File: test_passive_aggressive.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (298 lines) | stat: -rw-r--r-- 11,351 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import numpy as np
import scipy.sparse as sp

import pytest

from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_raises

from sklearn.base import ClassifierMixin
from sklearn.utils import check_random_state
from sklearn.datasets import load_iris
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import PassiveAggressiveRegressor

iris = load_iris()
random_state = check_random_state(12)
indices = np.arange(iris.data.shape[0])
random_state.shuffle(indices)
X = iris.data[indices]
y = iris.target[indices]
X_csr = sp.csr_matrix(X)


class MyPassiveAggressive(ClassifierMixin):

    def __init__(self, C=1.0, epsilon=0.01, loss="hinge",
                 fit_intercept=True, n_iter=1, random_state=None):
        self.C = C
        self.epsilon = epsilon
        self.loss = loss
        self.fit_intercept = fit_intercept
        self.n_iter = n_iter

    def fit(self, X, y):
        n_samples, n_features = X.shape
        self.w = np.zeros(n_features, dtype=np.float64)
        self.b = 0.0

        for t in range(self.n_iter):
            for i in range(n_samples):
                p = self.project(X[i])
                if self.loss in ("hinge", "squared_hinge"):
                    loss = max(1 - y[i] * p, 0)
                else:
                    loss = max(np.abs(p - y[i]) - self.epsilon, 0)

                sqnorm = np.dot(X[i], X[i])

                if self.loss in ("hinge", "epsilon_insensitive"):
                    step = min(self.C, loss / sqnorm)
                elif self.loss in ("squared_hinge",
                                   "squared_epsilon_insensitive"):
                    step = loss / (sqnorm + 1.0 / (2 * self.C))

                if self.loss in ("hinge", "squared_hinge"):
                    step *= y[i]
                else:
                    step *= np.sign(y[i] - p)

                self.w += step * X[i]
                if self.fit_intercept:
                    self.b += step

    def project(self, X):
        return np.dot(X, self.w) + self.b


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_classifier_accuracy():
    for data in (X, X_csr):
        for fit_intercept in (True, False):
            for average in (False, True):
                clf = PassiveAggressiveClassifier(
                    C=1.0, max_iter=30, fit_intercept=fit_intercept,
                    random_state=0, average=average, tol=None)
                clf.fit(data, y)
                score = clf.score(data, y)
                assert_greater(score, 0.79)
                if average:
                    assert hasattr(clf, 'average_coef_')
                    assert hasattr(clf, 'average_intercept_')
                    assert hasattr(clf, 'standard_intercept_')
                    assert hasattr(clf, 'standard_coef_')


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_classifier_partial_fit():
    classes = np.unique(y)
    for data in (X, X_csr):
        for average in (False, True):
            clf = PassiveAggressiveClassifier(
                C=1.0, fit_intercept=True, random_state=0,
                average=average, max_iter=5)
            for t in range(30):
                clf.partial_fit(data, y, classes)
            score = clf.score(data, y)
            assert_greater(score, 0.79)
            if average:
                assert hasattr(clf, 'average_coef_')
                assert hasattr(clf, 'average_intercept_')
                assert hasattr(clf, 'standard_intercept_')
                assert hasattr(clf, 'standard_coef_')


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_classifier_refit():
    # Classifier can be retrained on different labels and features.
    clf = PassiveAggressiveClassifier(max_iter=5).fit(X, y)
    assert_array_equal(clf.classes_, np.unique(y))

    clf.fit(X[:, :-1], iris.target_names[y])
    assert_array_equal(clf.classes_, iris.target_names)


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
@pytest.mark.parametrize('loss', ("hinge", "squared_hinge"))
def test_classifier_correctness(loss):
    y_bin = y.copy()
    y_bin[y != 1] = -1

    clf1 = MyPassiveAggressive(
        C=1.0, loss=loss, fit_intercept=True, n_iter=2)
    clf1.fit(X, y_bin)

    for data in (X, X_csr):
        clf2 = PassiveAggressiveClassifier(
            C=1.0, loss=loss, fit_intercept=True, max_iter=2,
            shuffle=False, tol=None)
        clf2.fit(data, y_bin)

        assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2)


def test_classifier_undefined_methods():
    clf = PassiveAggressiveClassifier(max_iter=100)
    for meth in ("predict_proba", "predict_log_proba", "transform"):
        assert_raises(AttributeError, lambda x: getattr(clf, x), meth)


