1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
|
from distutils.version import LooseVersion
import pickle
import unittest
import pytest
import numpy as np
import scipy.sparse as sp
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_raises_regexp
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_no_warnings
from sklearn.utils.testing import ignore_warnings
from sklearn import linear_model, datasets, metrics
from sklearn.base import clone, is_classifier
from sklearn.linear_model import SGDClassifier, SGDRegressor
from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.exceptions import ConvergenceWarning
from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit
from sklearn.linear_model import sgd_fast
from sklearn.model_selection import RandomizedSearchCV
from sklearn.utils import _joblib
from sklearn.utils._joblib import parallel_backend
# 0.23. warning about tol not having its correct default value.
pytestmark = pytest.mark.filterwarnings(
"ignore:max_iter and tol parameters have been")
class SparseSGDClassifier(SGDClassifier):
def fit(self, X, y, *args, **kw):
X = sp.csr_matrix(X)
return super(SparseSGDClassifier, self).fit(X, y, *args, **kw)
def partial_fit(self, X, y, *args, **kw):
X = sp.csr_matrix(X)
return super(SparseSGDClassifier, self).partial_fit(X, y, *args, **kw)
def decision_function(self, X):
X = sp.csr_matrix(X)
return super(SparseSGDClassifier, self).decision_function(X)
def predict_proba(self, X):
X = sp.csr_matrix(X)
return super(SparseSGDClassifier, self).predict_proba(X)
class SparseSGDRegressor(SGDRegressor):
def fit(self, X, y, *args, **kw):
X = sp.csr_matrix(X)
return SGDRegressor.fit(self, X, y, *args, **kw)
def partial_fit(self, X, y, *args, **kw):
X = sp.csr_matrix(X)
return SGDRegressor.partial_fit(self, X, y, *args, **kw)
def decision_function(self, X, *args, **kw):
X = sp.csr_matrix(X)
return SGDRegressor.decision_function(self, X, *args, **kw)
# Test Data
# test sample 1
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
Y = [1, 1, 1, 2, 2, 2]
T = np.array([[-1, -1], [2, 2], [3, 2]])
true_result = [1, 2, 2]
# test sample 2; string class labels
X2 = np.array([[-1, 1], [-0.75, 0.5], [-1.5, 1.5],
[1, 1], [0.75, 0.5], [1.5, 1.5],
[-1, -1], [0, -0.5], [1, -1]])
Y2 = ["one"] * 3 + ["two"] * 3 + ["three"] * 3
T2 = np.array([[-1.5, 0.5], [1, 2], [0, -2]])
true_result2 = ["one", "two", "three"]
# test sample 3
X3 = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]])
Y3 = np.array([1, 1, 1, 1, 2, 2, 2, 2])
# test sample 4 - two more or less redundant feature groups
X4 = np.array([[1, 0.9, 0.8, 0, 0, 0], [1, .84, .98, 0, 0, 0],
[1, .96, .88, 0, 0, 0], [1, .91, .99, 0, 0, 0],
[0, 0, 0, .89, .91, 1], [0, 0, 0, .79, .84, 1],
[0, 0, 0, .91, .95, 1], [0, 0, 0, .93, 1, 1]])
Y4 = np.array([1, 1, 1, 1, 2, 2, 2, 2])
iris = datasets.load_iris()
# test sample 5 - test sample 1 as binary classification problem
X5 = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
Y5 = [1, 1, 1, 2, 2, 2]
true_result5 = [0, 1, 1]
###############################################################################
# Tests common to classification and regression
class CommonTest(object):
def factory(self, **kwargs):
if "random_state" not in kwargs:
kwargs["random_state"] = 42
if "tol" not in kwargs:
kwargs["tol"] = None
if "max_iter" not in kwargs:
kwargs["max_iter"] = 5
return self.factory_class(**kwargs)
# a simple implementation of ASGD to use for testing
# uses squared loss to find the gradient
def asgd(self, X, y, eta, alpha, weight_init=None, intercept_init=0.0):
if weight_init is None:
weights = np.zeros(X.shape[1])
else:
weights = weight_init
average_weights = np.zeros(X.shape[1])
intercept = intercept_init
average_intercept = 0.0
decay = 1.0
# sparse data has a fixed decay of .01
if (isinstance(self, SparseSGDClassifierTestCase) or
isinstance(self, SparseSGDRegressorTestCase)):
decay = .01
for i, entry in enumerate(X):
p = np.dot(entry, weights)
p += intercept
gradient = p - y[i]
weights *= 1.0 - (eta * alpha)
weights += -(eta * gradient * entry)
intercept += -(eta * gradient) * decay
average_weights *= i
average_weights += weights
average_weights /= i + 1.0
average_intercept *= i
average_intercept += intercept
average_intercept /= i + 1.0
return average_weights, average_intercept
def _test_warm_start(self, X, Y, lr):
# Test that explicit warm restart...
clf = self.factory(alpha=0.01, eta0=0.01, shuffle=False,
learning_rate=lr)
clf.fit(X, Y)
clf2 = self.factory(alpha=0.001, eta0=0.01, shuffle=False,
learning_rate=lr)
clf2.fit(X, Y,
coef_init=clf.coef_.copy(),
intercept_init=clf.intercept_.copy())
# ... and implicit warm restart are equivalent.
clf3 = self.factory(alpha=0.01, eta0=0.01, shuffle=False,
warm_start=True, learning_rate=lr)
clf3.fit(X, Y)
assert_equal(clf3.t_, clf.t_)
assert_array_almost_equal(clf3.coef_, clf.coef_)
clf3.set_params(alpha=0.001)
clf3.fit(X, Y)
assert_equal(clf3.t_, clf2.t_)
assert_array_almost_equal(clf3.coef_, clf2.coef_)
def test_warm_start_constant(self):
self._test_warm_start(X, Y, "constant")
def test_warm_start_invscaling(self):
self._test_warm_start(X, Y, "invscaling")
def test_warm_start_optimal(self):
self._test_warm_start(X, Y, "optimal")
def test_warm_start_adaptive(self):
self._test_warm_start(X, Y, "adaptive")
def test_input_format(self):
# Input format tests.
clf = self.factory(alpha=0.01, shuffle=False)
clf.fit(X, Y)
Y_ = np.array(Y)[:, np.newaxis]
Y_ = np.c_[Y_, Y_]
assert_raises(ValueError, clf.fit, X, Y_)
def test_clone(self):
