File: classification.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (2040 lines) | stat: -rw-r--r-- 78,463 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
"""Metrics to assess performance on classification task given class prediction

Functions named as ``*_score`` return a scalar value to maximize: the higher
the better

Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize:
the lower the better
"""

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Arnaud Joly <a.joly@ulg.ac.be>
#          Jochen Wersdorfer <jochen@wersdoerfer.de>
#          Lars Buitinck
#          Joel Nothman <joel.nothman@gmail.com>
#          Noel Dawe <noel@dawe.me>
#          Jatin Shah <jatindshah@gmail.com>
#          Saurabh Jha <saurabh.jhaa@gmail.com>
#          Bernardo Stein <bernardovstein@gmail.com>
# License: BSD 3 clause

from __future__ import division

import warnings
import numpy as np

from scipy.sparse import coo_matrix
from scipy.sparse import csr_matrix

from ..preprocessing import LabelBinarizer, label_binarize
from ..preprocessing import LabelEncoder
from ..utils import assert_all_finite
from ..utils import check_array
from ..utils import check_consistent_length
from ..utils import column_or_1d
from ..utils.multiclass import unique_labels
from ..utils.multiclass import type_of_target
from ..utils.validation import _num_samples
from ..utils.sparsefuncs import count_nonzero
from ..exceptions import UndefinedMetricWarning


def _check_targets(y_true, y_pred):
    """Check that y_true and y_pred belong to the same classification task

    This converts multiclass or binary types to a common shape, and raises a
    ValueError for a mix of multilabel and multiclass targets, a mix of
    multilabel formats, for the presence of continuous-valued or multioutput
    targets, or for targets of different lengths.

    Column vectors are squeezed to 1d, while multilabel formats are returned
    as CSR sparse label indicators.

    Parameters
    ----------
    y_true : array-like

    y_pred : array-like

    Returns
    -------
    type_true : one of {'multilabel-indicator', 'multiclass', 'binary'}
        The type of the true target data, as output by
        ``utils.multiclass.type_of_target``

    y_true : array or indicator matrix

    y_pred : array or indicator matrix
    """
    check_consistent_length(y_true, y_pred)
    type_true = type_of_target(y_true)
    type_pred = type_of_target(y_pred)

    y_type = set([type_true, type_pred])
    if y_type == set(["binary", "multiclass"]):
        y_type = set(["multiclass"])

    if len(y_type) > 1:
        raise ValueError("Classification metrics can't handle a mix of {0} "
                         "and {1} targets".format(type_true, type_pred))

    # We can't have more than one value on y_type => The set is no more needed
    y_type = y_type.pop()

    # No metrics support "multiclass-multioutput" format
    if (y_type not in ["binary", "multiclass", "multilabel-indicator"]):
        raise ValueError("{0} is not supported".format(y_type))

    if y_type in ["binary", "multiclass"]:
        y_true = column_or_1d(y_true)
        y_pred = column_or_1d(y_pred)
        if y_type == "binary":
            unique_values = np.union1d(y_true, y_pred)
            if len(unique_values) > 2:
                y_type = "multiclass"

    if y_type.startswith('multilabel'):
        y_true = csr_matrix(y_true)
        y_pred = csr_matrix(y_pred)
        y_type = 'multilabel-indicator'

    return y_type, y_true, y_pred


def _weighted_sum(sample_score, sample_weight, normalize=False):
    if normalize:
        return np.average(sample_score, weights=sample_weight)
    elif sample_weight is not None:
        return np.dot(sample_score, sample_weight)
    else:
        return sample_score.sum()


def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None):
    """Accuracy classification score.

    In multilabel classification, this function computes subset accuracy:
    the set of labels predicted for a sample must *exactly* match the
    corresponding set of labels in y_true.

    Read more in the :ref:`User Guide <accuracy_score>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) labels.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Predicted labels, as returned by a classifier.

    normalize : bool, optional (default=True)
        If ``False``, return the number of correctly classified samples.
        Otherwise, return the fraction of correctly classified samples.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    score : float
        If ``normalize == True``, return the fraction of correctly
        classified samples (float), else returns the number of correctly
        classified samples (int).

        The best performance is 1 with ``normalize == True`` and the number
        of samples with ``normalize == False``.

