File: test_sag.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (828 lines) | stat: -rw-r--r-- 31,325 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
# Authors: Danny Sullivan <dbsullivan23@gmail.com>
#          Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
#
# License: BSD 3 clause

import math
import pytest
import numpy as np
import scipy.sparse as sp

from sklearn.linear_model.sag import get_auto_step_size
from sklearn.linear_model.sag_fast import _multinomial_grad_loss_all_samples
from sklearn.linear_model import LogisticRegression, Ridge
from sklearn.linear_model.base import make_dataset
from sklearn.linear_model.logistic import _multinomial_loss_grad

from sklearn.utils.fixes import logsumexp
from sklearn.utils.extmath import row_norms
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_raise_message
from sklearn.utils import compute_class_weight
from sklearn.utils import check_random_state
from sklearn.preprocessing import LabelEncoder, LabelBinarizer
from sklearn.datasets import make_blobs, load_iris
from sklearn.base import clone

iris = load_iris()


# this is used for sag classification
def log_dloss(p, y):
    z = p * y
    # approximately equal and saves the computation of the log
    if z > 18.0:
        return math.exp(-z) * -y
    if z < -18.0:
        return -y
    return -y / (math.exp(z) + 1.0)


def log_loss(p, y):
    return np.mean(np.log(1. + np.exp(-y * p)))


# this is used for sag regression
def squared_dloss(p, y):
    return p - y


def squared_loss(p, y):
    return np.mean(0.5 * (p - y) * (p - y))


# function for measuring the log loss
def get_pobj(w, alpha, myX, myy, loss):
    w = w.ravel()
    pred = np.dot(myX, w)
    p = loss(pred, myy)
    p += alpha * w.dot(w) / 2.
    return p


def sag(X, y, step_size, alpha, n_iter=1, dloss=None, sparse=False,
        sample_weight=None, fit_intercept=True, saga=False):
    n_samples, n_features = X.shape[0], X.shape[1]

    weights = np.zeros(X.shape[1])
    sum_gradient = np.zeros(X.shape[1])
    gradient_memory = np.zeros((n_samples, n_features))

    intercept = 0.0
    intercept_sum_gradient = 0.0
    intercept_gradient_memory = np.zeros(n_samples)

    rng = np.random.RandomState(77)
    decay = 1.0
    seen = set()

    # sparse data has a fixed decay of .01
    if sparse:
        decay = .01

    for epoch in range(n_iter):
        for k in range(n_samples):
            idx = int(rng.rand(1) * n_samples)
            # idx = k
            entry = X[idx]
            seen.add(idx)
            p = np.dot(entry, weights) + intercept
            gradient = dloss(p, y[idx])
            if sample_weight is not None:
                gradient *= sample_weight[idx]
            update = entry * gradient + alpha * weights
            gradient_correction = update - gradient_memory[idx]
            sum_gradient += gradient_correction
            gradient_memory[idx] = update
            if saga:
                weights -= (gradient_correction *
                            step_size * (1 - 1. / len(seen)))

            if fit_intercept:
                gradient_correction = (gradient -
                                       intercept_gradient_memory[idx])
                intercept_gradient_memory[idx] = gradient
                intercept_sum_gradient += gradient_correction
                gradient_correction *= step_size * (1. - 1. / len(seen))
                if saga:
                    intercept -= (step_size * intercept_sum_gradient /
                                  len(seen) * decay) + gradient_correction
                else:
                    intercept -= (step_size * intercept_sum_gradient /
                                  len(seen) * decay)

            weights -= step_size * sum_gradient / len(seen)

    return weights, intercept


def sag_sparse(X, y, step_size, alpha, n_iter=1,
               dloss=None, sample_weight=None, sparse=False,
               fit_intercept=True, saga=False):
    if step_size * alpha == 1.:
        raise ZeroDivisionError("Sparse sag does not handle the case "
                                "step_size * alpha == 1")
    n_samples, n_features = X.shape[0], X.shape[1]

    weights = np.zeros(n_features)
    sum_gradient = np.zeros(n_features)
    last_updated = np.zeros(n_features, dtype=np.int)
    gradient_memory = np.zeros(n_samples)
    rng = np.random.RandomState(77)
    intercept = 0.0
    intercept_sum_gradient = 0.0
    wscale = 1.0
    decay = 1.0
    seen = set()

    c_sum = np.zeros(n_iter * n_samples)

