File: test_t_sne.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (854 lines) | stat: -rw-r--r-- 33,571 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
import sys
from sklearn.externals.six.moves import cStringIO as StringIO
import numpy as np
import scipy.sparse as sp

import pytest

from sklearn.neighbors import BallTree
from sklearn.neighbors import NearestNeighbors
from sklearn.utils.testing import assert_less_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_raises_regexp
from sklearn.utils.testing import assert_in
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import skip_if_32bit
from sklearn.utils import check_random_state
from sklearn.manifold.t_sne import _joint_probabilities
from sklearn.manifold.t_sne import _joint_probabilities_nn
from sklearn.manifold.t_sne import _kl_divergence
from sklearn.manifold.t_sne import _kl_divergence_bh
from sklearn.manifold.t_sne import _gradient_descent
from sklearn.manifold.t_sne import trustworthiness
from sklearn.manifold.t_sne import TSNE
from sklearn.manifold import _barnes_hut_tsne
from sklearn.manifold._utils import _binary_search_perplexity
from sklearn.datasets import make_blobs
from scipy.optimize import check_grad
from scipy.spatial.distance import pdist
from scipy.spatial.distance import squareform
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.metrics.pairwise import manhattan_distances
from sklearn.metrics.pairwise import cosine_distances


x = np.linspace(0, 1, 10)
xx, yy = np.meshgrid(x, x)
X_2d_grid = np.hstack([
    xx.ravel().reshape(-1, 1),
    yy.ravel().reshape(-1, 1),
])


def test_gradient_descent_stops():
    # Test stopping conditions of gradient descent.
    class ObjectiveSmallGradient:
        def __init__(self):
            self.it = -1

        def __call__(self, _, compute_error=True):
            self.it += 1
            return (10 - self.it) / 10.0, np.array([1e-5])

    def flat_function(_, compute_error=True):
        return 0.0, np.ones(1)

    # Gradient norm
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        _, error, it = _gradient_descent(
            ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100,
            n_iter_without_progress=100, momentum=0.0, learning_rate=0.0,
            min_gain=0.0, min_grad_norm=1e-5, verbose=2)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout
    assert_equal(error, 1.0)
    assert_equal(it, 0)
    assert("gradient norm" in out)

    # Maximum number of iterations without improvement
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        _, error, it = _gradient_descent(
            flat_function, np.zeros(1), 0, n_iter=100,
            n_iter_without_progress=10, momentum=0.0, learning_rate=0.0,
            min_gain=0.0, min_grad_norm=0.0, verbose=2)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout
    assert_equal(error, 0.0)
    assert_equal(it, 11)
    assert("did not make any progress" in out)

    # Maximum number of iterations
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        _, error, it = _gradient_descent(
            ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11,
            n_iter_without_progress=100, momentum=0.0, learning_rate=0.0,
            min_gain=0.0, min_grad_norm=0.0, verbose=2)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout
    assert_equal(error, 0.0)
    assert_equal(it, 10)
    assert("Iteration 10" in out)


def test_binary_search():
    # Test if the binary search finds Gaussians with desired perplexity.
    random_state = check_random_state(0)
    distances = random_state.randn(50, 2).astype(np.float32)
    # Distances shouldn't be negative
    distances = np.abs(distances.dot(distances.T))
    np.fill_diagonal(distances, 0.0)
    desired_perplexity = 25.0
    P = _binary_search_perplexity(distances, None, desired_perplexity,
                                  verbose=0)
    P = np.maximum(P, np.finfo(np.double).eps)
    mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i])))
                               for i in range(P.shape[0])])
    assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3)


def test_binary_search_neighbors():
    # Binary perplexity search approximation.
    # Should be approximately equal to the slow method when we use
    # all points as neighbors.
    n_samples = 500
    desired_perplexity = 25.0
    random_state = check_random_state(0)
    distances = random_state.randn(n_samples, 2).astype(np.float32)
    # Distances shouldn't be negative
    distances = np.abs(distances.dot(distances.T))
    np.fill_diagonal(distances, 0.0)
    P1 = _binary_search_perplexity(distances, None, desired_perplexity,
                                   verbose=0)

