1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
|
import numpy as np
import scipy.sparse as sp
from scipy import linalg
from itertools import product
import pytest
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_raises_regex
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_warns
from sklearn.exceptions import ConvergenceWarning
from sklearn import datasets
from sklearn.metrics import mean_squared_error
from sklearn.metrics import make_scorer
from sklearn.metrics import get_scorer
from sklearn.linear_model.base import LinearRegression
from sklearn.linear_model.ridge import ridge_regression
from sklearn.linear_model.ridge import Ridge
from sklearn.linear_model.ridge import _RidgeGCV
from sklearn.linear_model.ridge import RidgeCV
from sklearn.linear_model.ridge import RidgeClassifier
from sklearn.linear_model.ridge import RidgeClassifierCV
from sklearn.linear_model.ridge import _solve_cholesky
from sklearn.linear_model.ridge import _solve_cholesky_kernel
from sklearn.datasets import make_regression
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
from sklearn.utils import check_random_state
from sklearn.datasets import make_multilabel_classification
diabetes = datasets.load_diabetes()
X_diabetes, y_diabetes = diabetes.data, diabetes.target
ind = np.arange(X_diabetes.shape[0])
rng = np.random.RandomState(0)
rng.shuffle(ind)
ind = ind[:200]
X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind]
iris = datasets.load_iris()
X_iris = sp.csr_matrix(iris.data)
y_iris = iris.target
DENSE_FILTER = lambda X: X
SPARSE_FILTER = lambda X: sp.csr_matrix(X)
@pytest.mark.parametrize('solver',
("svd", "sparse_cg", "cholesky", "lsqr", "sag"))
def test_ridge(solver):
# Ridge regression convergence test using score
# TODO: for this test to be robust, we should use a dataset instead
# of np.random.
rng = np.random.RandomState(0)
alpha = 1.0
# With more samples than features
n_samples, n_features = 6, 5
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
ridge = Ridge(alpha=alpha, solver=solver)
ridge.fit(X, y)
assert_equal(ridge.coef_.shape, (X.shape[1], ))
assert_greater(ridge.score(X, y), 0.47)
if solver in ("cholesky", "sag"):
# Currently the only solvers to support sample_weight.
ridge.fit(X, y, sample_weight=np.ones(n_samples))
assert_greater(ridge.score(X, y), 0.47)
# With more features than samples
n_samples, n_features = 5, 10
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
ridge = Ridge(alpha=alpha, solver=solver)
ridge.fit(X, y)
assert_greater(ridge.score(X, y), .9)
if solver in ("cholesky", "sag"):
# Currently the only solvers to support sample_weight.
ridge.fit(X, y, sample_weight=np.ones(n_samples))
assert_greater(ridge.score(X, y), 0.9)
def test_primal_dual_relationship():
y = y_diabetes.reshape(-1, 1)
coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2])
K = np.dot(X_diabetes, X_diabetes.T)
dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2])
coef2 = np.dot(X_diabetes.T, dual_coef).T
assert_array_almost_equal(coef, coef2)
def test_ridge_singular():
# test on a singular matrix
rng = np.random.RandomState(0)
n_samples, n_features = 6, 6
y = rng.randn(n_samples // 2)
y = np.concatenate((y, y))
X = rng.randn(n_samples // 2, n_features)
X = np.concatenate((X, X), axis=0)
ridge = Ridge(alpha=0)
ridge.fit(X, y)
assert_greater(ridge.score(X, y), 0.9)
def test_ridge_regression_sample_weights():
rng = np.random.RandomState(0)
for solver in ("cholesky", ):
for n_samples, n_features in ((6, 5), (5, 10)):
for alpha in (1.0, 1e-2):
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
sample_weight = 1.0 + rng.rand(n_samples)
coefs = ridge_regression(X, y,
alpha=alpha,
sample_weight=sample_weight,
solver=solver)
