1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
import numpy as np
from scipy import sparse
from numpy.testing import assert_equal
from numpy.testing import assert_array_almost_equal
from numpy.testing import assert_array_equal
from sklearn.utils import check_random_state
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_raises_regexp
from sklearn.utils.testing import assert_raises
from sklearn.linear_model import LinearRegression, RANSACRegressor, Lasso
from sklearn.linear_model.ransac import _dynamic_max_trials
from sklearn.exceptions import ConvergenceWarning
# Generate coordinates of line
X = np.arange(-200, 200)
y = 0.2 * X + 20
data = np.column_stack([X, y])
# Add some faulty data
rng = np.random.RandomState(1000)
outliers = np.unique(rng.randint(len(X), size=200))
data[outliers, :] += 50 + rng.rand(len(outliers), 2) * 10
X = data[:, 0][:, np.newaxis]
y = data[:, 1]
def test_ransac_inliers_outliers():
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0)
# Estimate parameters of corrupted data
ransac_estimator.fit(X, y)
# Ground truth / reference inlier mask
ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
).astype(np.bool_)
ref_inlier_mask[outliers] = False
assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask)
def test_ransac_is_data_valid():
def is_data_valid(X, y):
assert_equal(X.shape[0], 2)
assert_equal(y.shape[0], 2)
return False
rng = np.random.RandomState(0)
X = rng.rand(10, 2)
y = rng.rand(10, 1)
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5,
is_data_valid=is_data_valid,
random_state=0)
assert_raises(ValueError, ransac_estimator.fit, X, y)
def test_ransac_is_model_valid():
def is_model_valid(estimator, X, y):
assert_equal(X.shape[0], 2)
assert_equal(y.shape[0], 2)
return False
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5,
is_model_valid=is_model_valid,
random_state=0)
assert_raises(ValueError, ransac_estimator.fit, X, y)
def test_ransac_max_trials():
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, max_trials=0,
random_state=0)
assert_raises(ValueError, ransac_estimator.fit, X, y)
# there is a 1e-9 chance it will take these many trials. No good reason
# 1e-2 isn't enough, can still happen
# 2 is the what ransac defines as min_samples = X.shape[1] + 1
max_trials = _dynamic_max_trials(
len(X) - len(outliers), X.shape[0], 2, 1 - 1e-9)
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2)
for i in range(50):
ransac_estimator.set_params(min_samples=2, random_state=i)
ransac_estimator.fit(X, y)
assert_less(ransac_estimator.n_trials_, max_trials + 1)
def test_ransac_stop_n_inliers():
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, stop_n_inliers=2,
random_state=0)
ransac_estimator.fit(X, y)
assert_equal(ransac_estimator.n_trials_, 1)
def test_ransac_stop_score():
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, stop_score=0,
random_state=0)
ransac_estimator.fit(X, y)
assert_equal(ransac_estimator.n_trials_, 1)
def test_ransac_score():
X = np.arange(100)[:, None]
y = np.zeros((100, ))
y[0] = 1
y[1] = 100
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=0.5, random_state=0)
ransac_estimator.fit(X, y)
assert_equal(ransac_estimator.score(X[2:], y[2:]), 1)
assert_less(ransac_estimator.score(X[:2], y[:2]), 1)
def test_ransac_predict():
X = np.arange(100)[:, None]
y = np.zeros((100, ))
y[0] = 1
y[1] = 100
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=0.5, random_state=0)
ransac_estimator.fit(X, y)
assert_equal(ransac_estimator.predict(X), np.zeros(100))
def test_ransac_resid_thresh_no_inliers():
# When residual_threshold=0.0 there are no inliers and a
# ValueError with a message should be raised
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=0.0, random_state=0,
max_trials=5)
msg = ("RANSAC could not find a valid consensus set")
assert_raises_regexp(ValueError, msg, ransac_estimator.fit, X, y)
assert_equal(ransac_estimator.n_skips_no_inliers_, 5)
assert_equal(ransac_estimator.n_skips_invalid_data_, 0)
assert_equal(ransac_estimator.n_skips_invalid_model_, 0)
def test_ransac_no_valid_data():
def is_data_valid(X, y):
return False
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator,
is_data_valid=is_data_valid,
max_trials=5)
msg = ("RANSAC could not find a valid consensus set")
assert_raises_regexp(ValueError, msg, ransac_estimator.fit, X, y)
assert_equal(ransac_estimator.n_skips_no_inliers_, 0)
assert_equal(ransac_estimator.n_skips_invalid_data_, 5)
assert_equal(ransac_estimator.n_skips_invalid_model_, 0)
def test_ransac_no_valid_model():
def is_model_valid(estimator, X, y):
return False