    # Test that when we use all the neighbors the results are identical
    k = n_samples
    neighbors_nn = np.argsort(distances, axis=1)[:, 1:k].astype(np.int64)
    distances_nn = np.array([distances[k, neighbors_nn[k]]
                            for k in range(n_samples)])
    P2 = _binary_search_perplexity(distances_nn, neighbors_nn,
                                   desired_perplexity, verbose=0)
    P_nn = np.array([P1[k, neighbors_nn[k]] for k in range(n_samples)])
    assert_array_almost_equal(P_nn, P2, decimal=4)

    # Test that the highest P_ij are the same when few neighbors are used
    for k in np.linspace(80, n_samples, 5):
        k = int(k)
        topn = k * 10  # check the top 10 *k entries out of k * k entries
        neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64)
        distances_nn = np.array([distances[k, neighbors_nn[k]]
                                for k in range(n_samples)])
        P2k = _binary_search_perplexity(distances_nn, neighbors_nn,
                                        desired_perplexity, verbose=0)
        idx = np.argsort(P1.ravel())[::-1]
        P1top = P1.ravel()[idx][:topn]
        idx = np.argsort(P2k.ravel())[::-1]
        P2top = P2k.ravel()[idx][:topn]
        assert_array_almost_equal(P1top, P2top, decimal=2)


def test_binary_perplexity_stability():
    # Binary perplexity search should be stable.
    # The binary_search_perplexity had a bug wherein the P array
    # was uninitialized, leading to sporadically failing tests.
    k = 10
    n_samples = 100
    random_state = check_random_state(0)
    distances = random_state.randn(n_samples, 2).astype(np.float32)
    # Distances shouldn't be negative
    distances = np.abs(distances.dot(distances.T))
    np.fill_diagonal(distances, 0.0)
    last_P = None
    neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64)
    for _ in range(100):
        P = _binary_search_perplexity(distances.copy(), neighbors_nn.copy(),
                                      3, verbose=0)
        P1 = _joint_probabilities_nn(distances, neighbors_nn, 3, verbose=0)
        # Convert the sparse matrix to a dense one for testing
        P1 = P1.toarray()
        if last_P is None:
            last_P = P
            last_P1 = P1
        else:
            assert_array_almost_equal(P, last_P, decimal=4)
            assert_array_almost_equal(P1, last_P1, decimal=4)


def test_gradient():
    # Test gradient of Kullback-Leibler divergence.
    random_state = check_random_state(0)

    n_samples = 50
    n_features = 2
    n_components = 2
    alpha = 1.0

    distances = random_state.randn(n_samples, n_features).astype(np.float32)
    distances = np.abs(distances.dot(distances.T))
    np.fill_diagonal(distances, 0.0)
    X_embedded = random_state.randn(n_samples, n_components).astype(np.float32)

    P = _joint_probabilities(distances, desired_perplexity=25.0,
                             verbose=0)

    def fun(params):
        return _kl_divergence(params, P, alpha, n_samples, n_components)[0]

    def grad(params):
        return _kl_divergence(params, P, alpha, n_samples, n_components)[1]

    assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0,
                        decimal=5)


def test_trustworthiness():
    # Test trustworthiness score.
    random_state = check_random_state(0)

    # Affine transformation
    X = random_state.randn(100, 2)
    assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0)

    # Randomly shuffled
    X = np.arange(100).reshape(-1, 1)
    X_embedded = X.copy()
    random_state.shuffle(X_embedded)
    assert_less(trustworthiness(X, X_embedded), 0.6)