# Test whether clone works ok.
clf = self.factory(alpha=0.01, penalty='l1')
clf = clone(clf)
clf.set_params(penalty='l2')
clf.fit(X, Y)
clf2 = self.factory(alpha=0.01, penalty='l2')
clf2.fit(X, Y)
assert_array_equal(clf.coef_, clf2.coef_)
def test_plain_has_no_average_attr(self):
clf = self.factory(average=True, eta0=.01)
clf.fit(X, Y)
assert hasattr(clf, 'average_coef_')
assert hasattr(clf, 'average_intercept_')
assert hasattr(clf, 'standard_intercept_')
assert hasattr(clf, 'standard_coef_')
clf = self.factory()
clf.fit(X, Y)
assert_false(hasattr(clf, 'average_coef_'))
assert_false(hasattr(clf, 'average_intercept_'))
assert_false(hasattr(clf, 'standard_intercept_'))
assert_false(hasattr(clf, 'standard_coef_'))
def test_late_onset_averaging_not_reached(self):
clf1 = self.factory(average=600)
clf2 = self.factory()
for _ in range(100):
if isinstance(clf1, SGDClassifier):
clf1.partial_fit(X, Y, classes=np.unique(Y))
clf2.partial_fit(X, Y, classes=np.unique(Y))
else:
clf1.partial_fit(X, Y)
clf2.partial_fit(X, Y)
assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16)
assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16)
def test_late_onset_averaging_reached(self):
eta0 = .001
alpha = .0001
Y_encode = np.array(Y)
Y_encode[Y_encode == 1] = -1.0
Y_encode[Y_encode == 2] = 1.0
clf1 = self.factory(average=7, learning_rate="constant",
loss='squared_loss', eta0=eta0,
alpha=alpha, max_iter=2, shuffle=False)
clf2 = self.factory(average=0, learning_rate="constant",
loss='squared_loss', eta0=eta0,
alpha=alpha, max_iter=1, shuffle=False)
clf1.fit(X, Y_encode)
clf2.fit(X, Y_encode)
average_weights, average_intercept = \
self.asgd(X, Y_encode, eta0, alpha,
weight_init=clf2.coef_.ravel(),
intercept_init=clf2.intercept_)
assert_array_almost_equal(clf1.coef_.ravel(),
average_weights.ravel(),
decimal=16)
assert_almost_equal(clf1.intercept_, average_intercept, decimal=16)
def test_sgd_bad_alpha_for_optimal_learning_rate(self):
# Check whether expected ValueError on bad alpha, i.e. 0
# since alpha is used to compute the optimal learning rate
assert_raises(ValueError, self.factory,
alpha=0, learning_rate="optimal")
def test_early_stopping(self):
X = iris.data[iris.target > 0]
Y = iris.target[iris.target > 0]
for early_stopping in [True, False]:
max_iter = 1000
clf = self.factory(early_stopping=early_stopping, tol=1e-3,
max_iter=max_iter).fit(X, Y)
assert clf.n_iter_ < max_iter
def test_adaptive_longer_than_constant(self):
clf1 = self.factory(learning_rate="adaptive", eta0=0.01, tol=1e-3,
max_iter=100)
clf1.fit(iris.data, iris.target)
clf2 = self.factory(learning_rate="constant", eta0=0.01, tol=1e-3,
max_iter=100)
clf2.fit(iris.data, iris.target)
assert clf1.n_iter_ > clf2.n_iter_
def test_validation_set_not_used_for_training(self):
X, Y = iris.data, iris.target
validation_fraction = 0.4
seed = 42
shuffle = False
max_iter = 10
clf1 = self.factory(early_stopping=True,
random_state=np.random.RandomState(seed),
validation_fraction=validation_fraction,
learning_rate='constant', eta0=0.01,
tol=None, max_iter=max_iter, shuffle=shuffle)
clf1.fit(X, Y)
assert clf1.n_iter_ == max_iter
clf2 = self.factory(early_stopping=False,
random_state=np.random.RandomState(seed),
learning_rate='constant', eta0=0.01,
tol=None, max_iter=max_iter, shuffle=shuffle)
if is_classifier(clf2):
cv = StratifiedShuffleSplit(test_size=validation_fraction,
random_state=seed)
else:
cv = ShuffleSplit(test_size=validation_fraction,
random_state=seed)
idx_train, idx_val = next(cv.split(X, Y))
idx_train = np.sort(idx_train) # remove shuffling
clf2.fit(X[idx_train], Y[idx_train])
assert clf2.n_iter_ == max_iter
assert_array_equal(clf1.coef_, clf2.coef_)
def test_n_iter_no_change(self):
X, Y = iris.data, iris.target
# test that n_iter_ increases monotonically with n_iter_no_change
for early_stopping in [True, False]:
n_iter_list = [self.factory(early_stopping=early_stopping,
n_iter_no_change=n_iter_no_change,
tol=1e-4, max_iter=1000
).fit(X, Y).n_iter_
for n_iter_no_change in [2, 3, 10]]
assert_array_equal(n_iter_list, sorted(n_iter_list))
def test_not_enough_sample_for_early_stopping(self):
# test an error is raised if the training or validation set is empty
clf = self.factory(early_stopping=True, validation_fraction=0.99)
with pytest.raises(ValueError):
clf.fit(X3, Y3)
###############################################################################
# Classification Test Case
class DenseSGDClassifierTestCase(unittest.TestCase, CommonTest):
"""Test suite for the dense representation variant of SGD"""
factory_class = SGDClassifier
def test_sgd(self):
# Check that SGD gives any results :-)
for loss in ("hinge", "squared_hinge", "log", "modified_huber"):
clf = self.factory(penalty='l2', alpha=0.01, fit_intercept=True,
loss=loss, max_iter=10, shuffle=True)
clf.fit(X, Y)
# assert_almost_equal(clf.coef_[0], clf.coef_[1], decimal=7)
assert_array_equal(clf.predict(T), true_result)
def test_sgd_bad_l1_ratio(self):
# Check whether expected ValueError on bad l1_ratio
assert_raises(ValueError, self.factory, l1_ratio=1.1)
def test_sgd_bad_learning_rate_schedule(self):
# Check whether expected ValueError on bad learning_rate
assert_raises(ValueError, self.factory, learning_rate="<unknown>")
def test_sgd_bad_eta0(self):
# Check whether expected ValueError on bad eta0
assert_raises(ValueError, self.factory, eta0=0,
learning_rate="constant")
def test_sgd_bad_alpha(self):
# Check whether expected ValueError on bad alpha
assert_raises(ValueError, self.factory, alpha=-.1)
def test_sgd_bad_penalty(self):
# Check whether expected ValueError on bad penalty
assert_raises(ValueError, self.factory, penalty='foobar',
l1_ratio=0.85)
def test_sgd_bad_loss(self):
# Check whether expected ValueError on bad loss
assert_raises(ValueError, self.factory, loss="foobar")
def test_sgd_max_iter_param(self):
# Test parameter validity check
assert_raises(ValueError, self.factory, max_iter=-10000)
def test_sgd_shuffle_param(self):
# Test parameter validity check
assert_raises(ValueError, self.factory, shuffle="false")
def test_sgd_early_stopping_param(self):
# Test parameter validity check
assert_raises(ValueError, self.factory, early_stopping="false")
def test_sgd_validation_fraction(self):
# Test parameter validity check
assert_raises(ValueError, self.factory, validation_fraction=-.1)
def test_sgd_n_iter_no_change(self):
# Test parameter validity check
assert_raises(ValueError, self.factory, n_iter_no_change=0)
def test_argument_coef(self):
# Checks coef_init not allowed as model argument (only fit)
# Provided coef_ does not match dataset
assert_raises(TypeError, self.factory, coef_init=np.zeros((3,)))
def test_provide_coef(self):