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator,
is_model_valid=is_model_valid,
max_trials=5)
msg = ("RANSAC could not find a valid consensus set")
assert_raises_regexp(ValueError, msg, ransac_estimator.fit, X, y)
assert_equal(ransac_estimator.n_skips_no_inliers_, 0)
assert_equal(ransac_estimator.n_skips_invalid_data_, 0)
assert_equal(ransac_estimator.n_skips_invalid_model_, 5)
def test_ransac_exceed_max_skips():
def is_data_valid(X, y):
return False
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator,
is_data_valid=is_data_valid,
max_trials=5,
max_skips=3)
msg = ("RANSAC skipped more iterations than `max_skips`")
assert_raises_regexp(ValueError, msg, ransac_estimator.fit, X, y)
assert_equal(ransac_estimator.n_skips_no_inliers_, 0)
assert_equal(ransac_estimator.n_skips_invalid_data_, 4)
assert_equal(ransac_estimator.n_skips_invalid_model_, 0)
def test_ransac_warn_exceed_max_skips():
global cause_skip
cause_skip = False
def is_data_valid(X, y):
global cause_skip
if not cause_skip:
cause_skip = True
return True
else:
return False
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator,
is_data_valid=is_data_valid,
max_skips=3,
max_trials=5)
assert_warns(ConvergenceWarning, ransac_estimator.fit, X, y)
assert_equal(ransac_estimator.n_skips_no_inliers_, 0)
assert_equal(ransac_estimator.n_skips_invalid_data_, 4)
assert_equal(ransac_estimator.n_skips_invalid_model_, 0)
def test_ransac_sparse_coo():
X_sparse = sparse.coo_matrix(X)
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0)
ransac_estimator.fit(X_sparse, y)
ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
).astype(np.bool_)
ref_inlier_mask[outliers] = False
assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask)
def test_ransac_sparse_csr():
X_sparse = sparse.csr_matrix(X)
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0)
ransac_estimator.fit(X_sparse, y)
ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
).astype(np.bool_)
ref_inlier_mask[outliers] = False
assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask)
def test_ransac_sparse_csc():
X_sparse = sparse.csc_matrix(X)
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0)
ransac_estimator.fit(X_sparse, y)
ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
).astype(np.bool_)
ref_inlier_mask[outliers] = False
assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask)
def test_ransac_none_estimator():
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0)
ransac_none_estimator = RANSACRegressor(None, 2, 5, random_state=0)
ransac_estimator.fit(X, y)
ransac_none_estimator.fit(X, y)
assert_array_almost_equal(ransac_estimator.predict(X),
ransac_none_estimator.predict(X))
def test_ransac_min_n_samples():
base_estimator = LinearRegression()
ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0)
ransac_estimator2 = RANSACRegressor(base_estimator,
min_samples=2. / X.shape[0],
residual_threshold=5, random_state=0)
ransac_estimator3 = RANSACRegressor(base_estimator, min_samples=-1,
residual_threshold=5, random_state=0)
ransac_estimator4 = RANSACRegressor(base_estimator, min_samples=5.2,
residual_threshold=5, random_state=0)
ransac_estimator5 = RANSACRegressor(base_estimator, min_samples=2.0,
residual_threshold=5, random_state=0)
ransac_estimator6 = RANSACRegressor(base_estimator,
residual_threshold=5, random_state=0)
ransac_estimator7 = RANSACRegressor(base_estimator,
min_samples=X.shape[0] + 1,
residual_threshold=5, random_state=0)
ransac_estimator1.fit(X, y)
ransac_estimator2.fit(X, y)
ransac_estimator5.fit(X, y)
ransac_estimator6.fit(X, y)
assert_array_almost_equal(ransac_estimator1.predict(X),
ransac_estimator2.predict(X))
assert_array_almost_equal(ransac_estimator1.predict(X),
ransac_estimator5.predict(X))
assert_array_almost_equal(ransac_estimator1.predict(X),
ransac_estimator6.predict(X))
assert_raises(ValueError, ransac_estimator3.fit, X, y)
assert_raises(ValueError, ransac_estimator4.fit, X, y)
assert_raises(ValueError, ransac_estimator7.fit, X, y)
def test_ransac_multi_dimensional_targets():
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0)
# 3-D target values
yyy = np.column_stack([y, y, y])
# Estimate parameters of corrupted data
ransac_estimator.fit(X, yyy)
# Ground truth / reference inlier mask
ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
).astype(np.bool_)
ref_inlier_mask[outliers] = False
assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask)
def test_ransac_residual_loss():
loss_multi1 = lambda y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1)
loss_multi2 = lambda y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1)