    # Completely different
    X = np.arange(5).reshape(-1, 1)
    X_embedded = np.array([[0], [2], [4], [1], [3]])
    assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2)


def test_preserve_trustworthiness_approximately():
    # Nearest neighbors should be preserved approximately.
    random_state = check_random_state(0)
    n_components = 2
    methods = ['exact', 'barnes_hut']
    X = random_state.randn(50, n_components).astype(np.float32)
    for init in ('random', 'pca'):
        for method in methods:
            tsne = TSNE(n_components=n_components, init=init, random_state=0,
                        method=method)
            X_embedded = tsne.fit_transform(X)
            t = trustworthiness(X, X_embedded, n_neighbors=1)
            assert_greater(t, 0.85, msg='Trustworthiness={:0.3f} < 0.85 '
                                        'for method={} and '
                                        'init={}'.format(t, method, init))


def test_optimization_minimizes_kl_divergence():
    """t-SNE should give a lower KL divergence with more iterations."""
    random_state = check_random_state(0)
    X, _ = make_blobs(n_features=3, random_state=random_state)
    kl_divergences = []
    for n_iter in [250, 300, 350]:
        tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0,
                    n_iter=n_iter, random_state=0)
        tsne.fit_transform(X)
        kl_divergences.append(tsne.kl_divergence_)
    assert_less_equal(kl_divergences[1], kl_divergences[0])
    assert_less_equal(kl_divergences[2], kl_divergences[1])


def test_fit_csr_matrix():
    # X can be a sparse matrix.
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0
    X_csr = sp.csr_matrix(X)
    tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0,
                random_state=0, method='exact')
    X_embedded = tsne.fit_transform(X_csr)
    assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0,
                        decimal=1)


def test_preserve_trustworthiness_approximately_with_precomputed_distances():
    # Nearest neighbors should be preserved approximately.
    random_state = check_random_state(0)
    for i in range(3):
        X = random_state.randn(100, 2)
        D = squareform(pdist(X), "sqeuclidean")
        tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0,
                    early_exaggeration=2.0, metric="precomputed",
                    random_state=i, verbose=0)
        X_embedded = tsne.fit_transform(D)
        t = trustworthiness(D, X_embedded, n_neighbors=1, metric="precomputed")
        assert t > .95


def test_trustworthiness_precomputed_deprecation():
    # FIXME: Remove this test in v0.23

    # Use of the flag `precomputed` in trustworthiness parameters has been
    # deprecated, but will still work until v0.23.
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    assert_equal(assert_warns(DeprecationWarning, trustworthiness,
                              pairwise_distances(X), X, precomputed=True), 1.)
    assert_equal(assert_warns(DeprecationWarning, trustworthiness,
                              pairwise_distances(X), X, metric='precomputed',
                              precomputed=True), 1.)
    assert_raises(ValueError, assert_warns, DeprecationWarning,
                  trustworthiness, X, X, metric='euclidean', precomputed=True)
    assert_equal(assert_warns(DeprecationWarning, trustworthiness,
                              pairwise_distances(X), X, metric='euclidean',
                              precomputed=True), 1.)


def test_trustworthiness_not_euclidean_metric():
    # Test trustworthiness with a metric different from 'euclidean' and
    # 'precomputed'
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    assert_equal(trustworthiness(X, X, metric='cosine'),
                 trustworthiness(pairwise_distances(X, metric='cosine'), X,
                                 metric='precomputed'))


def test_early_exaggeration_too_small():
    # Early exaggeration factor must be >= 1.
    tsne = TSNE(early_exaggeration=0.99)
    assert_raises_regexp(ValueError, "early_exaggeration .*",
                         tsne.fit_transform, np.array([[0.0], [0.0]]))


def test_too_few_iterations():
    # Number of gradient descent iterations must be at least 200.
    tsne = TSNE(n_iter=199)
    assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform,
                         np.array([[0.0], [0.0]]))