# Checks coef_init shape for the warm starts
# Provided coef_ does not match dataset.
assert_raises(ValueError, self.factory().fit,
X, Y, coef_init=np.zeros((3,)))
def test_set_intercept(self):
# Checks intercept_ shape for the warm starts
# Provided intercept_ does not match dataset.
assert_raises(ValueError, self.factory().fit,
X, Y, intercept_init=np.zeros((3,)))
def test_sgd_early_stopping_with_partial_fit(self):
# Test parameter validity check
assert_raises(ValueError,
self.factory(early_stopping=True).partial_fit, X, Y)
def test_set_intercept_binary(self):
# Checks intercept_ shape for the warm starts in binary case
self.factory().fit(X5, Y5, intercept_init=0)
def test_average_binary_computed_correctly(self):
# Checks the SGDClassifier correctly computes the average weights
eta = .1
alpha = 2.
n_samples = 20
n_features = 10
rng = np.random.RandomState(0)
X = rng.normal(size=(n_samples, n_features))
w = rng.normal(size=n_features)
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
max_iter=1, average=True, shuffle=False)
# simple linear function without noise
y = np.dot(X, w)
y = np.sign(y)
clf.fit(X, y)
average_weights, average_intercept = self.asgd(X, y, eta, alpha)
average_weights = average_weights.reshape(1, -1)
assert_array_almost_equal(clf.coef_,
average_weights,
decimal=14)
assert_almost_equal(clf.intercept_, average_intercept, decimal=14)
def test_set_intercept_to_intercept(self):
# Checks intercept_ shape consistency for the warm starts
# Inconsistent intercept_ shape.
clf = self.factory().fit(X5, Y5)
self.factory().fit(X5, Y5, intercept_init=clf.intercept_)
clf = self.factory().fit(X, Y)
self.factory().fit(X, Y, intercept_init=clf.intercept_)
def test_sgd_at_least_two_labels(self):
# Target must have at least two labels
clf = self.factory(alpha=0.01, max_iter=20)
assert_raises(ValueError, clf.fit, X2, np.ones(9))
def test_partial_fit_weight_class_balanced(self):
# partial_fit with class_weight='balanced' not supported"""
regex = (r"class_weight 'balanced' is not supported for "
r"partial_fit\. In order to use 'balanced' weights, "
r"use compute_class_weight\('balanced', classes, y\). "
r"In place of y you can us a large enough sample "
r"of the full training set target to properly "
r"estimate the class frequency distributions\. "
r"Pass the resulting weights as the class_weight "
r"parameter\.")
assert_raises_regexp(ValueError,
regex,
self.factory(class_weight='balanced').partial_fit,
X, Y, classes=np.unique(Y))
def test_sgd_multiclass(self):
# Multi-class test case
clf = self.factory(alpha=0.01, max_iter=20).fit(X2, Y2)
assert_equal(clf.coef_.shape, (3, 2))
assert_equal(clf.intercept_.shape, (3,))
assert_equal(clf.decision_function([[0, 0]]).shape, (1, 3))
pred = clf.predict(T2)
assert_array_equal(pred, true_result2)
def test_sgd_multiclass_average(self):
eta = .001
alpha = .01
# Multi-class average test case
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
max_iter=1, average=True, shuffle=False)
np_Y2 = np.array(Y2)
clf.fit(X2, np_Y2)
classes = np.unique(np_Y2)
for i, cl in enumerate(classes):
y_i = np.ones(np_Y2.shape[0])
y_i[np_Y2 != cl] = -1
average_coef, average_intercept = self.asgd(X2, y_i, eta, alpha)
assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16)
assert_almost_equal(average_intercept,
clf.intercept_[i],
decimal=16)
def test_sgd_multiclass_with_init_coef(self):
# Multi-class test case
clf = self.factory(alpha=0.01, max_iter=20)
clf.fit(X2, Y2, coef_init=np.zeros((3, 2)),
intercept_init=np.zeros(3))
assert_equal(clf.coef_.shape, (3, 2))
assert clf.intercept_.shape, (3,)
pred = clf.predict(T2)
assert_array_equal(pred, true_result2)
def test_sgd_multiclass_njobs(self):
# Multi-class test case with multi-core support
clf = self.factory(alpha=0.01, max_iter=20, n_jobs=2).fit(X2, Y2)
assert_equal(clf.coef_.shape, (3, 2))
assert_equal(clf.intercept_.shape, (3,))
assert_equal(clf.decision_function([[0, 0]]).shape, (1, 3))
pred = clf.predict(T2)
assert_array_equal(pred, true_result2)
def test_set_coef_multiclass(self):
# Checks coef_init and intercept_init shape for multi-class
# problems
# Provided coef_ does not match dataset
clf = self.factory()
assert_raises(ValueError, clf.fit, X2, Y2, coef_init=np.zeros((2, 2)))
# Provided coef_ does match dataset
clf = self.factory().fit(X2, Y2, coef_init=np.zeros((3, 2)))
# Provided intercept_ does not match dataset
clf = self.factory()
assert_raises(ValueError, clf.fit, X2, Y2,
intercept_init=np.zeros((1,)))
# Provided intercept_ does match dataset.
clf = self.factory().fit(X2, Y2, intercept_init=np.zeros((3,)))
def test_sgd_predict_proba_method_access(self):
# Checks that SGDClassifier predict_proba and predict_log_proba methods
# can either be accessed or raise an appropriate error message
# otherwise. See
# https://github.com/scikit-learn/scikit-learn/issues/10938 for more
# details.
for loss in SGDClassifier.loss_functions:
clf = SGDClassifier(loss=loss)
if loss in ('log', 'modified_huber'):
assert hasattr(clf, 'predict_proba')
assert hasattr(clf, 'predict_log_proba')
else:
message = ("probability estimates are not "
"available for loss={!r}".format(loss))
assert not hasattr(clf, 'predict_proba')
assert not hasattr(clf, 'predict_log_proba')
with pytest.raises(AttributeError,
message=message):
clf.predict_proba
with pytest.raises(AttributeError,
message=message):
clf.predict_log_proba
def test_sgd_proba(self):