    See also
    --------
    jaccard_similarity_score, hamming_loss, zero_one_loss

    Notes
    -----
    In binary and multiclass classification, this function is equal
    to the ``jaccard_similarity_score`` function.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import accuracy_score
    >>> y_pred = [0, 2, 1, 3]
    >>> y_true = [0, 1, 2, 3]
    >>> accuracy_score(y_true, y_pred)
    0.5
    >>> accuracy_score(y_true, y_pred, normalize=False)
    2

    In the multilabel case with binary label indicators:

    >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
    0.5
    """

    # Compute accuracy for each possible representation
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)
    if y_type.startswith('multilabel'):
        differing_labels = count_nonzero(y_true - y_pred, axis=1)
        score = differing_labels == 0
    else:
        score = y_true == y_pred

    return _weighted_sum(score, sample_weight, normalize)


def confusion_matrix(y_true, y_pred, labels=None, sample_weight=None):
    """Compute confusion matrix to evaluate the accuracy of a classification

    By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}`
    is equal to the number of observations known to be in group :math:`i` but
    predicted to be in group :math:`j`.

    Thus in binary classification, the count of true negatives is
    :math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is
    :math:`C_{1,1}` and false positives is :math:`C_{0,1}`.

    Read more in the :ref:`User Guide <confusion_matrix>`.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        Ground truth (correct) target values.

    y_pred : array, shape = [n_samples]
        Estimated targets as returned by a classifier.

    labels : array, shape = [n_classes], optional
        List of labels to index the matrix. This may be used to reorder
        or select a subset of labels.
        If none is given, those that appear at least once
        in ``y_true`` or ``y_pred`` are used in sorted order.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    C : array, shape = [n_classes, n_classes]
        Confusion matrix

    References
    ----------
    .. [1] `Wikipedia entry for the Confusion matrix
           <https://en.wikipedia.org/wiki/Confusion_matrix>`_
           (Wikipedia and other references may use a different
           convention for axes)

    Examples
    --------
    >>> from sklearn.metrics import confusion_matrix
    >>> y_true = [2, 0, 2, 2, 0, 1]
    >>> y_pred = [0, 0, 2, 2, 0, 2]
    >>> confusion_matrix(y_true, y_pred)
    array([[2, 0, 0],
           [0, 0, 1],
           [1, 0, 2]])

    >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
    >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
    >>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
    array([[2, 0, 0],
           [0, 0, 1],
           [1, 0, 2]])

    In the binary case, we can extract true positives, etc as follows:

    >>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()
    >>> (tn, fp, fn, tp)
    (0, 2, 1, 1)

    """
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if y_type not in ("binary", "multiclass"):
        raise ValueError("%s is not supported" % y_type)

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels)
        if np.all([l not in y_true for l in labels]):
            raise ValueError("At least one label specified must be in y_true")

    if sample_weight is None:
        sample_weight = np.ones(y_true.shape[0], dtype=np.int64)
    else:
        sample_weight = np.asarray(sample_weight)

    check_consistent_length(y_true, y_pred, sample_weight)

    n_labels = labels.size
    label_to_ind = dict((y, x) for x, y in enumerate(labels))
    # convert yt, yp into index
    y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred])
    y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true])

    # intersect y_pred, y_true with labels, eliminate items not in labels
    ind = np.logical_and(y_pred < n_labels, y_true < n_labels)
    y_pred = y_pred[ind]
    y_true = y_true[ind]
    # also eliminate weights of eliminated items
    sample_weight = sample_weight[ind]

    # Choose the accumulator dtype to always have high precision
    if sample_weight.dtype.kind in {'i', 'u', 'b'}:
        dtype = np.int64
    else:
        dtype = np.float64

    CM = coo_matrix((sample_weight, (y_true, y_pred)),
                    shape=(n_labels, n_labels), dtype=dtype,
                    ).toarray()

    return CM


def cohen_kappa_score(y1, y2, labels=None, weights=None, sample_weight=None):
    r"""Cohen's kappa: a statistic that measures inter-annotator agreement.

    This function computes Cohen's kappa [1]_, a score that expresses the level
    of agreement between two annotators on a classification problem. It is
    defined as

    .. math::
        \kappa = (p_o - p_e) / (1 - p_e)

    where :math:`p_o` is the empirical probability of agreement on the label
    assigned to any sample (the observed agreement ratio), and :math:`p_e` is
    the expected agreement when both annotators assign labels randomly.
    :math:`p_e` is estimated using a per-annotator empirical prior over the
    class labels [2]_.