    # sparse data has a fixed decay of .01
    if sparse:
        decay = .01

    counter = 0
    for epoch in range(n_iter):
        for k in range(n_samples):
            # idx = k
            idx = int(rng.rand(1) * n_samples)
            entry = X[idx]
            seen.add(idx)

            if counter >= 1:
                for j in range(n_features):
                    if last_updated[j] == 0:
                        weights[j] -= c_sum[counter - 1] * sum_gradient[j]
                    else:
                        weights[j] -= ((c_sum[counter - 1] -
                                        c_sum[last_updated[j] - 1]) *
                                       sum_gradient[j])
                    last_updated[j] = counter

            p = (wscale * np.dot(entry, weights)) + intercept
            gradient = dloss(p, y[idx])

            if sample_weight is not None:
                gradient *= sample_weight[idx]

            update = entry * gradient
            gradient_correction = update - (gradient_memory[idx] * entry)
            sum_gradient += gradient_correction
            if saga:
                for j in range(n_features):
                    weights[j] -= (gradient_correction[j] * step_size *
                                   (1 - 1. / len(seen)) / wscale)

            if fit_intercept:
                gradient_correction = gradient - gradient_memory[idx]
                intercept_sum_gradient += gradient_correction
                gradient_correction *= step_size * (1. - 1. / len(seen))
                if saga:
                    intercept -= ((step_size * intercept_sum_gradient /
                                   len(seen) * decay) +
                                  gradient_correction)
                else:
                    intercept -= (step_size * intercept_sum_gradient /
                                  len(seen) * decay)

            gradient_memory[idx] = gradient

            wscale *= (1.0 - alpha * step_size)
            if counter == 0:
                c_sum[0] = step_size / (wscale * len(seen))
            else:
                c_sum[counter] = (c_sum[counter - 1] +
                                  step_size / (wscale * len(seen)))

            if counter >= 1 and wscale < 1e-9:
                for j in range(n_features):
                    if last_updated[j] == 0:
                        weights[j] -= c_sum[counter] * sum_gradient[j]
                    else:
                        weights[j] -= ((c_sum[counter] -
                                        c_sum[last_updated[j] - 1]) *
                                       sum_gradient[j])
                    last_updated[j] = counter + 1
                c_sum[counter] = 0
                weights *= wscale
                wscale = 1.0

            counter += 1

    for j in range(n_features):
        if last_updated[j] == 0:
            weights[j] -= c_sum[counter - 1] * sum_gradient[j]
        else:
            weights[j] -= ((c_sum[counter - 1] -
                            c_sum[last_updated[j] - 1]) *
                           sum_gradient[j])
    weights *= wscale
    return weights, intercept


def get_step_size(X, alpha, fit_intercept, classification=True):
    if classification:
        return (4.0 / (np.max(np.sum(X * X, axis=1)) +
                       fit_intercept + 4.0 * alpha))
    else:
        return 1.0 / (np.max(np.sum(X * X, axis=1)) + fit_intercept + alpha)


def test_classifier_matching():
    n_samples = 20
    X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0,
                      cluster_std=0.1)
    y[y == 0] = -1
    alpha = 1.1
    fit_intercept = True
    step_size = get_step_size(X, alpha, fit_intercept)
    for solver in ['sag', 'saga']:
        if solver == 'sag':
            n_iter = 80
        else:
            # SAGA variance w.r.t. stream order is higher
            n_iter = 300
        clf = LogisticRegression(solver=solver, fit_intercept=fit_intercept,
                                 tol=1e-11, C=1. / alpha / n_samples,
                                 max_iter=n_iter, random_state=10,
                                 multi_class='ovr')
        clf.fit(X, y)

        weights, intercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter,
                                        dloss=log_dloss,
                                        fit_intercept=fit_intercept,
                                        saga=solver == 'saga')
        weights2, intercept2 = sag(X, y, step_size, alpha, n_iter=n_iter,
                                   dloss=log_dloss,
                                   fit_intercept=fit_intercept,
                                   saga=solver == 'saga')
        weights = np.atleast_2d(weights)
        intercept = np.atleast_1d(intercept)
        weights2 = np.atleast_2d(weights2)
        intercept2 = np.atleast_1d(intercept2)