def test_non_square_precomputed_distances():
    # Precomputed distance matrices must be square matrices.
    tsne = TSNE(metric="precomputed")
    assert_raises_regexp(ValueError, ".* square distance matrix",
                         tsne.fit_transform, np.array([[0.0], [1.0]]))


def test_non_positive_precomputed_distances():
    # Precomputed distance matrices must be positive.
    bad_dist = np.array([[0., -1.], [1., 0.]])
    for method in ['barnes_hut', 'exact']:
        tsne = TSNE(metric="precomputed", method=method)
        assert_raises_regexp(ValueError, "All distances .*precomputed.*",
                             tsne.fit_transform, bad_dist)


def test_non_positive_computed_distances():
    # Computed distance matrices must be positive.
    def metric(x, y):
        return -1

    tsne = TSNE(metric=metric, method='exact')
    X = np.array([[0.0, 0.0], [1.0, 1.0]])
    assert_raises_regexp(ValueError, "All distances .*metric given.*",
                         tsne.fit_transform, X)


def test_init_not_available():
    # 'init' must be 'pca', 'random', or numpy array.
    tsne = TSNE(init="not available")
    m = "'init' must be 'pca', 'random', or a numpy array"
    assert_raises_regexp(ValueError, m, tsne.fit_transform,
                         np.array([[0.0], [1.0]]))


def test_init_ndarray():
    # Initialize TSNE with ndarray and test fit
    tsne = TSNE(init=np.zeros((100, 2)))
    X_embedded = tsne.fit_transform(np.ones((100, 5)))
    assert_array_equal(np.zeros((100, 2)), X_embedded)


def test_init_ndarray_precomputed():
    # Initialize TSNE with ndarray and metric 'precomputed'
    # Make sure no FutureWarning is thrown from _fit
    tsne = TSNE(init=np.zeros((100, 2)), metric="precomputed")
    tsne.fit(np.zeros((100, 100)))


def test_distance_not_available():
    # 'metric' must be valid.
    tsne = TSNE(metric="not available", method='exact')
    assert_raises_regexp(ValueError, "Unknown metric not available.*",
                         tsne.fit_transform, np.array([[0.0], [1.0]]))

    tsne = TSNE(metric="not available", method='barnes_hut')
    assert_raises_regexp(ValueError, "Metric 'not available' not valid.*",
                         tsne.fit_transform, np.array([[0.0], [1.0]]))


def test_method_not_available():
    # 'nethod' must be 'barnes_hut' or 'exact'
    tsne = TSNE(method='not available')
    assert_raises_regexp(ValueError, "'method' must be 'barnes_hut' or ",
                         tsne.fit_transform, np.array([[0.0], [1.0]]))


def test_angle_out_of_range_checks():
    # check the angle parameter range
    for angle in [-1, -1e-6, 1 + 1e-6, 2]:
        tsne = TSNE(angle=angle)
        assert_raises_regexp(ValueError, "'angle' must be between 0.0 - 1.0",
                             tsne.fit_transform, np.array([[0.0], [1.0]]))


def test_pca_initialization_not_compatible_with_precomputed_kernel():
    # Precomputed distance matrices must be square matrices.
    tsne = TSNE(metric="precomputed", init="pca")
    assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be "
                         "used with metric=\"precomputed\".",
                         tsne.fit_transform, np.array([[0.0], [1.0]]))


def test_n_components_range():
    # barnes_hut method should only be used with n_components <= 3
    tsne = TSNE(n_components=4, method="barnes_hut")
    assert_raises_regexp(ValueError, "'n_components' should be .*",
                         tsne.fit_transform, np.array([[0.0], [1.0]]))


def test_early_exaggeration_used():
    # check that the ``early_exaggeration`` parameter has an effect
    random_state = check_random_state(0)
    n_components = 2
    methods = ['exact', 'barnes_hut']
    X = random_state.randn(25, n_components).astype(np.float32)
    for method in methods:
        tsne = TSNE(n_components=n_components, perplexity=1,
                    learning_rate=100.0, init="pca", random_state=0,
                    method=method, early_exaggeration=1.0)
        X_embedded1 = tsne.fit_transform(X)
        tsne = TSNE(n_components=n_components, perplexity=1,
                    learning_rate=100.0, init="pca", random_state=0,
                    method=method, early_exaggeration=10.0)
        X_embedded2 = tsne.fit_transform(X)