    Read more in the :ref:`User Guide <cohen_kappa>`.

    Parameters
    ----------
    y1 : array, shape = [n_samples]
        Labels assigned by the first annotator.

    y2 : array, shape = [n_samples]
        Labels assigned by the second annotator. The kappa statistic is
        symmetric, so swapping ``y1`` and ``y2`` doesn't change the value.

    labels : array, shape = [n_classes], optional
        List of labels to index the matrix. This may be used to select a
        subset of labels. If None, all labels that appear at least once in
        ``y1`` or ``y2`` are used.

    weights : str, optional
        List of weighting type to calculate the score. None means no weighted;
        "linear" means linear weighted; "quadratic" means quadratic weighted.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    kappa : float
        The kappa statistic, which is a number between -1 and 1. The maximum
        value means complete agreement; zero or lower means chance agreement.

    References
    ----------
    .. [1] J. Cohen (1960). "A coefficient of agreement for nominal scales".
           Educational and Psychological Measurement 20(1):37-46.
           doi:10.1177/001316446002000104.
    .. [2] `R. Artstein and M. Poesio (2008). "Inter-coder agreement for
           computational linguistics". Computational Linguistics 34(4):555-596.
           <https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-034-R2>`_
    .. [3] `Wikipedia entry for the Cohen's kappa.
            <https://en.wikipedia.org/wiki/Cohen%27s_kappa>`_
    """
    confusion = confusion_matrix(y1, y2, labels=labels,
                                 sample_weight=sample_weight)
    n_classes = confusion.shape[0]
    sum0 = np.sum(confusion, axis=0)
    sum1 = np.sum(confusion, axis=1)
    expected = np.outer(sum0, sum1) / np.sum(sum0)

    if weights is None:
        w_mat = np.ones([n_classes, n_classes], dtype=np.int)
        w_mat.flat[:: n_classes + 1] = 0
    elif weights == "linear" or weights == "quadratic":
        w_mat = np.zeros([n_classes, n_classes], dtype=np.int)
        w_mat += np.arange(n_classes)
        if weights == "linear":
            w_mat = np.abs(w_mat - w_mat.T)
        else:
            w_mat = (w_mat - w_mat.T) ** 2
    else:
        raise ValueError("Unknown kappa weighting type.")

    k = np.sum(w_mat * confusion) / np.sum(w_mat * expected)
    return 1 - k


def jaccard_similarity_score(y_true, y_pred, normalize=True,
                             sample_weight=None):
    """Jaccard similarity coefficient score

    The Jaccard index [1], or Jaccard similarity coefficient, defined as
    the size of the intersection divided by the size of the union of two label
    sets, is used to compare set of predicted labels for a sample to the
    corresponding set of labels in ``y_true``.

    Read more in the :ref:`User Guide <jaccard_similarity_score>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) labels.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Predicted labels, as returned by a classifier.

    normalize : bool, optional (default=True)
        If ``False``, return the sum of the Jaccard similarity coefficient
        over the sample set. Otherwise, return the average of Jaccard
        similarity coefficient.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    score : float
        If ``normalize == True``, return the average Jaccard similarity
        coefficient, else it returns the sum of the Jaccard similarity
        coefficient over the sample set.

        The best performance is 1 with ``normalize == True`` and the number
        of samples with ``normalize == False``.

    See also
    --------
    accuracy_score, hamming_loss, zero_one_loss

    Notes
    -----
    In binary and multiclass classification, this function is equivalent
    to the ``accuracy_score``. It differs in the multilabel classification
    problem.

    References
    ----------
    .. [1] `Wikipedia entry for the Jaccard index
           <https://en.wikipedia.org/wiki/Jaccard_index>`_


    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import jaccard_similarity_score
    >>> y_pred = [0, 2, 1, 3]
    >>> y_true = [0, 1, 2, 3]
    >>> jaccard_similarity_score(y_true, y_pred)
    0.5
    >>> jaccard_similarity_score(y_true, y_pred, normalize=False)
    2

    In the multilabel case with binary label indicators:

    >>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]),\
        np.ones((2, 2)))
    0.75
    """