# Sample weight can be implemented via a simple rescaling
# for the square loss.
coefs2 = ridge_regression(
X * np.sqrt(sample_weight)[:, np.newaxis],
y * np.sqrt(sample_weight),
alpha=alpha, solver=solver)
assert_array_almost_equal(coefs, coefs2)
def test_ridge_regression_convergence_fail():
rng = np.random.RandomState(0)
y = rng.randn(5)
X = rng.randn(5, 10)
assert_warns(ConvergenceWarning, ridge_regression,
X, y, alpha=1.0, solver="sparse_cg",
tol=0., max_iter=None, verbose=1)
def test_ridge_sample_weights():
# TODO: loop over sparse data as well
# Note: parametrizing this test with pytest results in failed
# assertions, meaning that is is not extremely robust
rng = np.random.RandomState(0)
param_grid = product((1.0, 1e-2), (True, False),
('svd', 'cholesky', 'lsqr', 'sparse_cg'))
for n_samples, n_features in ((6, 5), (5, 10)):
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
sample_weight = 1.0 + rng.rand(n_samples)
for (alpha, intercept, solver) in param_grid:
# Ridge with explicit sample_weight
est = Ridge(alpha=alpha, fit_intercept=intercept,
solver=solver, tol=1e-6)
est.fit(X, y, sample_weight=sample_weight)
coefs = est.coef_
inter = est.intercept_
# Closed form of the weighted regularized least square
# theta = (X^T W X + alpha I)^(-1) * X^T W y
W = np.diag(sample_weight)
if intercept is False:
X_aug = X
I = np.eye(n_features)
else:
dummy_column = np.ones(shape=(n_samples, 1))
X_aug = np.concatenate((dummy_column, X), axis=1)
I = np.eye(n_features + 1)
I[0, 0] = 0
cf_coefs = linalg.solve(X_aug.T.dot(W).dot(X_aug) + alpha * I,
X_aug.T.dot(W).dot(y))
if intercept is False:
assert_array_almost_equal(coefs, cf_coefs)
else:
assert_array_almost_equal(coefs, cf_coefs[1:])
assert_almost_equal(inter, cf_coefs[0])
def test_ridge_shapes():
# Test shape of coef_ and intercept_
rng = np.random.RandomState(0)
n_samples, n_features = 5, 10
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
Y1 = y[:, np.newaxis]
Y = np.c_[y, 1 + y]
ridge = Ridge()
ridge.fit(X, y)
assert_equal(ridge.coef_.shape, (n_features,))
assert_equal(ridge.intercept_.shape, ())
ridge.fit(X, Y1)
assert_equal(ridge.coef_.shape, (1, n_features))
assert_equal(ridge.intercept_.shape, (1, ))
ridge.fit(X, Y)
assert_equal(ridge.coef_.shape, (2, n_features))
assert_equal(ridge.intercept_.shape, (2, ))
def test_ridge_intercept():
# Test intercept with multiple targets GH issue #708
rng = np.random.RandomState(0)
n_samples, n_features = 5, 10
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
Y = np.c_[y, 1. + y]
ridge = Ridge()
ridge.fit(X, y)
intercept = ridge.intercept_
ridge.fit(X, Y)
assert_almost_equal(ridge.intercept_[0], intercept)
assert_almost_equal(ridge.intercept_[1], intercept + 1.)
def test_toy_ridge_object():
# Test BayesianRegression ridge classifier
# TODO: test also n_samples > n_features
X = np.array([[1], [2]])
Y = np.array([1, 2])
reg = Ridge(alpha=0.0)
reg.fit(X, Y)
X_test = [[1], [2], [3], [4]]
assert_almost_equal(reg.predict(X_test), [1., 2, 3, 4])
assert_equal(len(reg.coef_.shape), 1)
assert_equal(type(reg.intercept_), np.float64)
Y = np.vstack((Y, Y)).T
reg.fit(X, Y)
X_test = [[1], [2], [3], [4]]
assert_equal(len(reg.coef_.shape), 2)
assert_equal(type(reg.intercept_), np.ndarray)
def test_ridge_vs_lstsq():
