_warm.fit(X, y)
    huber_warm_coef = huber_warm.coef_.copy()
    huber_warm.fit(X, y)

    # SciPy performs the tol check after doing the coef updates, so
    # these would be almost same but not equal.
    assert_array_almost_equal(huber_warm.coef_, huber_warm_coef, 1)

    assert huber_warm.n_iter_ == 0


def test_huber_better_r2_score():
    # Test that huber returns a better r2 score than non-outliers"""
    X, y = make_regression_with_outliers()
    huber = HuberRegressor(fit_intercept=True, alpha=0.01, max_iter=100)
    huber.fit(X, y)
    linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y
    mask = np.abs(linear_loss) < huber.epsilon * huber.scale_
    huber_score = huber.score(X[mask], y[mask])
    huber_outlier_score = huber.score(X[~mask], y[~mask])

    # The Ridge regressor should be influenced by the outliers and hence
    # give a worse score on the non-outliers as compared to the huber regressor.
    ridge = Ridge(fit_intercept=True, alpha=0.01)
    ridge.fit(X, y)
    ridge_score = ridge.score(X[mask], y[mask])
    ridge_outlier_score = ridge.score(X[~mask], y[~mask])
    assert_greater(huber_score, ridge_score)

    # The huber model should also fit poorly on the outliers.
    assert_greater(ridge_outlier_score, huber_outlier_score)