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_class_weights():
    # Test class weights.
    X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                   [1.0, 1.0], [1.0, 0.0]])
    y2 = [1, 1, 1, -1, -1]

    clf = PassiveAggressiveClassifier(C=0.1, max_iter=100, class_weight=None,
                                      random_state=100)
    clf.fit(X2, y2)
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))

    # we give a small weights to class 1
    clf = PassiveAggressiveClassifier(C=0.1, max_iter=100,
                                      class_weight={1: 0.001},
                                      random_state=100)
    clf.fit(X2, y2)

    # now the hyperplane should rotate clock-wise and
    # the prediction on this point should shift
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_partial_fit_weight_class_balanced():
    # partial_fit with class_weight='balanced' not supported
    clf = PassiveAggressiveClassifier(class_weight="balanced", max_iter=100)
    assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y))


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_equal_class_weight():
    X2 = [[1, 0], [1, 0], [0, 1], [0, 1]]
    y2 = [0, 0, 1, 1]
    clf = PassiveAggressiveClassifier(
        C=0.1, max_iter=1000, tol=None, class_weight=None)
    clf.fit(X2, y2)

    # Already balanced, so "balanced" weights should have no effect
    clf_balanced = PassiveAggressiveClassifier(
        C=0.1, max_iter=1000, tol=None, class_weight="balanced")
    clf_balanced.fit(X2, y2)

    clf_weighted = PassiveAggressiveClassifier(
        C=0.1, max_iter=1000, tol=None, class_weight={0: 0.5, 1: 0.5})
    clf_weighted.fit(X2, y2)

    # should be similar up to some epsilon due to learning rate schedule
    assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2)
    assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2)


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_wrong_class_weight_label():
    # ValueError due to wrong class_weight label.
    X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                   [1.0, 1.0], [1.0, 0.0]])
    y2 = [1, 1, 1, -1, -1]

    clf = PassiveAggressiveClassifier(class_weight={0: 0.5}, max_iter=100)
    assert_raises(ValueError, clf.fit, X2, y2)


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_wrong_class_weight_format():
    # ValueError due to wrong class_weight argument type.
    X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                   [1.0, 1.0], [1.0, 0.0]])
    y2 = [1, 1, 1, -1, -1]

    clf = PassiveAggressiveClassifier(class_weight=[0.5], max_iter=100)
    assert_raises(ValueError, clf.fit, X2, y2)

    clf = PassiveAggressiveClassifier(class_weight="the larch", max_iter=100)
    assert_raises(ValueError, clf.fit, X2, y2)


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_regressor_mse():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for data in (X, X_csr):
        for fit_intercept in (True, False):
            for average in (False, True):
                reg = PassiveAggressiveRegressor(
                    C=1.0, fit_intercept=fit_intercept,
                    random_state=0, average=average, max_iter=5)
                reg.fit(data, y_bin)
                pred = reg.predict(data)
                assert_less(np.mean((pred - y_bin) ** 2), 1.7)
                if average:
                    assert hasattr(reg, 'average_coef_')
                    assert hasattr(reg, 'average_intercept_')
                    assert hasattr(reg, 'standard_intercept_')
                    assert hasattr(reg, 'standard_coef_')


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_regressor_partial_fit():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for data in (X, X_csr):
        for average in (False, True):
            reg = PassiveAggressiveRegressor(
                C=1.0, fit_intercept=True, random_state=0,
                average=average, max_iter=100)
            for t in range(50):
                reg.partial_fit(data, y_bin)
            pred = reg.predict(data)
            assert_less(np.mean((pred - y_bin) ** 2), 1.7)
            if average:
                assert hasattr(reg, 'average_coef_')
                assert hasattr(reg, 'average_intercept_')
                assert hasattr(reg, 'standard_intercept_')
                assert hasattr(reg, 'standard_coef_')


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
@pytest.mark.parametrize(
        'loss',
        ("epsilon_insensitive", "squared_epsilon_insensitive"))
def test_regressor_correctness(loss):
    y_bin = y.copy()
    y_bin[y != 1] = -1

    reg1 = MyPassiveAggressive(
        C=1.0, loss=loss, fit_intercept=True, n_iter=2)
    reg1.fit(X, y_bin)

    for data in (X, X_csr):
        reg2 = PassiveAggressiveRegressor(
            C=1.0, tol=None, loss=loss, fit_intercept=True, max_iter=2,
            shuffle=False)
        reg2.fit(data, y_bin)

        assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2)


def test_regressor_undefined_methods():
    reg = PassiveAggressiveRegressor(max_iter=100)
    for meth in ("transform",):
        assert_raises(AttributeError, lambda x: getattr(reg, x), meth)