        assert_array_almost_equal(weights, clf.coef_, decimal=9)
        assert_array_almost_equal(intercept, clf.intercept_, decimal=9)
        assert_array_almost_equal(weights2, clf.coef_, decimal=9)
        assert_array_almost_equal(intercept2, clf.intercept_, decimal=9)


def test_regressor_matching():
    n_samples = 10
    n_features = 5

    rng = np.random.RandomState(10)
    X = rng.normal(size=(n_samples, n_features))
    true_w = rng.normal(size=n_features)
    y = X.dot(true_w)

    alpha = 1.
    n_iter = 100
    fit_intercept = True

    step_size = get_step_size(X, alpha, fit_intercept, classification=False)
    clf = Ridge(fit_intercept=fit_intercept, tol=.00000000001, solver='sag',
                alpha=alpha * n_samples, max_iter=n_iter)
    clf.fit(X, y)

    weights1, intercept1 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter,
                                      dloss=squared_dloss,
                                      fit_intercept=fit_intercept)
    weights2, intercept2 = sag(X, y, step_size, alpha, n_iter=n_iter,
                               dloss=squared_dloss,
                               fit_intercept=fit_intercept)

    assert_allclose(weights1, clf.coef_)
    assert_allclose(intercept1, clf.intercept_)
    assert_allclose(weights2, clf.coef_)
    assert_allclose(intercept2, clf.intercept_)


@pytest.mark.filterwarnings('ignore:The max_iter was reached')
def test_sag_pobj_matches_logistic_regression():
    """tests if the sag pobj matches log reg"""
    n_samples = 100
    alpha = 1.0
    max_iter = 20
    X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0,
                      cluster_std=0.1)

    clf1 = LogisticRegression(solver='sag', fit_intercept=False, tol=.0000001,
                              C=1. / alpha / n_samples, max_iter=max_iter,
                              random_state=10, multi_class='ovr')
    clf2 = clone(clf1)
    clf3 = LogisticRegression(fit_intercept=False, tol=.0000001,
                              C=1. / alpha / n_samples, max_iter=max_iter,
                              random_state=10, multi_class='ovr',
                              solver='lbfgs')

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    clf3.fit(X, y)

    pobj1 = get_pobj(clf1.coef_, alpha, X, y, log_loss)
    pobj2 = get_pobj(clf2.coef_, alpha, X, y, log_loss)
    pobj3 = get_pobj(clf3.coef_, alpha, X, y, log_loss)

    assert_array_almost_equal(pobj1, pobj2, decimal=4)
    assert_array_almost_equal(pobj2, pobj3, decimal=4)
    assert_array_almost_equal(pobj3, pobj1, decimal=4)


@pytest.mark.filterwarnings('ignore:The max_iter was reached')
def test_sag_pobj_matches_ridge_regression():
    """tests if the sag pobj matches ridge reg"""
    n_samples = 100
    n_features = 10
    alpha = 1.0
    n_iter = 100
    fit_intercept = False
    rng = np.random.RandomState(10)
    X = rng.normal(size=(n_samples, n_features))
    true_w = rng.normal(size=n_features)
    y = X.dot(true_w)

    clf1 = Ridge(fit_intercept=fit_intercept, tol=.00000000001, solver='sag',
                 alpha=alpha, max_iter=n_iter, random_state=42)
    clf2 = clone(clf1)
    clf3 = Ridge(fit_intercept=fit_intercept, tol=.00001, solver='lsqr',
                 alpha=alpha, max_iter=n_iter, random_state=42)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    clf3.fit(X, y)

    pobj1 = get_pobj(clf1.coef_, alpha, X, y, squared_loss)
    pobj2 = get_pobj(clf2.coef_, alpha, X, y, squared_loss)
    pobj3 = get_pobj(clf3.coef_, alpha, X, y, squared_loss)

    assert_array_almost_equal(pobj1, pobj2, decimal=4)
    assert_array_almost_equal(pobj1, pobj3, decimal=4)
    assert_array_almost_equal(pobj3, pobj2, decimal=4)