# On alpha=0., Ridge and OLS yield the same solution.
rng = np.random.RandomState(0)
# we need more samples than features
n_samples, n_features = 5, 4
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
ridge = Ridge(alpha=0., fit_intercept=False)
ols = LinearRegression(fit_intercept=False)
ridge.fit(X, y)
ols.fit(X, y)
assert_almost_equal(ridge.coef_, ols.coef_)
ridge.fit(X, y)
ols.fit(X, y)
assert_almost_equal(ridge.coef_, ols.coef_)
def test_ridge_individual_penalties():
# Tests the ridge object using individual penalties
rng = np.random.RandomState(42)
n_samples, n_features, n_targets = 20, 10, 5
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples, n_targets)
penalties = np.arange(n_targets)
coef_cholesky = np.array([
Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_
for alpha, target in zip(penalties, y.T)])
coefs_indiv_pen = [
Ridge(alpha=penalties, solver=solver, tol=1e-8).fit(X, y).coef_
for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky', 'sag', 'saga']]
for coef_indiv_pen in coefs_indiv_pen:
assert_array_almost_equal(coef_cholesky, coef_indiv_pen)
# Test error is raised when number of targets and penalties do not match.
ridge = Ridge(alpha=penalties[:-1])
assert_raises(ValueError, ridge.fit, X, y)
def _test_ridge_loo(filter_):
# test that can work with both dense or sparse matrices
n_samples = X_diabetes.shape[0]
ret = []
fit_intercept = filter_ == DENSE_FILTER
if fit_intercept:
X_diabetes_ = X_diabetes - X_diabetes.mean(0)
else:
X_diabetes_ = X_diabetes
ridge_gcv = _RidgeGCV(fit_intercept=fit_intercept)
ridge = Ridge(alpha=1.0, fit_intercept=fit_intercept)
# because fit_intercept is applied
# generalized cross-validation (efficient leave-one-out)
decomp = ridge_gcv._pre_compute(X_diabetes_, y_diabetes, fit_intercept)
errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp)
values, c = ridge_gcv._values(1.0, y_diabetes, *decomp)
# brute-force leave-one-out: remove one example at a time
errors2 = []
values2 = []
for i in range(n_samples):
sel = np.arange(n_samples) != i
X_new = X_diabetes_[sel]
y_new = y_diabetes[sel]
ridge.fit(X_new, y_new)
value = ridge.predict([X_diabetes_[i]])[0]
error = (y_diabetes[i] - value) ** 2
errors2.append(error)
values2.append(value)
# check that efficient and brute-force LOO give same results
assert_almost_equal(errors, errors2)
assert_almost_equal(values, values2)
# generalized cross-validation (efficient leave-one-out,
# SVD variation)
decomp = ridge_gcv._pre_compute_svd(X_diabetes_, y_diabetes, fit_intercept)
errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp)
values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp)
# check that efficient and SVD efficient LOO give same results
assert_almost_equal(errors, errors3)
assert_almost_equal(values, values3)
# check best alpha
ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
alpha_ = ridge_gcv.alpha_
ret.append(alpha_)
# check that we get same best alpha with custom loss_func
f = ignore_warnings
scoring = make_scorer(mean_squared_error, greater_is_better=False)
ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring)
f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes)
assert_equal(ridge_gcv2.alpha_, alpha_)
# check that we get same best alpha with custom score_func
func = lambda x, y: -mean_squared_error(x, y)
scoring = make_scorer(func)
ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring)
f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes)
assert_equal(ridge_gcv3.alpha_, alpha_)
# check that we get same best alpha with a scorer
scorer = get_scorer('neg_mean_squared_error')
ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer)
ridge_gcv4.fit(filter_(X_diabetes), y_diabetes)
assert_equal(ridge_gcv4.alpha_, alpha_)
# check that we get same best alpha with sample weights
ridge_gcv.fit(filter_(X_diabetes), y_diabetes,
sample_weight=np.ones(n_samples))
assert_equal(ridge_gcv.alpha_, alpha_)
# simulate several responses
Y = np.vstack((y_diabetes, y_diabetes)).T
ridge_gcv.fit(filter_(X_diabetes), Y)
Y_pred = ridge_gcv.predict(filter_(X_diabetes))
ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
y_pred = ridge_gcv.predict(filter_(X_diabetes))
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T,
Y_pred, decimal=5)
return ret
def _test_ridge_cv_normalize(filter_):