    # Compute accuracy for each possible representation
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)
    if y_type.startswith('multilabel'):
        with np.errstate(divide='ignore', invalid='ignore'):
            # oddly, we may get an "invalid" rather than a "divide" error here
            pred_or_true = count_nonzero(y_true + y_pred, axis=1)
            pred_and_true = count_nonzero(y_true.multiply(y_pred), axis=1)
            score = pred_and_true / pred_or_true
            score[pred_or_true == 0.0] = 1.0
    else:
        score = y_true == y_pred

    return _weighted_sum(score, sample_weight, normalize)


def matthews_corrcoef(y_true, y_pred, sample_weight=None):
    """Compute the Matthews correlation coefficient (MCC)

    The Matthews correlation coefficient is used in machine learning as a
    measure of the quality of binary and multiclass classifications. It takes
    into account true and false positives and negatives and is generally
    regarded as a balanced measure which can be used even if the classes are of
    very different sizes. The MCC is in essence a correlation coefficient value
    between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
    an average random prediction and -1 an inverse prediction.  The statistic
    is also known as the phi coefficient. [source: Wikipedia]

    Binary and multiclass labels are supported.  Only in the binary case does
    this relate to information about true and false positives and negatives.
    See references below.

    Read more in the :ref:`User Guide <matthews_corrcoef>`.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        Ground truth (correct) target values.

    y_pred : array, shape = [n_samples]
        Estimated targets as returned by a classifier.

    sample_weight : array-like of shape = [n_samples], default None
        Sample weights.

    Returns
    -------
    mcc : float
        The Matthews correlation coefficient (+1 represents a perfect
        prediction, 0 an average random prediction and -1 and inverse
        prediction).

    References
    ----------
    .. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the
       accuracy of prediction algorithms for classification: an overview
       <https://doi.org/10.1093/bioinformatics/16.5.412>`_

    .. [2] `Wikipedia entry for the Matthews Correlation Coefficient
       <https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_

    .. [3] `Gorodkin, (2004). Comparing two K-category assignments by a
        K-category correlation coefficient
        <http://www.sciencedirect.com/science/article/pii/S1476927104000799>`_

    .. [4] `Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC and CEN
        Error Measures in MultiClass Prediction
        <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041882>`_

    Examples
    --------
    >>> from sklearn.metrics import matthews_corrcoef
    >>> y_true = [+1, +1, +1, -1]
    >>> y_pred = [+1, -1, +1, +1]
    >>> matthews_corrcoef(y_true, y_pred)  # doctest: +ELLIPSIS
    -0.33...
    """
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)
    if y_type not in {"binary", "multiclass"}:
        raise ValueError("%s is not supported" % y_type)

    lb = LabelEncoder()
    lb.fit(np.hstack([y_true, y_pred]))
    y_true = lb.transform(y_true)
    y_pred = lb.transform(y_pred)

    C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight)
    t_sum = C.sum(axis=1, dtype=np.float64)
    p_sum = C.sum(axis=0, dtype=np.float64)
    n_correct = np.trace(C, dtype=np.float64)
    n_samples = p_sum.sum()
    cov_ytyp = n_correct * n_samples - np.dot(t_sum, p_sum)
    cov_ypyp = n_samples ** 2 - np.dot(p_sum, p_sum)
    cov_ytyt = n_samples ** 2 - np.dot(t_sum, t_sum)
    mcc = cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp)

    if np.isnan(mcc):
        return 0.
    else:
        return mcc


def zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None):
    """Zero-one classification loss.

    If normalize is ``True``, return the fraction of misclassifications
    (float), else it returns the number of misclassifications (int). The best
    performance is 0.

    Read more in the :ref:`User Guide <zero_one_loss>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) labels.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Predicted labels, as returned by a classifier.

    normalize : bool, optional (default=True)
        If ``False``, return the number of misclassifications.
        Otherwise, return the fraction of misclassifications.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    loss : float or int,
        If ``normalize == True``, return the fraction of misclassifications
        (float), else it returns the number of misclassifications (int).

    Notes
    -----
    In multilabel classification, the zero_one_loss function corresponds to
    the subset zero-one loss: for each sample, the entire set of labels must be
    correctly predicted, otherwise the loss for that sample is equal to one.