        assert not np.allclose(X_embedded1, X_embedded2)


def test_n_iter_used():
    # check that the ``n_iter`` parameter has an effect
    random_state = check_random_state(0)
    n_components = 2
    methods = ['exact', 'barnes_hut']
    X = random_state.randn(25, n_components).astype(np.float32)
    for method in methods:
        for n_iter in [251, 500]:
            tsne = TSNE(n_components=n_components, perplexity=1,
                        learning_rate=0.5, init="random", random_state=0,
                        method=method, early_exaggeration=1.0, n_iter=n_iter)
            tsne.fit_transform(X)

            assert tsne.n_iter_ == n_iter - 1


def test_answer_gradient_two_points():
    # Test the tree with only a single set of children.
    #
    # These tests & answers have been checked against the reference
    # implementation by LvdM.
    pos_input = np.array([[1.0, 0.0], [0.0, 1.0]])
    pos_output = np.array([[-4.961291e-05, -1.072243e-04],
                           [9.259460e-05, 2.702024e-04]])
    neighbors = np.array([[1],
                          [0]])
    grad_output = np.array([[-2.37012478e-05, -6.29044398e-05],
                            [2.37012478e-05, 6.29044398e-05]])
    _run_answer_test(pos_input, pos_output, neighbors, grad_output)


def test_answer_gradient_four_points():
    # Four points tests the tree with multiple levels of children.
    #
    # These tests & answers have been checked against the reference
    # implementation by LvdM.
    pos_input = np.array([[1.0, 0.0], [0.0, 1.0],
                          [5.0, 2.0], [7.3, 2.2]])
    pos_output = np.array([[6.080564e-05, -7.120823e-05],
                           [-1.718945e-04, -4.000536e-05],
                           [-2.271720e-04, 8.663310e-05],
                           [-1.032577e-04, -3.582033e-05]])
    neighbors = np.array([[1, 2, 3],
                          [0, 2, 3],
                          [1, 0, 3],
                          [1, 2, 0]])
    grad_output = np.array([[5.81128448e-05, -7.78033454e-06],
                            [-5.81526851e-05, 7.80976444e-06],
                            [4.24275173e-08, -3.69569698e-08],
                            [-2.58720939e-09, 7.52706374e-09]])
    _run_answer_test(pos_input, pos_output, neighbors, grad_output)


def test_skip_num_points_gradient():
    # Test the kwargs option skip_num_points.
    #
    # Skip num points should make it such that the Barnes_hut gradient
    # is not calculated for indices below skip_num_point.
    # Aside from skip_num_points=2 and the first two gradient rows
    # being set to zero, these data points are the same as in
    # test_answer_gradient_four_points()
    pos_input = np.array([[1.0, 0.0], [0.0, 1.0],
                          [5.0, 2.0], [7.3, 2.2]])
    pos_output = np.array([[6.080564e-05, -7.120823e-05],
                           [-1.718945e-04, -4.000536e-05],
                           [-2.271720e-04, 8.663310e-05],
                           [-1.032577e-04, -3.582033e-05]])
    neighbors = np.array([[1, 2, 3],
                          [0, 2, 3],
                          [1, 0, 3],
                          [1, 2, 0]])
    grad_output = np.array([[0.0, 0.0],
                            [0.0, 0.0],
                            [4.24275173e-08, -3.69569698e-08],
                            [-2.58720939e-09, 7.52706374e-09]])
    _run_answer_test(pos_input, pos_output, neighbors, grad_output,
                     False, 0.1, 2)