@pytest.mark.filterwarnings('ignore:The max_iter was reached')
def test_sag_regressor_computed_correctly():
    """tests if the sag regressor is computed correctly"""
    alpha = .1
    n_features = 10
    n_samples = 40
    max_iter = 50
    tol = .000001
    fit_intercept = True
    rng = np.random.RandomState(0)
    X = rng.normal(size=(n_samples, n_features))
    w = rng.normal(size=n_features)
    y = np.dot(X, w) + 2.
    step_size = get_step_size(X, alpha, fit_intercept, classification=False)

    clf1 = Ridge(fit_intercept=fit_intercept, tol=tol, solver='sag',
                 alpha=alpha * n_samples, max_iter=max_iter)
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)

    spweights1, spintercept1 = sag_sparse(X, y, step_size, alpha,
                                          n_iter=max_iter,
                                          dloss=squared_dloss,
                                          fit_intercept=fit_intercept)

    spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha,
                                          n_iter=max_iter,
                                          dloss=squared_dloss, sparse=True,
                                          fit_intercept=fit_intercept)

    assert_array_almost_equal(clf1.coef_.ravel(),
                              spweights1.ravel(),
                              decimal=3)
    assert_almost_equal(clf1.intercept_, spintercept1, decimal=1)

    # TODO: uncomment when sparse Ridge with intercept will be fixed (#4710)
    # assert_array_almost_equal(clf2.coef_.ravel(),
    #                          spweights2.ravel(),
    #                          decimal=3)
    # assert_almost_equal(clf2.intercept_, spintercept2, decimal=1)'''


def test_get_auto_step_size():
    X = np.array([[1, 2, 3], [2, 3, 4], [2, 3, 2]], dtype=np.float64)
    alpha = 1.2
    fit_intercept = False
    # sum the squares of the second sample because that's the largest
    max_squared_sum = 4 + 9 + 16
    max_squared_sum_ = row_norms(X, squared=True).max()
    n_samples = X.shape[0]
    assert_almost_equal(max_squared_sum, max_squared_sum_, decimal=4)

    for saga in [True, False]:
        for fit_intercept in (True, False):
            if saga:
                L_sqr = (max_squared_sum + alpha + int(fit_intercept))
                L_log = (max_squared_sum + 4.0 * alpha +
                         int(fit_intercept)) / 4.0
                mun_sqr = min(2 * n_samples * alpha, L_sqr)
                mun_log = min(2 * n_samples * alpha, L_log)
                step_size_sqr = 1 / (2 * L_sqr + mun_sqr)
                step_size_log = 1 / (2 * L_log + mun_log)
            else:
                step_size_sqr = 1.0 / (max_squared_sum +
                                       alpha + int(fit_intercept))
                step_size_log = 4.0 / (max_squared_sum + 4.0 * alpha +
                                       int(fit_intercept))

            step_size_sqr_ = get_auto_step_size(max_squared_sum_, alpha,
                                                "squared",
                                                fit_intercept,
                                                n_samples=n_samples,
                                                is_saga=saga)
            step_size_log_ = get_auto_step_size(max_squared_sum_, alpha, "log",
                                                fit_intercept,
                                                n_samples=n_samples,
                                                is_saga=saga)

            assert_almost_equal(step_size_sqr, step_size_sqr_, decimal=4)
            assert_almost_equal(step_size_log, step_size_log_, decimal=4)

    msg = 'Unknown loss function for SAG solver, got wrong instead of'
    assert_raise_message(ValueError, msg, get_auto_step_size,
                         max_squared_sum_, alpha, "wrong", fit_intercept)


@pytest.mark.filterwarnings('ignore:The max_iter was reached')
def test_sag_regressor():
    """tests if the sag regressor performs well"""
    xmin, xmax = -5, 5
    n_samples = 20
    tol = .001
    max_iter = 20
    alpha = 0.1
    rng = np.random.RandomState(0)
    X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1)

    # simple linear function without noise
    y = 0.5 * X.ravel()

    clf1 = Ridge(tol=tol, solver='sag', max_iter=max_iter,
                 alpha=alpha * n_samples)
    clf2 = clone(clf1)
    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    score1 = clf1.score(X, y)
    score2 = clf2.score(X, y)
    assert_greater(score1, 0.99)
    assert_greater(score2, 0.99)