ridge_cv = RidgeCV(normalize=True, cv=3)
ridge_cv.fit(filter_(10. * X_diabetes), y_diabetes)
gs = GridSearchCV(Ridge(normalize=True), cv=3,
param_grid={'alpha': ridge_cv.alphas})
gs.fit(filter_(10. * X_diabetes), y_diabetes)
assert_equal(gs.best_estimator_.alpha, ridge_cv.alpha_)
def _test_ridge_cv(filter_):
ridge_cv = RidgeCV()
ridge_cv.fit(filter_(X_diabetes), y_diabetes)
ridge_cv.predict(filter_(X_diabetes))
assert_equal(len(ridge_cv.coef_.shape), 1)
assert_equal(type(ridge_cv.intercept_), np.float64)
cv = KFold(5)
ridge_cv.set_params(cv=cv)
ridge_cv.fit(filter_(X_diabetes), y_diabetes)
ridge_cv.predict(filter_(X_diabetes))
assert_equal(len(ridge_cv.coef_.shape), 1)
assert_equal(type(ridge_cv.intercept_), np.float64)
def _test_ridge_diabetes(filter_):
ridge = Ridge(fit_intercept=False)
ridge.fit(filter_(X_diabetes), y_diabetes)
return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5)
def _test_multi_ridge_diabetes(filter_):
# simulate several responses
Y = np.vstack((y_diabetes, y_diabetes)).T
n_features = X_diabetes.shape[1]
ridge = Ridge(fit_intercept=False)
ridge.fit(filter_(X_diabetes), Y)
assert_equal(ridge.coef_.shape, (2, n_features))
Y_pred = ridge.predict(filter_(X_diabetes))
ridge.fit(filter_(X_diabetes), y_diabetes)
y_pred = ridge.predict(filter_(X_diabetes))
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T,
Y_pred, decimal=3)
def _test_ridge_classifiers(filter_):
n_classes = np.unique(y_iris).shape[0]
n_features = X_iris.shape[1]
for reg in (RidgeClassifier(), RidgeClassifierCV()):
reg.fit(filter_(X_iris), y_iris)
assert_equal(reg.coef_.shape, (n_classes, n_features))
y_pred = reg.predict(filter_(X_iris))
assert_greater(np.mean(y_iris == y_pred), .79)
cv = KFold(5)
reg = RidgeClassifierCV(cv=cv)
reg.fit(filter_(X_iris), y_iris)
y_pred = reg.predict(filter_(X_iris))
assert np.mean(y_iris == y_pred) >= 0.8
def _test_tolerance(filter_):
ridge = Ridge(tol=1e-5, fit_intercept=False)
ridge.fit(filter_(X_diabetes), y_diabetes)
score = ridge.score(filter_(X_diabetes), y_diabetes)
ridge2 = Ridge(tol=1e-3, fit_intercept=False)
ridge2.fit(filter_(X_diabetes), y_diabetes)
score2 = ridge2.score(filter_(X_diabetes), y_diabetes)
assert score >= score2
def check_dense_sparse(test_func):
# test dense matrix
ret_dense = test_func(DENSE_FILTER)
# test sparse matrix
ret_sparse = test_func(SPARSE_FILTER)
# test that the outputs are the same
if ret_dense is not None and ret_sparse is not None:
assert_array_almost_equal(ret_dense, ret_sparse, decimal=3)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
@pytest.mark.parametrize(
'test_func',
(_test_ridge_loo, _test_ridge_cv, _test_ridge_cv_normalize,
_test_ridge_diabetes, _test_multi_ridge_diabetes,
_test_ridge_classifiers, _test_tolerance))
def test_dense_sparse(test_func):
check_dense_sparse(test_func)
def test_ridge_cv_sparse_svd():
X = sp.csr_matrix(X_diabetes)
ridge = RidgeCV(gcv_mode="svd")
assert_raises(TypeError, ridge.fit, X)
def test_ridge_sparse_svd():
X = sp.csc_matrix(rng.rand(100, 10))
y = rng.rand(100)
ridge = Ridge(solver='svd', fit_intercept=False)
assert_raises(TypeError, ridge.fit, X, y)
def test_class_weights():
# Test class weights.
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
reg = RidgeClassifier(class_weight=None)
reg.fit(X, y)
assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
reg = RidgeClassifier(class_weight={1: 0.001})
reg.fit(X, y)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([-1]))
# check if class_weight = 'balanced' can handle negative labels.
reg = RidgeClassifier(class_weight='balanced')
reg.fit(X, y)
assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1]))
# class_weight = 'balanced', and class_weight = None should return
# same values when y has equal number of all labels
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]])
y = [1, 1, -1, -1]
reg = RidgeClassifier(class_weight=None)
reg.fit(X, y)
rega = RidgeClassifier(class_weight='balanced')
rega.fit(X, y)
assert_equal(len(rega.classes_), 2)
assert_array_almost_equal(reg.coef_, rega.coef_)
assert_array_almost_equal(reg.intercept_, rega.intercept_)
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
@pytest.mark.parametrize('reg', (RidgeClassifier, RidgeClassifierCV))
def test_class_weight_vs_sample_weight(reg):
"""Check class_weights resemble sample_weights behavior."""