# Check SGD.predict_proba
# Hinge loss does not allow for conditional prob estimate.
# We cannot use the factory here, because it defines predict_proba
# anyway.
clf = SGDClassifier(loss="hinge", alpha=0.01,
max_iter=10, tol=None).fit(X, Y)
assert_false(hasattr(clf, "predict_proba"))
assert_false(hasattr(clf, "predict_log_proba"))
# log and modified_huber losses can output probability estimates
# binary case
for loss in ["log", "modified_huber"]:
clf = self.factory(loss=loss, alpha=0.01, max_iter=10)
clf.fit(X, Y)
p = clf.predict_proba([[3, 2]])
assert p[0, 1] > 0.5
p = clf.predict_proba([[-1, -1]])
assert p[0, 1] < 0.5
p = clf.predict_log_proba([[3, 2]])
assert p[0, 1] > p[0, 0]
p = clf.predict_log_proba([[-1, -1]])
assert p[0, 1] < p[0, 0]
# log loss multiclass probability estimates
clf = self.factory(loss="log", alpha=0.01, max_iter=10).fit(X2, Y2)
d = clf.decision_function([[.1, -.1], [.3, .2]])
p = clf.predict_proba([[.1, -.1], [.3, .2]])
assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1))
assert_almost_equal(p[0].sum(), 1)
assert np.all(p[0] >= 0)
p = clf.predict_proba([[-1, -1]])
d = clf.decision_function([[-1, -1]])
assert_array_equal(np.argsort(p[0]), np.argsort(d[0]))
l = clf.predict_log_proba([[3, 2]])
p = clf.predict_proba([[3, 2]])
assert_array_almost_equal(np.log(p), l)
l = clf.predict_log_proba([[-1, -1]])
p = clf.predict_proba([[-1, -1]])
assert_array_almost_equal(np.log(p), l)
# Modified Huber multiclass probability estimates; requires a separate
# test because the hard zero/one probabilities may destroy the
# ordering present in decision_function output.
clf = self.factory(loss="modified_huber", alpha=0.01, max_iter=10)
clf.fit(X2, Y2)
d = clf.decision_function([[3, 2]])
p = clf.predict_proba([[3, 2]])
if not isinstance(self, SparseSGDClassifierTestCase):
assert_equal(np.argmax(d, axis=1), np.argmax(p, axis=1))
else: # XXX the sparse test gets a different X2 (?)
assert_equal(np.argmin(d, axis=1), np.argmin(p, axis=1))
# the following sample produces decision_function values < -1,
# which would cause naive normalization to fail (see comment
# in SGDClassifier.predict_proba)
x = X.mean(axis=0)
d = clf.decision_function([x])
if np.all(d < -1): # XXX not true in sparse test case (why?)
p = clf.predict_proba([x])
assert_array_almost_equal(p[0], [1 / 3.] * 3)
def test_sgd_l1(self):
# Test L1 regularization
n = len(X4)
rng = np.random.RandomState(13)
idx = np.arange(n)
rng.shuffle(idx)
X = X4[idx, :]
Y = Y4[idx]
clf = self.factory(penalty='l1', alpha=.2, fit_intercept=False,
max_iter=2000, tol=None, shuffle=False)
clf.fit(X, Y)
assert_array_equal(clf.coef_[0, 1:-1], np.zeros((4,)))
pred = clf.predict(X)
assert_array_equal(pred, Y)
# test sparsify with dense inputs
clf.sparsify()
assert sp.issparse(clf.coef_)
pred = clf.predict(X)
assert_array_equal(pred, Y)
# pickle and unpickle with sparse coef_
clf = pickle.loads(pickle.dumps(clf))
assert sp.issparse(clf.coef_)
pred = clf.predict(X)
assert_array_equal(pred, Y)
def test_class_weights(self):
# Test class weights.
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
clf = self.factory(alpha=0.1, max_iter=1000, fit_intercept=False,
class_weight=None)
clf.fit(X, y)
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
clf = self.factory(alpha=0.1, max_iter=1000, fit_intercept=False,
class_weight={1: 0.001})
clf.fit(X, y)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
def test_equal_class_weight(self):
# Test if equal class weights approx. equals no class weights.
X = [[1, 0], [1, 0], [0, 1], [0, 1]]
y = [0, 0, 1, 1]
clf = self.factory(alpha=0.1, max_iter=1000, class_weight=None)
clf.fit(X, y)
X = [[1, 0], [0, 1]]
y = [0, 1]
clf_weighted = self.factory(alpha=0.1, max_iter=1000,
class_weight={0: 0.5, 1: 0.5})
clf_weighted.fit(X, y)
# should be similar up to some epsilon due to learning rate schedule
assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2)
def test_wrong_class_weight_label(self):
# ValueError due to not existing class label.
clf = self.factory(alpha=0.1, max_iter=1000, class_weight={0: 0.5})
assert_raises(ValueError, clf.fit, X, Y)
def test_wrong_class_weight_format(self):
# ValueError due to wrong class_weight argument type.
clf = self.factory(alpha=0.1, max_iter=1000, class_weight=[0.5])
assert_raises(ValueError, clf.fit, X, Y)
def test_weights_multiplied(self):
# Tests that class_weight and sample_weight are multiplicative
class_weights = {1: .6, 2: .3}
rng = np.random.RandomState(0)
sample_weights = rng.random_sample(Y4.shape[0])
multiplied_together = np.copy(sample_weights)
multiplied_together[Y4 == 1] *= class_weights[1]
multiplied_together[Y4 == 2] *= class_weights[2]
clf1 = self.factory(alpha=0.1, max_iter=20, class_weight=class_weights)
clf2 = self.factory(alpha=0.1, max_iter=20)
clf1.fit(X4, Y4, sample_weight=sample_weights)
clf2.fit(X4, Y4, sample_weight=multiplied_together)
assert_almost_equal(clf1.coef_, clf2.coef_)
def test_balanced_weight(self):
# Test class weights for imbalanced data"""
# compute reference metrics on iris dataset that is quite balanced by
# default
X, y = iris.data, iris.target
X = scale(X)
idx = np.arange(X.shape[0])
rng = np.random.RandomState(6)
rng.shuffle(idx)
X = X[idx]
y = y[idx]
clf = self.factory(alpha=0.0001, max_iter=1000,
class_weight=None, shuffle=False).fit(X, y)
f1 = metrics.f1_score(y, clf.predict(X), average='weighted')
assert_almost_equal(f1, 0.96, decimal=1)
# make the same prediction using balanced class_weight
clf_balanced = self.factory(alpha=0.0001, max_iter=1000,
class_weight="balanced",
shuffle=False).fit(X, y)
f1 = metrics.f1_score(y, clf_balanced.predict(X), average='weighted')
assert_almost_equal(f1, 0.96, decimal=1)