def _run_answer_test(pos_input, pos_output, neighbors, grad_output,
                     verbose=False, perplexity=0.1, skip_num_points=0):
    distances = pairwise_distances(pos_input).astype(np.float32)
    args = distances, perplexity, verbose
    pos_output = pos_output.astype(np.float32)
    neighbors = neighbors.astype(np.int64)
    pij_input = _joint_probabilities(*args)
    pij_input = squareform(pij_input).astype(np.float32)
    grad_bh = np.zeros(pos_output.shape, dtype=np.float32)

    from scipy.sparse import csr_matrix
    P = csr_matrix(pij_input)

    neighbors = P.indices.astype(np.int64)
    indptr = P.indptr.astype(np.int64)

    _barnes_hut_tsne.gradient(P.data, pos_output, neighbors, indptr,
                              grad_bh, 0.5, 2, 1, skip_num_points=0)
    assert_array_almost_equal(grad_bh, grad_output, decimal=4)


def test_verbose():
    # Verbose options write to stdout.
    random_state = check_random_state(0)
    tsne = TSNE(verbose=2)
    X = random_state.randn(5, 2)

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        tsne.fit_transform(X)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout

    assert("[t-SNE]" in out)
    assert("nearest neighbors..." in out)
    assert("Computed conditional probabilities" in out)
    assert("Mean sigma" in out)
    assert("early exaggeration" in out)


def test_chebyshev_metric():
    # t-SNE should allow metrics that cannot be squared (issue #3526).
    random_state = check_random_state(0)
    tsne = TSNE(metric="chebyshev")
    X = random_state.randn(5, 2)
    tsne.fit_transform(X)


def test_reduction_to_one_component():
    # t-SNE should allow reduction to one component (issue #4154).
    random_state = check_random_state(0)
    tsne = TSNE(n_components=1)
    X = random_state.randn(5, 2)
    X_embedded = tsne.fit(X).embedding_
    assert(np.all(np.isfinite(X_embedded)))


def test_no_sparse_on_barnes_hut():
    # No sparse matrices allowed on Barnes-Hut.
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0
    X_csr = sp.csr_matrix(X)
    tsne = TSNE(n_iter=199, method='barnes_hut')
    assert_raises_regexp(TypeError, "A sparse matrix was.*",
                         tsne.fit_transform, X_csr)


@pytest.mark.parametrize('method', ['barnes_hut', 'exact'])
@pytest.mark.parametrize('dt', [np.float32, np.float64])
def test_64bit(method, dt):
    # Ensure 64bit arrays are handled correctly.
    random_state = check_random_state(0)

    X = random_state.randn(50, 2).astype(dt)
    tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0,
                random_state=0, method=method, verbose=0)
    X_embedded = tsne.fit_transform(X)
    effective_type = X_embedded.dtype

    # tsne cython code is only single precision, so the output will
    # always be single precision, irrespectively of the input dtype
    assert effective_type == np.float32


@pytest.mark.parametrize('method', ['barnes_hut', 'exact'])
def test_kl_divergence_not_nan(method):
    # Ensure kl_divergence_ is computed at last iteration
    # even though n_iter % n_iter_check != 0, i.e. 1003 % 50 != 0
    random_state = check_random_state(0)

    X = random_state.randn(50, 2)
    tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0,
                random_state=0, method=method, verbose=0, n_iter=1003)
    tsne.fit_transform(X)

    assert not np.isnan(tsne.kl_divergence_)


def test_barnes_hut_angle():
    # When Barnes-Hut's angle=0 this corresponds to the exact method.
    angle = 0.0
    perplexity = 10
    n_samples = 100
    for n_components in [2, 3]:
        n_features = 5
        degrees_of_freedom = float(n_components - 1.0)