loss_mono = lambda y_true, y_pred : np.abs(y_true - y_pred)
yyy = np.column_stack([y, y, y])
base_estimator = LinearRegression()
ransac_estimator0 = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0)
ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0,
loss=loss_multi1)
ransac_estimator2 = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0,
loss=loss_multi2)
# multi-dimensional
ransac_estimator0.fit(X, yyy)
ransac_estimator1.fit(X, yyy)
ransac_estimator2.fit(X, yyy)
assert_array_almost_equal(ransac_estimator0.predict(X),
ransac_estimator1.predict(X))
assert_array_almost_equal(ransac_estimator0.predict(X),
ransac_estimator2.predict(X))
# one-dimensional
ransac_estimator0.fit(X, y)
ransac_estimator2.loss = loss_mono
ransac_estimator2.fit(X, y)
assert_array_almost_equal(ransac_estimator0.predict(X),
ransac_estimator2.predict(X))
ransac_estimator3 = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=5, random_state=0,
loss="squared_loss")
ransac_estimator3.fit(X, y)
assert_array_almost_equal(ransac_estimator0.predict(X),
ransac_estimator2.predict(X))
def test_ransac_default_residual_threshold():
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
random_state=0)
# Estimate parameters of corrupted data
ransac_estimator.fit(X, y)
# Ground truth / reference inlier mask
ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
).astype(np.bool_)
ref_inlier_mask[outliers] = False
assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask)
def test_ransac_dynamic_max_trials():
# Numbers hand-calculated and confirmed on page 119 (Table 4.3) in
# Hartley, R.~I. and Zisserman, A., 2004,
# Multiple View Geometry in Computer Vision, Second Edition,
# Cambridge University Press, ISBN: 0521540518
# e = 0%, min_samples = X
assert_equal(_dynamic_max_trials(100, 100, 2, 0.99), 1)
# e = 5%, min_samples = 2
assert_equal(_dynamic_max_trials(95, 100, 2, 0.99), 2)
# e = 10%, min_samples = 2
assert_equal(_dynamic_max_trials(90, 100, 2, 0.99), 3)
# e = 30%, min_samples = 2
assert_equal(_dynamic_max_trials(70, 100, 2, 0.99), 7)
# e = 50%, min_samples = 2
assert_equal(_dynamic_max_trials(50, 100, 2, 0.99), 17)
# e = 5%, min_samples = 8
assert_equal(_dynamic_max_trials(95, 100, 8, 0.99), 5)
# e = 10%, min_samples = 8
assert_equal(_dynamic_max_trials(90, 100, 8, 0.99), 9)
# e = 30%, min_samples = 8
assert_equal(_dynamic_max_trials(70, 100, 8, 0.99), 78)
# e = 50%, min_samples = 8
assert_equal(_dynamic_max_trials(50, 100, 8, 0.99), 1177)
# e = 0%, min_samples = 10
assert_equal(_dynamic_max_trials(1, 100, 10, 0), 0)
assert_equal(_dynamic_max_trials(1, 100, 10, 1), float('inf'))
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
stop_probability=-0.1)
assert_raises(ValueError, ransac_estimator.fit, X, y)
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
stop_probability=1.1)
assert_raises(ValueError, ransac_estimator.fit, X, y)
def test_ransac_fit_sample_weight():
ransac_estimator = RANSACRegressor(random_state=0)
n_samples = y.shape[0]
weights = np.ones(n_samples)
ransac_estimator.fit(X, y, weights)
# sanity check
assert_equal(ransac_estimator.inlier_mask_.shape[0], n_samples)
ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_
).astype(np.bool_)
ref_inlier_mask[outliers] = False
# check that mask is correct
assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask)
# check that fit(X) = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where
# X = X1 repeated n1 times, X2 repeated n2 times and so forth
random_state = check_random_state(0)
X_ = random_state.randint(0, 200, [10, 1])
y_ = np.ndarray.flatten(0.2 * X_ + 2)
sample_weight = random_state.randint(0, 10, 10)
outlier_X = random_state.randint(0, 1000, [1, 1])
outlier_weight = random_state.randint(0, 10, 1)
outlier_y = random_state.randint(-1000, 0, 1)
X_flat = np.append(np.repeat(X_, sample_weight, axis=0),
np.repeat(outlier_X, outlier_weight, axis=0), axis=0)
y_flat = np.ndarray.flatten(np.append(np.repeat(y_, sample_weight, axis=0),
np.repeat(outlier_y, outlier_weight, axis=0),
axis=0))
ransac_estimator.fit(X_flat, y_flat)
ref_coef_ = ransac_estimator.estimator_.coef_
sample_weight = np.append(sample_weight, outlier_weight)
X_ = np.append(X_, outlier_X, axis=0)
y_ = np.append(y_, outlier_y)
ransac_estimator.fit(X_, y_, sample_weight)
assert_almost_equal(ransac_estimator.estimator_.coef_, ref_coef_)
# check that if base_estimator.fit doesn't support
# sample_weight, raises error
base_estimator = Lasso()
ransac_estimator = RANSACRegressor(base_estimator)
assert_raises(ValueError, ransac_estimator.fit, X, y, weights)
|