# Make sure that in the balanced case it does not change anything
# to use "balanced"
assert_array_almost_equal(clf.coef_, clf_balanced.coef_, 6)
# build an very very imbalanced dataset out of iris data
X_0 = X[y == 0, :]
y_0 = y[y == 0]
X_imbalanced = np.vstack([X] + [X_0] * 10)
y_imbalanced = np.concatenate([y] + [y_0] * 10)
# fit a model on the imbalanced data without class weight info
clf = self.factory(max_iter=1000, class_weight=None, shuffle=False)
clf.fit(X_imbalanced, y_imbalanced)
y_pred = clf.predict(X)
assert_less(metrics.f1_score(y, y_pred, average='weighted'), 0.96)
# fit a model with balanced class_weight enabled
clf = self.factory(max_iter=1000, class_weight="balanced",
shuffle=False)
clf.fit(X_imbalanced, y_imbalanced)
y_pred = clf.predict(X)
assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96)
def test_sample_weights(self):
# Test weights on individual samples
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = [1, 1, 1, -1, -1]
clf = self.factory(alpha=0.1, max_iter=1000, fit_intercept=False)
clf.fit(X, y)
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
clf.fit(X, y, sample_weight=[0.001] * 3 + [1] * 2)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
def test_wrong_sample_weights(self):
# Test if ValueError is raised if sample_weight has wrong shape
clf = self.factory(alpha=0.1, max_iter=1000, fit_intercept=False)
# provided sample_weight too long
assert_raises(ValueError, clf.fit, X, Y, sample_weight=np.arange(7))
def test_partial_fit_exception(self):
clf = self.factory(alpha=0.01)
# classes was not specified
assert_raises(ValueError, clf.partial_fit, X3, Y3)
def test_partial_fit_binary(self):
third = X.shape[0] // 3
clf = self.factory(alpha=0.01)
classes = np.unique(Y)
clf.partial_fit(X[:third], Y[:third], classes=classes)
assert_equal(clf.coef_.shape, (1, X.shape[1]))
assert_equal(clf.intercept_.shape, (1,))
assert_equal(clf.decision_function([[0, 0]]).shape, (1, ))
id1 = id(clf.coef_.data)
clf.partial_fit(X[third:], Y[third:])
id2 = id(clf.coef_.data)
# check that coef_ haven't been re-allocated
assert id1, id2
y_pred = clf.predict(T)
assert_array_equal(y_pred, true_result)
def test_partial_fit_multiclass(self):
third = X2.shape[0] // 3
clf = self.factory(alpha=0.01)
classes = np.unique(Y2)
clf.partial_fit(X2[:third], Y2[:third], classes=classes)
assert_equal(clf.coef_.shape, (3, X2.shape[1]))
assert_equal(clf.intercept_.shape, (3,))
assert_equal(clf.decision_function([[0, 0]]).shape, (1, 3))
id1 = id(clf.coef_.data)
clf.partial_fit(X2[third:], Y2[third:])
id2 = id(clf.coef_.data)
# check that coef_ haven't been re-allocated
assert id1, id2
def test_partial_fit_multiclass_average(self):
third = X2.shape[0] // 3
clf = self.factory(alpha=0.01, average=X2.shape[0])
classes = np.unique(Y2)
clf.partial_fit(X2[:third], Y2[:third], classes=classes)
assert_equal(clf.coef_.shape, (3, X2.shape[1]))
assert_equal(clf.intercept_.shape, (3,))
clf.partial_fit(X2[third:], Y2[third:])
assert_equal(clf.coef_.shape, (3, X2.shape[1]))
assert_equal(clf.intercept_.shape, (3,))
def test_fit_then_partial_fit(self):
# Partial_fit should work after initial fit in the multiclass case.
# Non-regression test for #2496; fit would previously produce a
# Fortran-ordered coef_ that subsequent partial_fit couldn't handle.
clf = self.factory()
clf.fit(X2, Y2)
clf.partial_fit(X2, Y2) # no exception here
def _test_partial_fit_equal_fit(self, lr):
for X_, Y_, T_ in ((X, Y, T), (X2, Y2, T2)):
clf = self.factory(alpha=0.01, eta0=0.01, max_iter=2,
learning_rate=lr, shuffle=False)
clf.fit(X_, Y_)
y_pred = clf.decision_function(T_)
t = clf.t_
classes = np.unique(Y_)
clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr,
shuffle=False)
for i in range(2):
clf.partial_fit(X_, Y_, classes=classes)
y_pred2 = clf.decision_function(T_)
assert_equal(clf.t_, t)
assert_array_almost_equal(y_pred, y_pred2, decimal=2)
def test_partial_fit_equal_fit_constant(self):
self._test_partial_fit_equal_fit("constant")
def test_partial_fit_equal_fit_optimal(self):
self._test_partial_fit_equal_fit("optimal")
def test_partial_fit_equal_fit_invscaling(self):
self._test_partial_fit_equal_fit("invscaling")
def test_partial_fit_equal_fit_adaptive(self):
self._test_partial_fit_equal_fit("adaptive")
def test_regression_losses(self):
clf = self.factory(alpha=0.01, learning_rate="constant",
eta0=0.1, loss="epsilon_insensitive")
clf.fit(X, Y)
assert_equal(1.0, np.mean(clf.predict(X) == Y))
clf = self.factory(alpha=0.01, learning_rate="constant",
eta0=0.1, loss="squared_epsilon_insensitive")
clf.fit(X, Y)
assert_equal(1.0, np.mean(clf.predict(X) == Y))
clf = self.factory(alpha=0.01, loss="huber")
clf.fit(X, Y)
assert_equal(1.0, np.mean(clf.predict(X) == Y))
clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.01,
loss="squared_loss")
clf.fit(X, Y)
assert_equal(1.0, np.mean(clf.predict(X) == Y))
def test_warm_start_multiclass(self):
self._test_warm_start(X2, Y2, "optimal")
def test_multiple_fit(self):
# Test multiple calls of fit w/ different shaped inputs.
clf = self.factory(alpha=0.01, shuffle=False)
clf.fit(X, Y)
assert hasattr(clf, "coef_")
# Non-regression test: try fitting with a different label set.
y = [["ham", "spam"][i] for i in LabelEncoder().fit_transform(Y)]
clf.fit(X[:, :-1], y)
class SparseSGDClassifierTestCase(DenseSGDClassifierTestCase):
"""Run exactly the same tests using the sparse representation variant"""
factory_class = SparseSGDClassifier
###############################################################################
# Regression Test Case
class DenseSGDRegressorTestCase(unittest.TestCase, CommonTest):
"""Test suite for the dense representation variant of SGD"""
factory_class = SGDRegressor
def test_sgd(self):