    See also
    --------
    accuracy_score, hamming_loss, jaccard_similarity_score

    Examples
    --------
    >>> from sklearn.metrics import zero_one_loss
    >>> y_pred = [1, 2, 3, 4]
    >>> y_true = [2, 2, 3, 4]
    >>> zero_one_loss(y_true, y_pred)
    0.25
    >>> zero_one_loss(y_true, y_pred, normalize=False)
    1

    In the multilabel case with binary label indicators:

    >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
    0.5
    """
    score = accuracy_score(y_true, y_pred,
                           normalize=normalize,
                           sample_weight=sample_weight)

    if normalize:
        return 1 - score
    else:
        if sample_weight is not None:
            n_samples = np.sum(sample_weight)
        else:
            n_samples = _num_samples(y_true)
        return n_samples - score


def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary',
             sample_weight=None):
    """Compute the F1 score, also known as balanced F-score or F-measure

    The F1 score can be interpreted as a weighted average of the precision and
    recall, where an F1 score reaches its best value at 1 and worst score at 0.
    The relative contribution of precision and recall to the F1 score are
    equal. The formula for the F1 score is::

        F1 = 2 * (precision * recall) / (precision + recall)

    In the multi-class and multi-label case, this is the average of
    the F1 score of each class with weighting depending on the ``average``
    parameter.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

        .. versionchanged:: 0.17
           parameter *labels* improved for multiclass problem.

    pos_label : str or int, 1 by default
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass or multilabel, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
                       'weighted']
        This parameter is required for multiclass/multilabel targets.
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    f1_score : float or array of float, shape = [n_unique_labels]
        F1 score of the positive class in binary classification or weighted
        average of the F1 scores of each class for the multiclass task.

    References
    ----------
    .. [1] `Wikipedia entry for the F1-score
           <https://en.wikipedia.org/wiki/F1_score>`_

    Examples
    --------
    >>> from sklearn.metrics import f1_score
    >>> y_true = [0, 1, 2, 0, 1, 2]
    >>> y_pred = [0, 2, 1, 0, 0, 1]
    >>> f1_score(y_true, y_pred, average='macro')  # doctest: +ELLIPSIS
    0.26...
    >>> f1_score(y_true, y_pred, average='micro')  # doctest: +ELLIPSIS
    0.33...
    >>> f1_score(y_true, y_pred, average='weighted')  # doctest: +ELLIPSIS
    0.26...
    >>> f1_score(y_true, y_pred, average=None)
    array([0.8, 0. , 0. ])


    """
    return fbeta_score(y_true, y_pred, 1, labels=labels,
                       pos_label=pos_label, average=average,
                       sample_weight=sample_weight)


def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1,
                average='binary', sample_weight=None):
    """Compute the F-beta score

    The F-beta score is the weighted harmonic mean of precision and recall,
    reaching its optimal value at 1 and its worst value at 0.

    The `beta` parameter determines the weight of precision in the combined
    score. ``beta < 1`` lends more weight to precision, while ``beta > 1``
    favors recall (``beta -> 0`` considers only precision, ``beta -> inf``
    only recall).

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.

    beta : float
        Weight of precision in harmonic mean.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

        .. versionchanged:: 0.17
           parameter *labels* improved for multiclass problem.

    pos_label : str or int, 1 by default
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass or multilabel, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
                       'weighted']
        This parameter is required for multiclass/multilabel targets.
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    fbeta_score : float (if average is not None) or array of float, shape =\
        [n_unique_labels]
        F-beta score of the positive class in binary classification or weighted
        average of the F-beta score of each class for the multiclass task.

    References
    ----------
    .. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011).
           Modern Information Retrieval. Addison Wesley, pp. 327-328.

    .. [2] `Wikipedia entry for the F1-score
           <https://en.wikipedia.org/wiki/F1_score>`_

    Examples
    --------
    >>> from sklearn.metrics import fbeta_score
    >>> y_true = [0, 1, 2, 0, 1, 2]
    >>> y_pred = [0, 2, 1, 0, 0, 1]
    >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5)
    ... # doctest: +ELLIPSIS
    0.23...
    >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5)
    ... # doctest: +ELLIPSIS
    0.33...
    >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5)
    ... # doctest: +ELLIPSIS
    0.23...
    >>> fbeta_score(y_true, y_pred, average=None, beta=0.5)
    ... # doctest: +ELLIPSIS
    array([0.71..., 0.        , 0.        ])

    """
    _, _, f, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 beta=beta,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average,
                                                 warn_for=('f-score',),
                                                 sample_weight=sample_weight)
    return f


def _prf_divide(numerator, denominator, metric, modifier, average, warn_for):
    """Performs division and handles divide-by-zero.