# Iris is balanced, so no effect expected for using 'balanced' weights
reg1 = reg()
reg1.fit(iris.data, iris.target)
reg2 = reg(class_weight='balanced')
reg2.fit(iris.data, iris.target)
assert_almost_equal(reg1.coef_, reg2.coef_)
# Inflate importance of class 1, check against user-defined weights
sample_weight = np.ones(iris.target.shape)
sample_weight[iris.target == 1] *= 100
class_weight = {0: 1., 1: 100., 2: 1.}
reg1 = reg()
reg1.fit(iris.data, iris.target, sample_weight)
reg2 = reg(class_weight=class_weight)
reg2.fit(iris.data, iris.target)
assert_almost_equal(reg1.coef_, reg2.coef_)
# Check that sample_weight and class_weight are multiplicative
reg1 = reg()
reg1.fit(iris.data, iris.target, sample_weight ** 2)
reg2 = reg(class_weight=class_weight)
reg2.fit(iris.data, iris.target, sample_weight)
assert_almost_equal(reg1.coef_, reg2.coef_)
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_class_weights_cv():
# Test class weights for cross validated ridge classifier.
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
reg = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1])
reg.fit(X, y)
# we give a small weights to class 1
reg = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10])
reg.fit(X, y)
assert_array_equal(reg.predict([[-.2, 2]]), np.array([-1]))
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_ridgecv_store_cv_values():
rng = np.random.RandomState(42)
n_samples = 8
n_features = 5
x = rng.randn(n_samples, n_features)
alphas = [1e-1, 1e0, 1e1]
n_alphas = len(alphas)
r = RidgeCV(alphas=alphas, cv=None, store_cv_values=True)
# with len(y.shape) == 1
y = rng.randn(n_samples)
r.fit(x, y)
assert r.cv_values_.shape == (n_samples, n_alphas)
# with len(y.shape) == 2
n_targets = 3
y = rng.randn(n_samples, n_targets)
r.fit(x, y)
assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_ridge_classifier_cv_store_cv_values():
x = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = np.array([1, 1, 1, -1, -1])
n_samples = x.shape[0]
alphas = [1e-1, 1e0, 1e1]
n_alphas = len(alphas)
r = RidgeClassifierCV(alphas=alphas, cv=None, store_cv_values=True)
# with len(y.shape) == 1
n_targets = 1
r.fit(x, y)
assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)
# with len(y.shape) == 2
y = np.array([[1, 1, 1, -1, -1],
[1, -1, 1, -1, 1],
[-1, -1, 1, -1, -1]]).transpose()
n_targets = y.shape[1]
r.fit(x, y)
assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_ridgecv_sample_weight():
rng = np.random.RandomState(0)
alphas = (0.1, 1.0, 10.0)
# There are different algorithms for n_samples > n_features
# and the opposite, so test them both.
for n_samples, n_features in ((6, 5), (5, 10)):
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
sample_weight = 1.0 + rng.rand(n_samples)
cv = KFold(5)
ridgecv = RidgeCV(alphas=alphas, cv=cv)
ridgecv.fit(X, y, sample_weight=sample_weight)
# Check using GridSearchCV directly
parameters = {'alpha': alphas}
gs = GridSearchCV(Ridge(), parameters, cv=cv)
gs.fit(X, y, sample_weight=sample_weight)
assert ridgecv.alpha_ == gs.best_estimator_.alpha
assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_)
def test_raises_value_error_if_sample_weights_greater_than_1d():
# Sample weights must be either scalar or 1D
n_sampless = [2, 3]
n_featuress = [3, 2]
rng = np.random.RandomState(42)
for n_samples, n_features in zip(n_sampless, n_featuress):
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
sample_weights_OK = rng.randn(n_samples) ** 2 + 1
sample_weights_OK_1 = 1.