# Check that SGD gives any results.
clf = self.factory(alpha=0.1, max_iter=2,
fit_intercept=False)
clf.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
assert_equal(clf.coef_[0], clf.coef_[1])
def test_sgd_bad_penalty(self):
# Check whether expected ValueError on bad penalty
assert_raises(ValueError, self.factory,
penalty='foobar', l1_ratio=0.85)
def test_sgd_bad_loss(self):
# Check whether expected ValueError on bad loss
assert_raises(ValueError, self.factory, loss="foobar")
def test_sgd_averaged_computed_correctly(self):
# Tests the average regressor matches the naive implementation
eta = .001
alpha = .01
n_samples = 20
n_features = 10
rng = np.random.RandomState(0)
X = rng.normal(size=(n_samples, n_features))
w = rng.normal(size=n_features)
# simple linear function without noise
y = np.dot(X, w)
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
max_iter=1, average=True, shuffle=False)
clf.fit(X, y)
average_weights, average_intercept = self.asgd(X, y, eta, alpha)
assert_array_almost_equal(clf.coef_,
average_weights,
decimal=16)
assert_almost_equal(clf.intercept_, average_intercept, decimal=16)
def test_sgd_averaged_partial_fit(self):
# Tests whether the partial fit yields the same average as the fit
eta = .001
alpha = .01
n_samples = 20
n_features = 10
rng = np.random.RandomState(0)
X = rng.normal(size=(n_samples, n_features))
w = rng.normal(size=n_features)
# simple linear function without noise
y = np.dot(X, w)
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
max_iter=1, average=True, shuffle=False)
clf.partial_fit(X[:int(n_samples / 2)][:], y[:int(n_samples / 2)])
clf.partial_fit(X[int(n_samples / 2):][:], y[int(n_samples / 2):])
average_weights, average_intercept = self.asgd(X, y, eta, alpha)
assert_array_almost_equal(clf.coef_,
average_weights,
decimal=16)
assert_almost_equal(clf.intercept_[0], average_intercept, decimal=16)
def test_average_sparse(self):
# Checks the average weights on data with 0s
eta = .001
alpha = .01
clf = self.factory(loss='squared_loss',
learning_rate='constant',
eta0=eta, alpha=alpha,
fit_intercept=True,
max_iter=1, average=True, shuffle=False)
n_samples = Y3.shape[0]
clf.partial_fit(X3[:int(n_samples / 2)][:], Y3[:int(n_samples / 2)])
clf.partial_fit(X3[int(n_samples / 2):][:], Y3[int(n_samples / 2):])
average_weights, average_intercept = self.asgd(X3, Y3, eta, alpha)
assert_array_almost_equal(clf.coef_,
average_weights,
decimal=16)
assert_almost_equal(clf.intercept_, average_intercept, decimal=16)
def test_sgd_least_squares_fit(self):
xmin, xmax = -5, 5
n_samples = 100
rng = np.random.RandomState(0)
X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1)
# simple linear function without noise
y = 0.5 * X.ravel()
clf = self.factory(loss='squared_loss', alpha=0.1, max_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_greater(score, 0.99)
# simple linear function with noise
y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel()
clf = self.factory(loss='squared_loss', alpha=0.1, max_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_greater(score, 0.5)
def test_sgd_epsilon_insensitive(self):
xmin, xmax = -5, 5
n_samples = 100
rng = np.random.RandomState(0)
X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1)
# simple linear function without noise
y = 0.5 * X.ravel()
clf = self.factory(loss='epsilon_insensitive', epsilon=0.01,
alpha=0.1, max_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert score > 0.99
# simple linear function with noise
y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel()
clf = self.factory(loss='epsilon_insensitive', epsilon=0.01,
alpha=0.1, max_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert score > 0.5
def test_sgd_huber_fit(self):
xmin, xmax = -5, 5
n_samples = 100
rng = np.random.RandomState(0)
X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1)
# simple linear function without noise
y = 0.5 * X.ravel()
clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, max_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_greater(score, 0.99)
# simple linear function with noise
y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel()
clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, max_iter=20,
fit_intercept=False)
clf.fit(X, y)
score = clf.score(X, y)
assert_greater(score, 0.5)
def test_elasticnet_convergence(self):
# Check that the SGD output is consistent with coordinate descent
n_samples, n_features = 1000, 5
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
# ground_truth linear model that generate y from X and to which the
# models should converge if the regularizer would be set to 0.0
ground_truth_coef = rng.randn(n_features)
y = np.dot(X, ground_truth_coef)
# XXX: alpha = 0.1 seems to cause convergence problems
for alpha in [0.01, 0.001]:
for l1_ratio in [0.5, 0.8, 1.0]:
cd = linear_model.ElasticNet(alpha=alpha, l1_ratio=l1_ratio,
fit_intercept=False)
cd.fit(X, y)
sgd = self.factory(penalty='elasticnet', max_iter=50,
alpha=alpha, l1_ratio=l1_ratio,
fit_intercept=False)
sgd.fit(X, y)
err_msg = ("cd and sgd did not converge to comparable "
"results for alpha=%f and l1_ratio=%f"
% (alpha, l1_ratio))
assert_almost_equal(cd.coef_, sgd.coef_, decimal=2,
err_msg=err_msg)
@ignore_warnings
def test_partial_fit(self):
third = X.shape[0] // 3
clf = self.factory(alpha=0.01)
clf.partial_fit(X[:third], Y[:third])
assert_equal(clf.coef_.shape, (X.shape[1], ))
assert_equal(clf.intercept_.shape, (1,))
assert_equal(clf.predict([[0, 0]]).shape, (1, ))
id1 = id(clf.coef_.data)
clf.partial_fit(X[third:], Y[third:])
id2 = id(clf.coef_.data)
# check that coef_ haven't been re-allocated
assert id1, id2
def _test_partial_fit_equal_fit(self, lr):
clf = self.factory(alpha=0.01, max_iter=2, eta0=0.01,
learning_rate=lr, shuffle=False)
clf.fit(X, Y)
y_pred = clf.predict(T)
t = clf.t_
clf = self.factory(alpha=0.01, eta0=0.01,
learning_rate=lr, shuffle=False)
for i in range(2):
clf.partial_fit(X, Y)
y_pred2 = clf.predict(T)
assert_equal(clf.t_, t)
assert_array_almost_equal(y_pred, y_pred2, decimal=2)
def test_partial_fit_equal_fit_constant(self):
self._test_partial_fit_equal_fit("constant")
def test_partial_fit_equal_fit_optimal(self):
self._test_partial_fit_equal_fit("optimal")
def test_partial_fit_equal_fit_invscaling(self):
self._test_partial_fit_equal_fit("invscaling")
def test_partial_fit_equal_fit_adaptive(self):
self._test_partial_fit_equal_fit("adaptive")
def test_loss_function_epsilon(self):
clf = self.factory(epsilon=0.9)
clf.set_params(epsilon=0.1)
assert clf.loss_functions['huber'][1] == 0.1
class SparseSGDRegressorTestCase(DenseSGDRegressorTestCase):
# Run exactly the same tests using the sparse representation variant
factory_class = SparseSGDRegressor
def test_l1_ratio():