    # simple linear function with noise
    y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel()

    clf1 = Ridge(tol=tol, solver='sag', max_iter=max_iter,
                 alpha=alpha * n_samples)
    clf2 = clone(clf1)
    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    score1 = clf1.score(X, y)
    score2 = clf2.score(X, y)
    score2 = clf2.score(X, y)
    assert_greater(score1, 0.5)
    assert_greater(score2, 0.5)


@pytest.mark.filterwarnings('ignore:The max_iter was reached')
def test_sag_classifier_computed_correctly():
    """tests if the binary classifier is computed correctly"""
    alpha = .1
    n_samples = 50
    n_iter = 50
    tol = .00001
    fit_intercept = True
    X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0,
                      cluster_std=0.1)
    step_size = get_step_size(X, alpha, fit_intercept, classification=True)
    classes = np.unique(y)
    y_tmp = np.ones(n_samples)
    y_tmp[y != classes[1]] = -1
    y = y_tmp

    clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples,
                              max_iter=n_iter, tol=tol, random_state=77,
                              fit_intercept=fit_intercept, multi_class='ovr')
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)

    spweights, spintercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter,
                                        dloss=log_dloss,
                                        fit_intercept=fit_intercept)
    spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha,
                                          n_iter=n_iter,
                                          dloss=log_dloss, sparse=True,
                                          fit_intercept=fit_intercept)

    assert_array_almost_equal(clf1.coef_.ravel(),
                              spweights.ravel(),
                              decimal=2)
    assert_almost_equal(clf1.intercept_, spintercept, decimal=1)

    assert_array_almost_equal(clf2.coef_.ravel(),
                              spweights2.ravel(),
                              decimal=2)
    assert_almost_equal(clf2.intercept_, spintercept2, decimal=1)


@pytest.mark.filterwarnings('ignore:The max_iter was reached')
def test_sag_multiclass_computed_correctly():
    """tests if the multiclass classifier is computed correctly"""
    alpha = .1
    n_samples = 20
    tol = .00001
    max_iter = 40
    fit_intercept = True
    X, y = make_blobs(n_samples=n_samples, centers=3, random_state=0,
                      cluster_std=0.1)
    step_size = get_step_size(X, alpha, fit_intercept, classification=True)
    classes = np.unique(y)

    clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples,
                              max_iter=max_iter, tol=tol, random_state=77,
                              fit_intercept=fit_intercept, multi_class='ovr')
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)

    coef1 = []
    intercept1 = []
    coef2 = []
    intercept2 = []
    for cl in classes:
        y_encoded = np.ones(n_samples)
        y_encoded[y != cl] = -1

        spweights1, spintercept1 = sag_sparse(X, y_encoded, step_size, alpha,
                                              dloss=log_dloss, n_iter=max_iter,
                                              fit_intercept=fit_intercept)
        spweights2, spintercept2 = sag_sparse(X, y_encoded, step_size, alpha,
                                              dloss=log_dloss, n_iter=max_iter,
                                              sparse=True,
                                              fit_intercept=fit_intercept)
        coef1.append(spweights1)
        intercept1.append(spintercept1)

        coef2.append(spweights2)
        intercept2.append(spintercept2)

    coef1 = np.vstack(coef1)
    intercept1 = np.array(intercept1)
    coef2 = np.vstack(coef2)
    intercept2 = np.array(intercept2)

    for i, cl in enumerate(classes):
        assert_array_almost_equal(clf1.coef_[i].ravel(),
                                  coef1[i].ravel(),
                                  decimal=2)
        assert_almost_equal(clf1.intercept_[i], intercept1[i], decimal=1)

        assert_array_almost_equal(clf2.coef_[i].ravel(),
                                  coef2[i].ravel(),
                                  decimal=2)
        assert_almost_equal(clf2.intercept_[i], intercept2[i], decimal=1)


@pytest.mark.filterwarnings('ignore: Default multi_class will')  # 0.22
def test_classifier_results():
    """tests if classifier results match target"""
    alpha = .1
    n_features = 20
    n_samples = 10
    tol = .01
    max_iter = 200
    rng = np.random.RandomState(0)
    X = rng.normal(size=(n_samples, n_features))
    w = rng.normal(size=n_features)
    y = np.dot(X, w)
    y = np.sign(y)
    clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples,
                              max_iter=max_iter, tol=tol, random_state=77)
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    pred1 = clf1.predict(X)
    pred2 = clf2.predict(X)
    assert_almost_equal(pred1, y, decimal=12)
    assert_almost_equal(pred2, y, decimal=12)