sample_weights_OK_2 = 2.
sample_weights_not_OK = sample_weights_OK[:, np.newaxis]
sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :]
ridge = Ridge(alpha=1)
# make sure the "OK" sample weights actually work
ridge.fit(X, y, sample_weights_OK)
ridge.fit(X, y, sample_weights_OK_1)
ridge.fit(X, y, sample_weights_OK_2)
def fit_ridge_not_ok():
ridge.fit(X, y, sample_weights_not_OK)
def fit_ridge_not_ok_2():
ridge.fit(X, y, sample_weights_not_OK_2)
assert_raise_message(ValueError,
"Sample weights must be 1D array or scalar",
fit_ridge_not_ok)
assert_raise_message(ValueError,
"Sample weights must be 1D array or scalar",
fit_ridge_not_ok_2)
def test_sparse_design_with_sample_weights():
# Sample weights must work with sparse matrices
n_sampless = [2, 3]
n_featuress = [3, 2]
rng = np.random.RandomState(42)
sparse_matrix_converters = [sp.coo_matrix,
sp.csr_matrix,
sp.csc_matrix,
sp.lil_matrix,
sp.dok_matrix
]
sparse_ridge = Ridge(alpha=1., fit_intercept=False)
dense_ridge = Ridge(alpha=1., fit_intercept=False)
for n_samples, n_features in zip(n_sampless, n_featuress):
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
sample_weights = rng.randn(n_samples) ** 2 + 1
for sparse_converter in sparse_matrix_converters:
X_sparse = sparse_converter(X)
sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights)
dense_ridge.fit(X, y, sample_weight=sample_weights)
assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_,
decimal=6)
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_ridgecv_int_alphas():
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
# Integers
ridge = RidgeCV(alphas=(1, 10, 100))
ridge.fit(X, y)
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_ridgecv_negative_alphas():
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
# Negative integers
ridge = RidgeCV(alphas=(-1, -10, -100))
assert_raises_regex(ValueError,
"alphas cannot be negative.",
ridge.fit, X, y)
# Negative floats
ridge = RidgeCV(alphas=(-0.1, -1.0, -10.0))
assert_raises_regex(ValueError,
"alphas cannot be negative.",
ridge.fit, X, y)
def test_raises_value_error_if_solver_not_supported():
# Tests whether a ValueError is raised if a non-identified solver
# is passed to ridge_regression
wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)"
exception = ValueError
message = "Solver %s not understood" % wrong_solver
def func():
X = np.eye(3)
y = np.ones(3)
ridge_regression(X, y, alpha=1., solver=wrong_solver)
assert_raise_message(exception, message, func)
def test_sparse_cg_max_iter():
reg = Ridge(solver="sparse_cg", max_iter=1)
reg.fit(X_diabetes, y_diabetes)
assert_equal(reg.coef_.shape[0], X_diabetes.shape[1])
@ignore_warnings
def test_n_iter():
# Test that self.n_iter_ is correct.
n_targets = 2
X, y = X_diabetes, y_diabetes
y_n = np.tile(y, (n_targets, 1)).T
for max_iter in range(1, 4):
for solver in ('sag', 'saga', 'lsqr'):
reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12)
reg.fit(X, y_n)
assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets))
for solver in ('sparse_cg', 'svd', 'cholesky'):
reg = Ridge(solver=solver, max_iter=1, tol=1e-1)
reg.fit(X, y_n)
assert_equal(reg.n_iter_, None)
def test_ridge_fit_intercept_sparse():
X, y = make_regression(n_samples=1000, n_features=2, n_informative=2,
bias=10., random_state=42)
X_csr = sp.csr_matrix(X)
for solver in ['saga', 'sag']:
dense = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
sparse = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
dense.fit(X, y)
sparse.fit(X_csr, y)
assert_almost_equal(dense.intercept_, sparse.intercept_)
assert_array_almost_equal(dense.coef_, sparse.coef_)
# test the solver switch and the corresponding warning
sparse = Ridge(alpha=1., tol=1.e-15, solver='lsqr', fit_intercept=True)
assert_warns(UserWarning, sparse.fit, X_csr, y)
assert_almost_equal(dense.intercept_, sparse.intercept_)
assert_array_almost_equal(dense.coef_, sparse.coef_)
def test_errors_and_values_helper():
ridgecv = _RidgeGCV()
rng = check_random_state(42)
alpha = 1.