    On zero-division, sets the corresponding result elements to zero
    and raises a warning.

    The metric, modifier and average arguments are used only for determining
    an appropriate warning.
    """
    result = numerator / denominator
    mask = denominator == 0.0
    if not np.any(mask):
        return result

    # remove infs
    result[mask] = 0.0

    # build appropriate warning
    # E.g. "Precision and F-score are ill-defined and being set to 0.0 in
    # labels with no predicted samples"
    axis0 = 'sample'
    axis1 = 'label'
    if average == 'samples':
        axis0, axis1 = axis1, axis0

    if metric in warn_for and 'f-score' in warn_for:
        msg_start = '{0} and F-score are'.format(metric.title())
    elif metric in warn_for:
        msg_start = '{0} is'.format(metric.title())
    elif 'f-score' in warn_for:
        msg_start = 'F-score is'
    else:
        return result

    msg = ('{0} ill-defined and being set to 0.0 {{0}} '
           'no {1} {2}s.'.format(msg_start, modifier, axis0))
    if len(mask) == 1:
        msg = msg.format('due to')
    else:
        msg = msg.format('in {0}s with'.format(axis1))
    warnings.warn(msg, UndefinedMetricWarning, stacklevel=2)
    return result


def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None,
                                    pos_label=1, average=None,
                                    warn_for=('precision', 'recall',
                                              'f-score'),
                                    sample_weight=None):
    """Compute precision, recall, F-measure and support for each class

    The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
    true positives and ``fp`` the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
    true positives and ``fn`` the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The F-beta score can be interpreted as a weighted harmonic mean of
    the precision and recall, where an F-beta score reaches its best
    value at 1 and worst score at 0.

    The F-beta score weights recall more than precision by a factor of
    ``beta``. ``beta == 1.0`` means recall and precision are equally important.

    The support is the number of occurrences of each class in ``y_true``.

    If ``pos_label is None`` and in binary classification, this function
    returns the average precision, recall and F-measure if ``average``
    is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.

    beta : float, 1.0 by default
        The strength of recall versus precision in the F-score.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

    pos_label : str or int, 1 by default
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass or multilabel, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \
                       'weighted']
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    warn_for : tuple or set, for internal use
        This determines which warnings will be made in the case that this
        function is being used to return only one of its metrics.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    precision : float (if average is not None) or array of float, shape =\
        [n_unique_labels]

    recall : float (if average is not None) or array of float, , shape =\
        [n_unique_labels]

    fbeta_score : float (if average is not None) or array of float, shape =\
        [n_unique_labels]

    support : int (if average is not None) or array of int, shape =\
        [n_unique_labels]
        The number of occurrences of each label in ``y_true``.

    References
    ----------
    .. [1] `Wikipedia entry for the Precision and recall
           <https://en.wikipedia.org/wiki/Precision_and_recall>`_

    .. [2] `Wikipedia entry for the F1-score
           <https://en.wikipedia.org/wiki/F1_score>`_

    .. [3] `Discriminative Methods for Multi-labeled Classification Advances
           in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu
           Godbole, Sunita Sarawagi
           <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`_

    Examples
    --------
    >>> from sklearn.metrics import precision_recall_fscore_support
    >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig'])
    >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog'])
    >>> precision_recall_fscore_support(y_true, y_pred, average='macro')
    ... # doctest: +ELLIPSIS
    (0.22..., 0.33..., 0.26..., None)
    >>> precision_recall_fscore_support(y_true, y_pred, average='micro')
    ... # doctest: +ELLIPSIS
    (0.33..., 0.33..., 0.33..., None)
    >>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
    ... # doctest: +ELLIPSIS
    (0.22..., 0.33..., 0.26..., None)

    It is possible to compute per-label precisions, recalls, F1-scores and
    supports instead of averaging:

    >>> precision_recall_fscore_support(y_true, y_pred, average=None,
    ... labels=['pig', 'dog', 'cat'])
    ... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE
    (array([0.        , 0.        , 0.66...]),
     array([0., 0., 1.]), array([0. , 0. , 0.8]),
     array([2, 2, 2]))

