1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn.base import ClassifierMixin
from sklearn.utils import check_random_state
from sklearn.datasets import load_iris
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import PassiveAggressiveRegressor
iris = load_iris()
random_state = check_random_state(12)
indices = np.arange(iris.data.shape[0])
random_state.shuffle(indices)
X = iris.data[indices]
y = iris.target[indices]
X_csr = sp.csr_matrix(X)
class MyPassiveAggressive(ClassifierMixin):
def __init__(self, C=1.0, epsilon=0.01, loss="hinge",
fit_intercept=True, n_iter=1, random_state=None):
self.C = C
self.epsilon = epsilon
self.loss = loss
self.fit_intercept = fit_intercept
self.n_iter = n_iter
def fit(self, X, y):
n_samples, n_features = X.shape
self.w = np.zeros(n_features, dtype=np.float64)
self.b = 0.0
for t in range(self.n_iter):
for i in range(n_samples):
p = self.project(X[i])
if self.loss in ("hinge", "squared_hinge"):
loss = max(1 - y[i] * p, 0)
else:
loss = max(np.abs(p - y[i]) - self.epsilon, 0)
sqnorm = np.dot(X[i], X[i])
if self.loss in ("hinge", "epsilon_insensitive"):
step = min(self.C, loss / sqnorm)
elif self.loss in ("squared_hinge",
"squared_epsilon_insensitive"):
step = loss / (sqnorm + 1.0 / (2 * self.C))
if self.loss in ("hinge", "squared_hinge"):
step *= y[i]
else:
step *= np.sign(y[i] - p)
self.w += step * X[i]
if self.fit_intercept:
self.b += step
def project(self, X):
return np.dot(X, self.w) + self.b
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_classifier_accuracy():
for data in (X, X_csr):
for fit_intercept in (True, False):
for average in (False, True):
clf = PassiveAggressiveClassifier(
C=1.0, max_iter=30, fit_intercept=fit_intercept,
random_state=0, average=average, tol=None)
clf.fit(data, y)
score = clf.score(data, y)
assert_greater(score, 0.79)
if average:
assert hasattr(clf, 'average_coef_')
assert hasattr(clf, 'average_intercept_')
assert hasattr(clf, 'standard_intercept_')
assert hasattr(clf, 'standard_coef_')
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_classifier_partial_fit():
classes = np.unique(y)
for data in (X, X_csr):
for average in (False, True):
clf = PassiveAggressiveClassifier(
C=1.0, fit_intercept=True, random_state=0,
average=average, max_iter=5)
for t in range(30):
clf.partial_fit(data, y, classes)
score = clf.score(data, y)
assert_greater(score, 0.79)
if average:
assert hasattr(clf, 'average_coef_')
assert hasattr(clf, 'average_intercept_')
assert hasattr(clf, 'standard_intercept_')
assert hasattr(clf, 'standard_coef_')
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_classifier_refit():