@pytest.mark.filterwarnings('ignore:The max_iter was reached')
def test_binary_classifier_class_weight():
    """tests binary classifier with classweights for each class"""
    alpha = .1
    n_samples = 50
    n_iter = 20
    tol = .00001
    fit_intercept = True
    X, y = make_blobs(n_samples=n_samples, centers=2, random_state=10,
                      cluster_std=0.1)
    step_size = get_step_size(X, alpha, fit_intercept, classification=True)
    classes = np.unique(y)
    y_tmp = np.ones(n_samples)
    y_tmp[y != classes[1]] = -1
    y = y_tmp

    class_weight = {1: .45, -1: .55}
    clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples,
                              max_iter=n_iter, tol=tol, random_state=77,
                              fit_intercept=fit_intercept, multi_class='ovr',
                              class_weight=class_weight)
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)

    le = LabelEncoder()
    class_weight_ = compute_class_weight(class_weight, np.unique(y), y)
    sample_weight = class_weight_[le.fit_transform(y)]
    spweights, spintercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter,
                                        dloss=log_dloss,
                                        sample_weight=sample_weight,
                                        fit_intercept=fit_intercept)
    spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha,
                                          n_iter=n_iter,
                                          dloss=log_dloss, sparse=True,
                                          sample_weight=sample_weight,
                                          fit_intercept=fit_intercept)

    assert_array_almost_equal(clf1.coef_.ravel(),
                              spweights.ravel(),
                              decimal=2)
    assert_almost_equal(clf1.intercept_, spintercept, decimal=1)

    assert_array_almost_equal(clf2.coef_.ravel(),
                              spweights2.ravel(),
                              decimal=2)
    assert_almost_equal(clf2.intercept_, spintercept2, decimal=1)


@pytest.mark.filterwarnings('ignore:The max_iter was reached')
def test_multiclass_classifier_class_weight():
    """tests multiclass with classweights for each class"""
    alpha = .1
    n_samples = 20
    tol = .00001
    max_iter = 50
    class_weight = {0: .45, 1: .55, 2: .75}
    fit_intercept = True
    X, y = make_blobs(n_samples=n_samples, centers=3, random_state=0,
                      cluster_std=0.1)
    step_size = get_step_size(X, alpha, fit_intercept, classification=True)
    classes = np.unique(y)

    clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples,
                              max_iter=max_iter, tol=tol, random_state=77,
                              fit_intercept=fit_intercept, multi_class='ovr',
                              class_weight=class_weight)
    clf2 = clone(clf1)
    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)

    le = LabelEncoder()
    class_weight_ = compute_class_weight(class_weight, np.unique(y), y)
    sample_weight = class_weight_[le.fit_transform(y)]

    coef1 = []
    intercept1 = []
    coef2 = []
    intercept2 = []
    for cl in classes:
        y_encoded = np.ones(n_samples)
        y_encoded[y != cl] = -1

        spweights1, spintercept1 = sag_sparse(X, y_encoded, step_size, alpha,
                                              n_iter=max_iter, dloss=log_dloss,
                                              sample_weight=sample_weight)
        spweights2, spintercept2 = sag_sparse(X, y_encoded, step_size, alpha,
                                              n_iter=max_iter, dloss=log_dloss,
                                              sample_weight=sample_weight,
                                              sparse=True)
        coef1.append(spweights1)
        intercept1.append(spintercept1)
        coef2.append(spweights2)
        intercept2.append(spintercept2)

    coef1 = np.vstack(coef1)
    intercept1 = np.array(intercept1)
    coef2 = np.vstack(coef2)
    intercept2 = np.array(intercept2)

    for i, cl in enumerate(classes):
        assert_array_almost_equal(clf1.coef_[i].ravel(),
                                  coef1[i].ravel(),
                                  decimal=2)
        assert_almost_equal(clf1.intercept_[i], intercept1[i], decimal=1)

        assert_array_almost_equal(clf2.coef_[i].ravel(),
                                  coef2[i].ravel(),
                                  decimal=2)
        assert_almost_equal(clf2.intercept_[i], intercept2[i], decimal=1)


