1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause
from tempfile import mkdtemp
import shutil
import numpy as np
from scipy import sparse
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raises_regex
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_warns_message
from sklearn.linear_model.randomized_l1 import(lasso_stability_path,
RandomizedLasso,
RandomizedLogisticRegression)
from sklearn.datasets import load_diabetes, load_iris
from sklearn.feature_selection import f_regression, f_classif
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model.base import _preprocess_data
diabetes = load_diabetes()
X = diabetes.data
y = diabetes.target
X = StandardScaler().fit_transform(X)
X = X[:, [2, 3, 6, 7, 8]]
# test that the feature score of the best features
F, _ = f_regression(X, y)
@ignore_warnings(category=DeprecationWarning)
def test_lasso_stability_path():
# Check lasso stability path
# Load diabetes data and add noisy features
scaling = 0.3
coef_grid, scores_path = lasso_stability_path(X, y, scaling=scaling,
random_state=42,
n_resampling=30)
assert_array_equal(np.argsort(F)[-3:],
np.argsort(np.sum(scores_path, axis=1))[-3:])
@ignore_warnings(category=DeprecationWarning)
def test_randomized_lasso_error_memory():
scaling = 0.3
selection_threshold = 0.5
tempdir = 5
clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42,
scaling=scaling,
selection_threshold=selection_threshold,
memory=tempdir)
assert_raises_regex(ValueError, "'memory' should either be a string or"
" a sklearn.utils.Memory instance",
clf.fit, X, y)
@ignore_warnings(category=DeprecationWarning)
def test_randomized_lasso():
# Check randomized lasso
scaling = 0.3
selection_threshold = 0.5
n_resampling = 20
# or with 1 alpha
clf = RandomizedLasso(verbose=False, alpha=1, random_state=42,
scaling=scaling, n_resampling=n_resampling,
selection_threshold=selection_threshold)
feature_scores = clf.fit(X, y).scores_
assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])
# or with many alphas
clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42,
scaling=scaling, n_resampling=n_resampling,
selection_threshold=selection_threshold)
feature_scores = clf.fit(X, y).scores_
assert_equal(clf.all_scores_.shape, (X.shape[1], 2))
assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])
# test caching
try:
tempdir = mkdtemp()
clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42,
scaling=scaling,
selection_threshold=selection_threshold,
memory=tempdir)
feature_scores = clf.fit(X, y).scores_
assert_equal(clf.all_scores_.shape, (X.shape[1], 2))
assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])
finally:
shutil.rmtree(tempdir)
X_r = clf.transform(X)
X_full = clf.inverse_transform(X_r)
assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold))
assert_equal(X_full.shape, X.shape)
clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42,
scaling=scaling, n_resampling=100)
feature_scores = clf.fit(X, y).scores_
assert_allclose(feature_scores, [1., 1., 1., 0.225, 1.], rtol=0.2)
clf = RandomizedLasso(verbose=False, scaling=-0.1)
assert_raises(ValueError, clf.fit, X, y)
clf = RandomizedLasso(verbose=False, scaling=1.1)
assert_raises(ValueError, clf.fit, X, y)
@ignore_warnings(category=DeprecationWarning)
def test_randomized_lasso_precompute():
# Check randomized lasso for different values of precompute
n_resampling = 20
alpha = 1
random_state = 42
G = np.dot(X.T, X)
clf = RandomizedLasso(alpha=alpha, random_state=random_state,
precompute=G, n_resampling=n_resampling)
feature_scores_1 = clf.fit(X, y).scores_
for precompute in [True, False, None, 'auto']:
clf = RandomizedLasso(alpha=alpha, random_state=random_state,
precompute=precompute, n_resampling=n_resampling)
feature_scores_2 = clf.fit(X, y).scores_
assert_array_equal(feature_scores_1, feature_scores_2)
@ignore_warnings(category=DeprecationWarning)
def test_randomized_logistic():
# Check randomized sparse logistic regression
iris = load_iris()
X = iris.data[:, [0, 2]]
y = iris.target
X = X[y != 2]
y = y[y != 2]
F, _ = f_classif(X, y)
scaling = 0.3
clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42,
scaling=scaling, n_resampling=50,
tol=1e-3)
X_orig = X.copy()
feature_scores = clf.fit(X, y).scores_
assert_array_equal(X, X_orig) # fit does not modify X
assert_array_equal(np.argsort(F), np.argsort(feature_scores))
clf = RandomizedLogisticRegression(verbose=False, C=[1., 0.5],
random_state=42, scaling=scaling,
n_resampling=50, tol=1e-3)
feature_scores = clf.fit(X, y).scores_
assert_array_equal(np.argsort(F), np.argsort(feature_scores))
clf = RandomizedLogisticRegression(verbose=False, C=[[1., 0.5]])
assert_raises(ValueError, clf.fit, X, y)
@ignore_warnings(category=DeprecationWarning)
def test_randomized_logistic_sparse():
# Check randomized sparse logistic regression on sparse data
iris = load_iris()
X = iris.data[:, [0, 2]]
y = iris.target
X = X[y != 2]
y = y[y != 2]
# center here because sparse matrices are usually not centered
# labels should not be centered
X, _, _, _, _ = _preprocess_data(X, y, True, True)
X_sp = sparse.csr_matrix(X)
F, _ = f_classif(X, y)
scaling = 0.3
clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42,
scaling=scaling, n_resampling=50,
tol=1e-3)
feature_scores = clf.fit(X, y).scores_
clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42,
scaling=scaling, n_resampling=50,
tol=1e-3)
feature_scores_sp = clf.fit(X_sp, y).scores_
assert_array_equal(feature_scores, feature_scores_sp)
def test_warning_raised():
scaling = 0.3
selection_threshold = 0.5
tempdir = 5
assert_warns_message(DeprecationWarning, "The function"
" lasso_stability_path is "
"deprecated in 0.19 and will be removed in 0.21.",
lasso_stability_path, X, y, scaling=scaling,
random_state=42, n_resampling=30)
assert_warns_message(DeprecationWarning, "Class RandomizedLasso is"
" deprecated; The class RandomizedLasso is "
"deprecated in 0.19 and will be removed in 0.21.",
RandomizedLasso, verbose=False, alpha=[1, 0.8],
random_state=42, scaling=scaling,
selection_threshold=selection_threshold,
memory=tempdir)
assert_warns_message(DeprecationWarning, "The class"
" RandomizedLogisticRegression is "
"deprecated in 0.19 and will be removed in 0.21.",
RandomizedLogisticRegression,
verbose=False, C=1., random_state=42,
scaling=scaling, n_resampling=50,
tol=1e-3)
|