        random_state = check_random_state(0)
        distances = random_state.randn(n_samples, n_features)
        distances = distances.astype(np.float32)
        distances = abs(distances.dot(distances.T))
        np.fill_diagonal(distances, 0.0)
        params = random_state.randn(n_samples, n_components)
        P = _joint_probabilities(distances, perplexity, verbose=0)
        kl_exact, grad_exact = _kl_divergence(params, P, degrees_of_freedom,
                                              n_samples, n_components)

        k = n_samples - 1
        bt = BallTree(distances)
        distances_nn, neighbors_nn = bt.query(distances, k=k + 1)
        neighbors_nn = neighbors_nn[:, 1:]
        distances_nn = np.array([distances[i, neighbors_nn[i]]
                                 for i in range(n_samples)])
        assert np.all(distances[0, neighbors_nn[0]] == distances_nn[0]),\
            abs(distances[0, neighbors_nn[0]] - distances_nn[0])
        P_bh = _joint_probabilities_nn(distances_nn, neighbors_nn,
                                       perplexity, verbose=0)
        kl_bh, grad_bh = _kl_divergence_bh(params, P_bh, degrees_of_freedom,
                                           n_samples, n_components,
                                           angle=angle, skip_num_points=0,
                                           verbose=0)

        P = squareform(P)
        P_bh = P_bh.toarray()
        assert_array_almost_equal(P_bh, P, decimal=5)
        assert_almost_equal(kl_exact, kl_bh, decimal=3)


@skip_if_32bit
def test_n_iter_without_progress():
    # Use a dummy negative n_iter_without_progress and check output on stdout
    random_state = check_random_state(0)
    X = random_state.randn(100, 10)
    for method in ["barnes_hut", "exact"]:
        tsne = TSNE(n_iter_without_progress=-1, verbose=2, learning_rate=1e8,
                    random_state=0, method=method, n_iter=351, init="random")
        tsne._N_ITER_CHECK = 1
        tsne._EXPLORATION_N_ITER = 0

        old_stdout = sys.stdout
        sys.stdout = StringIO()
        try:
            tsne.fit_transform(X)
        finally:
            out = sys.stdout.getvalue()
            sys.stdout.close()
            sys.stdout = old_stdout

        # The output needs to contain the value of n_iter_without_progress
        assert_in("did not make any progress during the "
                  "last -1 episodes. Finished.", out)


def test_min_grad_norm():
    # Make sure that the parameter min_grad_norm is used correctly
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    min_grad_norm = 0.002
    tsne = TSNE(min_grad_norm=min_grad_norm, verbose=2,
                random_state=0, method='exact')

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        tsne.fit_transform(X)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout

    lines_out = out.split('\n')

    # extract the gradient norm from the verbose output
    gradient_norm_values = []
    for line in lines_out:
        # When the computation is Finished just an old gradient norm value
        # is repeated that we do not need to store
        if 'Finished' in line:
            break

        start_grad_norm = line.find('gradient norm')
        if start_grad_norm >= 0:
            line = line[start_grad_norm:]
            line = line.replace('gradient norm = ', '').split(' ')[0]
            gradient_norm_values.append(float(line))

    # Compute how often the gradient norm is smaller than min_grad_norm
    gradient_norm_values = np.array(gradient_norm_values)
    n_smaller_gradient_norms = \
        len(gradient_norm_values[gradient_norm_values <= min_grad_norm])

    # The gradient norm can be smaller than min_grad_norm at most once,
    # because in the moment it becomes smaller the optimization stops
    assert_less_equal(n_smaller_gradient_norms, 1)


def test_accessible_kl_divergence():
    # Ensures that the accessible kl_divergence matches the computed value
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    tsne = TSNE(n_iter_without_progress=2, verbose=2,
                random_state=0, method='exact')

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        tsne.fit_transform(X)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout

    # The output needs to contain the accessible kl_divergence as the error at
    # the last iteration
    for line in out.split('\n')[::-1]:
        if 'Iteration' in line:
            _, _, error = line.partition('error = ')
            if error:
                error, _, _ = error.partition(',')
                break
    assert_almost_equal(tsne.kl_divergence_, float(error), decimal=5)


def check_uniform_grid(method, seeds=[0, 1, 2], n_iter=1000):
    """Make sure that TSNE can approximately recover a uniform 2D grid

    Due to ties in distances between point in X_2d_grid, this test is platform
    dependent for ``method='barnes_hut'`` due to numerical imprecision.