@pytest.mark.filterwarnings('ignore: Default multi_class will')  # 0.22
def test_classifier_single_class():
    """tests if ValueError is thrown with only one class"""
    X = [[1, 2], [3, 4]]
    y = [1, 1]

    assert_raise_message(ValueError,
                         "This solver needs samples of at least 2 classes "
                         "in the data",
                         LogisticRegression(solver='sag').fit,
                         X, y)


@pytest.mark.filterwarnings('ignore: Default multi_class will')  # 0.22
def test_step_size_alpha_error():
    X = [[0, 0], [0, 0]]
    y = [1, -1]
    fit_intercept = False
    alpha = 1.
    msg = ("Current sag implementation does not handle the case"
           " step_size * alpha_scaled == 1")

    clf1 = LogisticRegression(solver='sag', C=1. / alpha,
                              fit_intercept=fit_intercept)
    assert_raise_message(ZeroDivisionError, msg, clf1.fit, X, y)

    clf2 = Ridge(fit_intercept=fit_intercept, solver='sag', alpha=alpha)
    assert_raise_message(ZeroDivisionError, msg, clf2.fit, X, y)


def test_multinomial_loss():
    # test if the multinomial loss and gradient computations are consistent
    X, y = iris.data, iris.target.astype(np.float64)
    n_samples, n_features = X.shape
    n_classes = len(np.unique(y))

    rng = check_random_state(42)
    weights = rng.randn(n_features, n_classes)
    intercept = rng.randn(n_classes)
    sample_weights = rng.randn(n_samples)
    np.abs(sample_weights, sample_weights)

    # compute loss and gradient like in multinomial SAG
    dataset, _ = make_dataset(X, y, sample_weights, random_state=42)
    loss_1, grad_1 = _multinomial_grad_loss_all_samples(dataset, weights,
                                                        intercept, n_samples,
                                                        n_features, n_classes)
    # compute loss and gradient like in multinomial LogisticRegression
    lbin = LabelBinarizer()
    Y_bin = lbin.fit_transform(y)
    weights_intercept = np.vstack((weights, intercept)).T.ravel()
    loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin,
                                               0.0, sample_weights)
    grad_2 = grad_2.reshape(n_classes, -1)
    grad_2 = grad_2[:, :-1].T

    # comparison
    assert_array_almost_equal(grad_1, grad_2)
    assert_almost_equal(loss_1, loss_2)


def test_multinomial_loss_ground_truth():
    # n_samples, n_features, n_classes = 4, 2, 3
    n_classes = 3
    X = np.array([[1.1, 2.2], [2.2, -4.4], [3.3, -2.2], [1.1, 1.1]])
    y = np.array([0, 1, 2, 0])
    lbin = LabelBinarizer()
    Y_bin = lbin.fit_transform(y)

    weights = np.array([[0.1, 0.2, 0.3], [1.1, 1.2, -1.3]])
    intercept = np.array([1., 0, -.2])
    sample_weights = np.array([0.8, 1, 1, 0.8])

    prediction = np.dot(X, weights) + intercept
    logsumexp_prediction = logsumexp(prediction, axis=1)
    p = prediction - logsumexp_prediction[:, np.newaxis]
    loss_1 = -(sample_weights[:, np.newaxis] * p * Y_bin).sum()
    diff = sample_weights[:, np.newaxis] * (np.exp(p) - Y_bin)
    grad_1 = np.dot(X.T, diff)

    weights_intercept = np.vstack((weights, intercept)).T.ravel()
    loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin,
                                               0.0, sample_weights)
    grad_2 = grad_2.reshape(n_classes, -1)
    grad_2 = grad_2[:, :-1].T

    assert_almost_equal(loss_1, loss_2)
    assert_array_almost_equal(grad_1, grad_2)

    # ground truth
    loss_gt = 11.680360354325961
    grad_gt = np.array([[-0.557487, -1.619151, +2.176638],
                        [-0.903942, +5.258745, -4.354803]])
    assert_almost_equal(loss_1, loss_gt)
    assert_array_almost_equal(grad_1, grad_gt)