# Test if l1 ratio extremes match L1 and L2 penalty settings.
X, y = datasets.make_classification(n_samples=1000,
n_features=100, n_informative=20,
random_state=1234)
# test if elasticnet with l1_ratio near 1 gives same result as pure l1
est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', tol=None,
max_iter=6, l1_ratio=0.9999999999,
random_state=42).fit(X, y)
est_l1 = SGDClassifier(alpha=0.001, penalty='l1', max_iter=6,
random_state=42, tol=None).fit(X, y)
assert_array_almost_equal(est_en.coef_, est_l1.coef_)
# test if elasticnet with l1_ratio near 0 gives same result as pure l2
est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', tol=None,
max_iter=6, l1_ratio=0.0000000001,
random_state=42).fit(X, y)
est_l2 = SGDClassifier(alpha=0.001, penalty='l2', max_iter=6,
random_state=42, tol=None).fit(X, y)
assert_array_almost_equal(est_en.coef_, est_l2.coef_)
def test_underflow_or_overlow():
with np.errstate(all='raise'):
# Generate some weird data with hugely unscaled features
rng = np.random.RandomState(0)
n_samples = 100
n_features = 10
X = rng.normal(size=(n_samples, n_features))
X[:, :2] *= 1e300
assert np.isfinite(X).all()
# Use MinMaxScaler to scale the data without introducing a numerical
# instability (computing the standard deviation naively is not possible
# on this data)
X_scaled = MinMaxScaler().fit_transform(X)
assert np.isfinite(X_scaled).all()
# Define a ground truth on the scaled data
ground_truth = rng.normal(size=n_features)
y = (np.dot(X_scaled, ground_truth) > 0.).astype(np.int32)
assert_array_equal(np.unique(y), [0, 1])
model = SGDClassifier(alpha=0.1, loss='squared_hinge', max_iter=500)
# smoke test: model is stable on scaled data
model.fit(X_scaled, y)
assert np.isfinite(model.coef_).all()
# model is numerically unstable on unscaled data
msg_regxp = (r"Floating-point under-/overflow occurred at epoch #.*"
" Scaling input data with StandardScaler or MinMaxScaler"
" might help.")
assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y)
def test_numerical_stability_large_gradient():
# Non regression test case for numerical stability on scaled problems
# where the gradient can still explode with some losses
model = SGDClassifier(loss='squared_hinge', max_iter=10, shuffle=True,
penalty='elasticnet', l1_ratio=0.3, alpha=0.01,
eta0=0.001, random_state=0, tol=None)
with np.errstate(all='raise'):
model.fit(iris.data, iris.target)
assert np.isfinite(model.coef_).all()
@pytest.mark.parametrize('penalty', ['l2', 'l1', 'elasticnet'])
def test_large_regularization(penalty):
# Non regression tests for numerical stability issues caused by large
# regularization parameters
model = SGDClassifier(alpha=1e5, learning_rate='constant', eta0=0.1,
penalty=penalty, shuffle=False,
tol=None, max_iter=6)
with np.errstate(all='raise'):
model.fit(iris.data, iris.target)
assert_array_almost_equal(model.coef_, np.zeros_like(model.coef_))
def test_tol_parameter():
# Test that the tol parameter behaves as expected
X = StandardScaler().fit_transform(iris.data)
y = iris.target == 1
# With tol is None, the number of iteration should be equal to max_iter
max_iter = 42
model_0 = SGDClassifier(tol=None, random_state=0, max_iter=max_iter)
model_0.fit(X, y)
assert_equal(max_iter, model_0.n_iter_)
# If tol is not None, the number of iteration should be less than max_iter
max_iter = 2000
model_1 = SGDClassifier(tol=0, random_state=0, max_iter=max_iter)
model_1.fit(X, y)
assert_greater(max_iter, model_1.n_iter_)
assert_greater(model_1.n_iter_, 5)
# A larger tol should yield a smaller number of iteration
model_2 = SGDClassifier(tol=0.1, random_state=0, max_iter=max_iter)
model_2.fit(X, y)
assert_greater(model_1.n_iter_, model_2.n_iter_)
assert_greater(model_2.n_iter_, 3)
# Strict tolerance and small max_iter should trigger a warning
model_3 = SGDClassifier(max_iter=3, tol=1e-3, random_state=0)
model_3 = assert_warns(ConvergenceWarning, model_3.fit, X, y)
assert_equal(model_3.n_iter_, 3)
def test_future_and_deprecation_warnings():
# Test that warnings are raised. Will be removed in 0.21
def init(max_iter=None, tol=None, n_iter=None, for_partial_fit=False):
sgd = SGDClassifier(max_iter=max_iter, tol=tol, n_iter=n_iter)
sgd._validate_params(for_partial_fit=for_partial_fit)
# When all default values are used
msg_future = "max_iter and tol parameters have been added in "
assert_warns_message(FutureWarning, msg_future, init)
# When n_iter is specified
msg_deprecation = "n_iter parameter is deprecated"
assert_warns_message(DeprecationWarning, msg_deprecation, init, 6, 0, 5)
# When n_iter=None and max_iter is specified but tol=None
msg_changed = "If max_iter is set but tol is left unset"
assert_warns_message(FutureWarning, msg_changed, init, 100, None, None)
# When n_iter=None and tol is specified
assert_no_warnings(init, None, 1e-3, None)
assert_no_warnings(init, 100, 1e-3, None)
# Test that for_partial_fit will not throw warnings for max_iter or tol
assert_no_warnings(init, None, None, None, True)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def test_tol_and_max_iter_default_values():
# Test that the default values are correctly changed
est = SGDClassifier()
est._validate_params()
assert_equal(est._tol, None)
assert_equal(est._max_iter, 5)
est = SGDClassifier(n_iter=42)
est._validate_params()
assert_equal(est._tol, None)
assert_equal(est._max_iter, 42)
est = SGDClassifier(tol=1e-2)
est._validate_params()
assert_equal(est._tol, 1e-2)
assert_equal(est._max_iter, 1000)
est = SGDClassifier(max_iter=42)
est._validate_params()
assert_equal(est._tol, None)
assert_equal(est._max_iter, 42)
est = SGDClassifier(max_iter=42, tol=1e-2)
est._validate_params()
assert_equal(est._tol, 1e-2)
assert_equal(est._max_iter, 42)
def _test_gradient_common(loss_function, cases):
# Test gradient of different loss functions
# cases is a list of (p, y, expected)
for p, y, expected in cases:
assert_almost_equal(loss_function.dloss(p, y), expected)
def test_gradient_hinge():
# Test Hinge (hinge / perceptron)
# hinge
loss = sgd_fast.Hinge(1.0)
cases = [
# (p, y, expected)
(1.1, 1.0, 0.0), (-2.0, -1.0, 0.0),
(1.0, 1.0, -1.0), (-1.0, -1.0, 1.0), (0.5, 1.0, -1.0),
(2.0, -1.0, 1.0), (-0.5, -1.0, 1.0), (0.0, 1.0, -1.0)
]
_test_gradient_common(loss, cases)
# perceptron
loss = sgd_fast.Hinge(0.0)
cases = [
# (p, y, expected)
(1.0, 1.0, 0.0), (-0.1, -1.0, 0.0),
(0.0, 1.0, -1.0), (0.0, -1.0, 1.0), (0.5, -1.0, 1.0),
(2.0, -1.0, 1.0), (-0.5, 1.0, -1.0), (-1.0, 1.0, -1.0),
]
_test_gradient_common(loss, cases)
def test_gradient_squared_hinge():
# Test SquaredHinge
loss = sgd_fast.SquaredHinge(1.0)
cases = [
# (p, y, expected)
(1.0, 1.0, 0.0), (-2.0, -1.0, 0.0), (1.0, -1.0, 4.0),
(-1.0, 1.0, -4.0), (0.5, 1.0, -1.0), (0.5, -1.0, 3.0)
]
_test_gradient_common(loss, cases)
def test_gradient_log():
# Test Log (logistic loss)
loss = sgd_fast.Log()
cases = [
# (p, y, expected)
(1.0, 1.0, -1.0 / (np.exp(1.0) + 1.0)),
(1.0, -1.0, 1.0 / (np.exp(-1.0) + 1.0)),
(-1.0, -1.0, 1.0 / (np.exp(1.0) + 1.0)),
(-1.0, 1.0, -1.0 / (np.exp(-1.0) + 1.0)),
(0.0, 1.0, -0.5), (0.0, -1.0, 0.5),
(17.9, -1.0, 1.0), (-17.9, 1.0, -1.0),
]
_test_gradient_common(loss, cases)
assert_almost_equal(loss.dloss(18.1, 1.0), np.exp(-18.1) * -1.0, 16)
assert_almost_equal(loss.dloss(-18.1, -1.0), np.exp(-18.1) * 1.0, 16)
def test_gradient_squared_loss():
# Test SquaredLoss
loss = sgd_fast.SquaredLoss()
cases = [
# (p, y, expected)
(0.0, 0.0, 0.0), (1.0, 1.0, 0.0), (1.0, 0.0, 1.0),
(0.5, -1.0, 1.5), (-2.5, 2.0, -4.5)
]
_test_gradient_common(loss, cases)
def test_gradient_huber():
# Test Huber
loss = sgd_fast.Huber(0.1)
cases = [
# (p, y, expected)
(0.0, 0.0, 0.0), (0.1, 0.0, 0.1), (0.0, 0.1, -0.1),
(3.95, 4.0, -0.05), (5.0, 2.0, 0.1), (-1.0, 5.0, -0.1)
]
_test_gradient_common(loss, cases)
def test_gradient_modified_huber():
# Test ModifiedHuber
loss = sgd_fast.ModifiedHuber()
cases = [
# (p, y, expected)
(1.0, 1.0, 0.0), (-1.0, -1.0, 0.0), (2.0, 1.0, 0.0),
(0.0, 1.0, -2.0), (-1.0, 1.0, -4.0), (0.5, -1.0, 3.0),
(0.5, -1.0, 3.0), (-2.0, 1.0, -4.0), (-3.0, 1.0, -4.0)
]
_test_gradient_common(loss, cases)
def test_gradient_epsilon_insensitive():
# Test EpsilonInsensitive
loss = sgd_fast.EpsilonInsensitive(0.1)
cases = [
(0.0, 0.0, 0.0), (0.1, 0.0, 0.0), (-2.05, -2.0, 0.0),
(3.05, 3.0, 0.0), (2.2, 2.0, 1.0), (2.0, -1.0, 1.0),
(2.0, 2.2, -1.0), (-2.0, 1.0, -1.0)
]
_test_gradient_common(loss, cases)
def test_gradient_squared_epsilon_insensitive():
# Test SquaredEpsilonInsensitive
loss = sgd_fast.SquaredEpsilonInsensitive(0.1)
cases = [
(0.0, 0.0, 0.0), (0.1, 0.0, 0.0), (-2.05, -2.0, 0.0),
(3.05, 3.0, 0.0), (2.2, 2.0, 0.2), (2.0, -1.0, 5.8),
(2.0, 2.2, -0.2), (-2.0, 1.0, -5.8)
]
_test_gradient_common(loss, cases)
def test_multi_thread_multi_class_and_early_stopping():
# This is a non-regression test for a bad interaction between
# early stopping internal attribute and thread-based parallelism.
clf = SGDClassifier(alpha=1e-3, tol=1e-3, max_iter=1000,
early_stopping=True, n_iter_no_change=100,
random_state=0, n_jobs=2)
clf.fit(iris.data, iris.target)
assert clf.n_iter_ > clf.n_iter_no_change
assert clf.n_iter_ < clf.n_iter_no_change + 20
assert clf.score(iris.data, iris.target) > 0.8
def test_multi_core_gridsearch_and_early_stopping():
# This is a non-regression test for a bad interaction between
# early stopping internal attribute and process-based multi-core
# parallelism.
param_grid = {
'alpha': np.logspace(-4, 4, 9),
'n_iter_no_change': [5, 10, 50],
}
clf = SGDClassifier(tol=1e-3, max_iter=1000, early_stopping=True,
random_state=0)
search = RandomizedSearchCV(clf, param_grid, n_iter=10, cv=5, n_jobs=2,
random_state=0)
search.fit(iris.data, iris.target)
assert search.best_score_ > 0.8
@pytest.mark.skipif(
not hasattr(sp, "random"),
reason="this test uses scipy.random, that was introduced in version "
"0.17. This skip condition can be dropped as soon as we drop support "
"for scipy versions older than 0.17")
@pytest.mark.parametrize("backend",
["loky", "multiprocessing", "threading"])
def test_SGDClassifier_fit_for_all_backends(backend):
# This is a non-regression smoke test. In the multi-class case,
# SGDClassifier.fit fits each class in a one-versus-all fashion using
# joblib.Parallel. However, each OvA step updates the coef_ attribute of
# the estimator in-place. Internally, SGDClassifier calls Parallel using
# require='sharedmem'. This test makes sure SGDClassifier.fit works
# consistently even when the user asks for a backend that does not provide
# sharedmem semantics.
# We further test a case where memmapping would have been used if
# SGDClassifier.fit was called from a loky or multiprocessing backend. In
# this specific case, in-place modification of clf.coef_ would have caused
# a segmentation fault when trying to write in a readonly memory mapped
# buffer.
if _joblib.__version__ < LooseVersion('0.12') and backend == 'loky':
pytest.skip('loky backend does not exist in joblib <0.12')
random_state = np.random.RandomState(42)
# Create a classification problem with 50000 features and 20 classes. Using
# loky or multiprocessing this make the clf.coef_ exceed the threshold
# above which memmaping is used in joblib and loky (1MB as of 2018/11/1).
X = sp.random(1000, 50000, density=0.01, format='csr',
random_state=random_state)
y = random_state.choice(20, 1000)
# Begin by fitting a SGD classifier sequentially
clf_sequential = SGDClassifier(tol=1e-3, max_iter=1000, n_jobs=1,
random_state=42)
clf_sequential.fit(X, y)
# Fit a SGDClassifier using the specified backend, and make sure the
# coefficients are equal to those obtained using a sequential fit
clf_parallel = SGDClassifier(tol=1e-3, max_iter=1000, n_jobs=4,
random_state=42)
with parallel_backend(backend=backend):
clf_parallel.fit(X, y)
assert_array_almost_equal(clf_sequential.coef_, clf_parallel.coef_)
|