    """
    average_options = (None, 'micro', 'macro', 'weighted', 'samples')
    if average not in average_options and average != 'binary':
        raise ValueError('average has to be one of ' +
                         str(average_options))
    if beta <= 0:
        raise ValueError("beta should be >0 in the F-beta score")

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)
    present_labels = unique_labels(y_true, y_pred)

    if average == 'binary':
        if y_type == 'binary':
            if pos_label not in present_labels:
                if len(present_labels) < 2:
                    # Only negative labels
                    return (0., 0., 0., 0)
                else:
                    raise ValueError("pos_label=%r is not a valid label: %r" %
                                     (pos_label, present_labels))
            labels = [pos_label]
        else:
            raise ValueError("Target is %s but average='binary'. Please "
                             "choose another average setting." % y_type)
    elif pos_label not in (None, 1):
        warnings.warn("Note that pos_label (set to %r) is ignored when "
                      "average != 'binary' (got %r). You may use "
                      "labels=[pos_label] to specify a single positive class."
                      % (pos_label, average), UserWarning)

    if labels is None:
        labels = present_labels
        n_labels = None
    else:
        n_labels = len(labels)
        labels = np.hstack([labels, np.setdiff1d(present_labels, labels,
                                                 assume_unique=True)])

    # Calculate tp_sum, pred_sum, true_sum ###

    if y_type.startswith('multilabel'):
        sum_axis = 1 if average == 'samples' else 0

        # All labels are index integers for multilabel.
        # Select labels:
        if not np.all(labels == present_labels):
            if np.max(labels) > np.max(present_labels):
                raise ValueError('All labels must be in [0, n labels). '
                                 'Got %d > %d' %
                                 (np.max(labels), np.max(present_labels)))
            if np.min(labels) < 0:
                raise ValueError('All labels must be in [0, n labels). '
                                 'Got %d < 0' % np.min(labels))

        if n_labels is not None:
            y_true = y_true[:, labels[:n_labels]]
            y_pred = y_pred[:, labels[:n_labels]]

        # calculate weighted counts
        true_and_pred = y_true.multiply(y_pred)
        tp_sum = count_nonzero(true_and_pred, axis=sum_axis,
                               sample_weight=sample_weight)
        pred_sum = count_nonzero(y_pred, axis=sum_axis,
                                 sample_weight=sample_weight)
        true_sum = count_nonzero(y_true, axis=sum_axis,
                                 sample_weight=sample_weight)

    elif average == 'samples':
        raise ValueError("Sample-based precision, recall, fscore is "
                         "not meaningful outside multilabel "
                         "classification. See the accuracy_score instead.")
    else:
        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        y_pred = le.transform(y_pred)
        sorted_labels = le.classes_

        # labels are now from 0 to len(labels) - 1 -> use bincount
        tp = y_true == y_pred
        tp_bins = y_true[tp]
        if sample_weight is not None:
            tp_bins_weights = np.asarray(sample_weight)[tp]
        else:
            tp_bins_weights = None

        if len(tp_bins):
            tp_sum = np.bincount(tp_bins, weights=tp_bins_weights,
                              minlength=len(labels))
        else:
            # Pathological case
            true_sum = pred_sum = tp_sum = np.zeros(len(labels))
        if len(y_pred):
            pred_sum = np.bincount(y_pred, weights=sample_weight,
                                minlength=len(labels))
        if len(y_true):
            true_sum = np.bincount(y_true, weights=sample_weight,
                                minlength=len(labels))

        # Retain only selected labels
        indices = np.searchsorted(sorted_labels, labels[:n_labels])
        tp_sum = tp_sum[indices]
        true_sum = true_sum[indices]
        pred_sum = pred_sum[indices]

    if average == 'micro':
        tp_sum = np.array([tp_sum.sum()])
        pred_sum = np.array([pred_sum.sum()])
        true_sum = np.array([true_sum.sum()])

    # Finally, we have all our sufficient statistics. Divide! #

    beta2 = beta ** 2
    with np.errstate(divide='ignore', invalid='ignore'):
        # Divide, and on zero-division, set scores to 0 and warn:

        # Oddly, we may get an "invalid" rather than a "divide" error
        # here.
        precision = _prf_divide(tp_sum, pred_sum,
                                'precision', 'predicted', average, warn_for)
        recall = _prf_divide(tp_sum, true_sum,
                             'recall', 'true', average, warn_for)
        # Don't need to warn for F: either P or R warned, or tp == 0 where pos
        # and true are nonzero, in which case, F is well-defined and zero
        f_score = ((1 + beta2) * precision * recall /
                   (beta2 * precision + recall))
        f_score[tp_sum == 0] = 0.0