# Classifier can be retrained on different labels and features.
clf = PassiveAggressiveClassifier(max_iter=5).fit(X, y)
assert_array_equal(clf.classes_, np.unique(y))
clf.fit(X[:, :-1], iris.target_names[y])
assert_array_equal(clf.classes_, iris.target_names)
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
@pytest.mark.parametrize('loss', ("hinge", "squared_hinge"))
def test_classifier_correctness(loss):
y_bin = y.copy()
y_bin[y != 1] = -1
clf1 = MyPassiveAggressive(
C=1.0, loss=loss, fit_intercept=True, n_iter=2)
clf1.fit(X, y_bin)
for data in (X, X_csr):
clf2 = PassiveAggressiveClassifier(
C=1.0, loss=loss, fit_intercept=True, max_iter=2,
shuffle=False, tol=None)
clf2.fit(data, y_bin)
assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2)
def test_classifier_undefined_methods():
clf = PassiveAggressiveClassifier(max_iter=100)
for meth in ("predict_proba", "predict_log_proba", "transform"):
assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_class_weights():
# Test class weights.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(C=0.1, max_iter=100, class_weight=None,
random_state=100)
clf.fit(X2, y2)
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
clf = PassiveAggressiveClassifier(C=0.1, max_iter=100,
class_weight={1: 0.001},
random_state=100)
clf.fit(X2, y2)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_partial_fit_weight_class_balanced():
# partial_fit with class_weight='balanced' not supported
clf = PassiveAggressiveClassifier(class_weight="balanced", max_iter=100)
assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y))
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_equal_class_weight():
X2 = [[1, 0], [1, 0], [0, 1], [0, 1]]
y2 = [0, 0, 1, 1]
clf = PassiveAggressiveClassifier(
C=0.1, max_iter=1000, tol=None, class_weight=None)
clf.fit(X2, y2)
# Already balanced, so "balanced" weights should have no effect
clf_balanced = PassiveAggressiveClassifier(
C=0.1, max_iter=1000, tol=None, class_weight="balanced")
clf_balanced.fit(X2, y2)
clf_weighted = PassiveAggressiveClassifier(
C=0.1, max_iter=1000, tol=None, class_weight={0: 0.5, 1: 0.5})
clf_weighted.fit(X2, y2)
# should be similar up to some epsilon due to learning rate schedule
assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2)
assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2)
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_wrong_class_weight_label():
# ValueError due to wrong class_weight label.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(class_weight={0: 0.5}, max_iter=100)
assert_raises(ValueError, clf.fit, X2, y2)
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_wrong_class_weight_format():
# ValueError due to wrong class_weight argument type.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(class_weight=[0.5], max_iter=100)
assert_raises(ValueError, clf.fit, X2, y2)
clf = PassiveAggressiveClassifier(class_weight="the larch", max_iter=100)
assert_raises(ValueError, clf.fit, X2, y2)
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_regressor_mse():
y_bin = y.copy()
y_bin[y != 1] = -1
for data in (X, X_csr):
for fit_intercept in (True, False):
for average in (False, True):
reg = PassiveAggressiveRegressor(
C=1.0, fit_intercept=fit_intercept,
random_state=0, average=average, max_iter=5)
reg.fit(data, y_bin)
pred = reg.predict(data)
assert_less(np.mean((pred - y_bin) ** 2), 1.7)
if average:
assert hasattr(reg, 'average_coef_')
assert hasattr(reg, 'average_intercept_')
assert hasattr(reg, 'standard_intercept_')
assert hasattr(reg, 'standard_coef_')
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_regressor_partial_fit():
y_bin = y.copy()
y_bin[y != 1] = -1
for data in (X, X_csr):
for average in (False, True):
reg = PassiveAggressiveRegressor(
C=1.0, fit_intercept=True, random_state=0,
average=average, max_iter=100)
for t in range(50):
reg.partial_fit(data, y_bin)
pred = reg.predict(data)
assert_less(np.mean((pred - y_bin) ** 2), 1.7)
if average:
assert hasattr(reg, 'average_coef_')
assert hasattr(reg, 'average_intercept_')
assert hasattr(reg, 'standard_intercept_')
assert hasattr(reg, 'standard_coef_')
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
@pytest.mark.parametrize(
'loss',
("epsilon_insensitive", "squared_epsilon_insensitive"))
def test_regressor_correctness(loss):
y_bin = y.copy()
y_bin[y != 1] = -1
reg1 = MyPassiveAggressive(
C=1.0, loss=loss, fit_intercept=True, n_iter=2)
reg1.fit(X, y_bin)
for data in (X, X_csr):
reg2 = PassiveAggressiveRegressor(
C=1.0, tol=None, loss=loss, fit_intercept=True, max_iter=2,
shuffle=False)
reg2.fit(data, y_bin)
assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2)
def test_regressor_undefined_methods():
reg = PassiveAggressiveRegressor(max_iter=100)
for meth in ("transform",):
assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
|