    Also, t-SNE is not assured to converge to the right solution because bad
    initialization can lead to convergence to bad local minimum (the
    optimization problem is non-convex). To avoid breaking the test too often,
    we re-run t-SNE from the final point when the convergence is not good
    enough.
    """
    for seed in seeds:
        tsne = TSNE(n_components=2, init='random', random_state=seed,
                    perplexity=20, n_iter=n_iter, method=method)
        Y = tsne.fit_transform(X_2d_grid)

        try_name = "{}_{}".format(method, seed)
        try:
            assert_uniform_grid(Y, try_name)
        except AssertionError:
            # If the test fails a first time, re-run with init=Y to see if
            # this was caused by a bad initialization. Note that this will
            # also run an early_exaggeration step.
            try_name += ":rerun"
            tsne.init = Y
            Y = tsne.fit_transform(X_2d_grid)
            assert_uniform_grid(Y, try_name)


def assert_uniform_grid(Y, try_name=None):
    # Ensure that the resulting embedding leads to approximately
    # uniformly spaced points: the distance to the closest neighbors
    # should be non-zero and approximately constant.
    nn = NearestNeighbors(n_neighbors=1).fit(Y)
    dist_to_nn = nn.kneighbors(return_distance=True)[0].ravel()
    assert dist_to_nn.min() > 0.1

    smallest_to_mean = dist_to_nn.min() / np.mean(dist_to_nn)
    largest_to_mean = dist_to_nn.max() / np.mean(dist_to_nn)

    assert_greater(smallest_to_mean, .5, msg=try_name)
    assert_less(largest_to_mean, 2, msg=try_name)


@pytest.mark.parametrize('method', ['barnes_hut', 'exact'])
def test_uniform_grid(method):
    check_uniform_grid(method)


def test_bh_match_exact():
    # check that the ``barnes_hut`` method match the exact one when
    # ``angle = 0`` and ``perplexity > n_samples / 3``
    random_state = check_random_state(0)
    n_features = 10
    X = random_state.randn(30, n_features).astype(np.float32)
    X_embeddeds = {}
    n_iter = {}
    for method in ['exact', 'barnes_hut']:
        tsne = TSNE(n_components=2, method=method, learning_rate=1.0,
                    init="random", random_state=0, n_iter=251,
                    perplexity=30.0, angle=0)
        # Kill the early_exaggeration
        tsne._EXPLORATION_N_ITER = 0
        X_embeddeds[method] = tsne.fit_transform(X)
        n_iter[method] = tsne.n_iter_

    assert n_iter['exact'] == n_iter['barnes_hut']
    assert_array_almost_equal(X_embeddeds['exact'], X_embeddeds['barnes_hut'],
                              decimal=3)


def test_tsne_with_different_distance_metrics():
    """Make sure that TSNE works for different distance metrics"""
    random_state = check_random_state(0)
    n_components_original = 3
    n_components_embedding = 2
    X = random_state.randn(50, n_components_original).astype(np.float32)
    metrics = ['manhattan', 'cosine']
    dist_funcs = [manhattan_distances, cosine_distances]
    for metric, dist_func in zip(metrics, dist_funcs):
        X_transformed_tsne = TSNE(
            metric=metric, n_components=n_components_embedding,
            random_state=0).fit_transform(X)
        X_transformed_tsne_precomputed = TSNE(
            metric='precomputed', n_components=n_components_embedding,
            random_state=0).fit_transform(dist_func(X))
        assert_array_equal(X_transformed_tsne, X_transformed_tsne_precomputed)