n = 5
y = rng.randn(n)
v = rng.randn(n)
Q = rng.randn(len(v), len(v))
QT_y = Q.T.dot(y)
G_diag, c = ridgecv._errors_and_values_helper(alpha, y, v, Q, QT_y)
# test that helper function behaves as expected
out, c_ = ridgecv._errors(alpha, y, v, Q, QT_y)
np.testing.assert_array_equal(out, (c / G_diag) ** 2)
np.testing.assert_array_equal(c, c)
out, c_ = ridgecv._values(alpha, y, v, Q, QT_y)
np.testing.assert_array_equal(out, y - (c / G_diag))
np.testing.assert_array_equal(c_, c)
def test_errors_and_values_svd_helper():
ridgecv = _RidgeGCV()
rng = check_random_state(42)
alpha = 1.
for n, p in zip((5, 10), (12, 6)):
y = rng.randn(n)
v = rng.randn(p)
U = rng.randn(n, p)
UT_y = U.T.dot(y)
G_diag, c = ridgecv._errors_and_values_svd_helper(alpha, y, v, U, UT_y)
# test that helper function behaves as expected
out, c_ = ridgecv._errors_svd(alpha, y, v, U, UT_y)
np.testing.assert_array_equal(out, (c / G_diag) ** 2)
np.testing.assert_array_equal(c, c)
out, c_ = ridgecv._values_svd(alpha, y, v, U, UT_y)
np.testing.assert_array_equal(out, y - (c / G_diag))
np.testing.assert_array_equal(c_, c)
def test_ridge_classifier_no_support_multilabel():
X, y = make_multilabel_classification(n_samples=10, random_state=0)
assert_raises(ValueError, RidgeClassifier().fit, X, y)
def test_dtype_match():
rng = np.random.RandomState(0)
alpha = 1.0
n_samples, n_features = 6, 5
X_64 = rng.randn(n_samples, n_features)
y_64 = rng.randn(n_samples)
X_32 = X_64.astype(np.float32)
y_32 = y_64.astype(np.float32)
solvers = ["svd", "sparse_cg", "cholesky", "lsqr"]
for solver in solvers:
# Check type consistency 32bits
ridge_32 = Ridge(alpha=alpha, solver=solver)
ridge_32.fit(X_32, y_32)
coef_32 = ridge_32.coef_
# Check type consistency 64 bits
ridge_64 = Ridge(alpha=alpha, solver=solver)
ridge_64.fit(X_64, y_64)
coef_64 = ridge_64.coef_
# Do the actual checks at once for easier debug
assert coef_32.dtype == X_32.dtype
assert coef_64.dtype == X_64.dtype
assert ridge_32.predict(X_32).dtype == X_32.dtype
assert ridge_64.predict(X_64).dtype == X_64.dtype
assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)
def test_dtype_match_cholesky():
# Test different alphas in cholesky solver to ensure full coverage.
# This test is separated from test_dtype_match for clarity.
rng = np.random.RandomState(0)
alpha = (1.0, 0.5)
n_samples, n_features, n_target = 6, 7, 2
X_64 = rng.randn(n_samples, n_features)
y_64 = rng.randn(n_samples, n_target)
X_32 = X_64.astype(np.float32)
y_32 = y_64.astype(np.float32)
# Check type consistency 32bits
ridge_32 = Ridge(alpha=alpha, solver='cholesky')
ridge_32.fit(X_32, y_32)
coef_32 = ridge_32.coef_
# Check type consistency 64 bits
ridge_64 = Ridge(alpha=alpha, solver='cholesky')
ridge_64.fit(X_64, y_64)
coef_64 = ridge_64.coef_
# Do all the checks at once, like this is easier to debug
assert coef_32.dtype == X_32.dtype
assert coef_64.dtype == X_64.dtype
assert ridge_32.predict(X_32).dtype == X_32.dtype
assert ridge_64.predict(X_64).dtype == X_64.dtype
assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)
|