    # Average the results

    if average == 'weighted':
        weights = true_sum
        if weights.sum() == 0:
            return 0, 0, 0, None
    elif average == 'samples':
        weights = sample_weight
    else:
        weights = None

    if average is not None:
        assert average != 'binary' or len(precision) == 1
        precision = np.average(precision, weights=weights)
        recall = np.average(recall, weights=weights)
        f_score = np.average(f_score, weights=weights)
        true_sum = None  # return no support

    return precision, recall, f_score, true_sum


def precision_score(y_true, y_pred, labels=None, pos_label=1,
                    average='binary', sample_weight=None):
    """Compute the precision

    The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
    true positives and ``fp`` the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The best value is 1 and the worst value is 0.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

        .. versionchanged:: 0.17
           parameter *labels* improved for multiclass problem.

    pos_label : str or int, 1 by default
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass or multilabel, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
                       'weighted']
        This parameter is required for multiclass/multilabel targets.
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    precision : float (if average is not None) or array of float, shape =\
        [n_unique_labels]
        Precision of the positive class in binary classification or weighted
        average of the precision of each class for the multiclass task.

    Examples
    --------

    >>> from sklearn.metrics import precision_score
    >>> y_true = [0, 1, 2, 0, 1, 2]
    >>> y_pred = [0, 2, 1, 0, 0, 1]
    >>> precision_score(y_true, y_pred, average='macro')  # doctest: +ELLIPSIS
    0.22...
    >>> precision_score(y_true, y_pred, average='micro')  # doctest: +ELLIPSIS
    0.33...
    >>> precision_score(y_true, y_pred, average='weighted')
    ... # doctest: +ELLIPSIS
    0.22...
    >>> precision_score(y_true, y_pred, average=None)  # doctest: +ELLIPSIS
    array([0.66..., 0.        , 0.        ])

    """
    p, _, _, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average,
                                                 warn_for=('precision',),
                                                 sample_weight=sample_weight)
    return p


def recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary',
                 sample_weight=None):
    """Compute the recall

    The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
    true positives and ``fn`` the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The best value is 1 and the worst value is 0.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

        .. versionchanged:: 0.17
           parameter *labels* improved for multiclass problem.

    pos_label : str or int, 1 by default
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass or multilabel, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
                       'weighted']
        This parameter is required for multiclass/multilabel targets.
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    recall : float (if average is not None) or array of float, shape =\
        [n_unique_labels]
        Recall of the positive class in binary classification or weighted
        average of the recall of each class for the multiclass task.

    Examples
    --------
    >>> from sklearn.metrics import recall_score
    >>> y_true = [0, 1, 2, 0, 1, 2]
    >>> y_pred = [0, 2, 1, 0, 0, 1]
    >>> recall_score(y_true, y_pred, average='macro')  # doctest: +ELLIPSIS
    0.33...
    >>> recall_score(y_true, y_pred, average='micro')  # doctest: +ELLIPSIS
    0.33...
    >>> recall_score(y_true, y_pred, average='weighted')  # doctest: +ELLIPSIS
    0.33...
    >>> recall_score(y_true, y_pred, average=None)
    array([1., 0., 0.])


    """
    _, r, _, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average,
                                                 warn_for=('recall',),
                                                 sample_weight=sample_weight)
    return r


def balanced_accuracy_score(y_true, y_pred, sample_weight=None,
                            adjusted=False):
    """Compute the balanced accuracy

    The balanced accuracy in binary and multiclass classification problems to
    deal with imbalanced datasets. It is defined as the average of recall
    obtained on each class.

    The best value is 1 and the worst value is 0 when ``adjusted=False``.

    Read more in the :ref:`User Guide <balanced_accuracy_score>`.

    Parameters
    ----------
    y_true : 1d array-like
        Ground truth (correct) target values.

    y_pred : 1d array-like
        Estimated targets as returned by a classifier.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    adjusted : bool, default=False
        When true, the result is adjusted for chance, so that random
        performance would score 0, and perfect performance scores 1.

    Returns
    -------
    balanced_accuracy : float

    See also
    --------
    recall_score, roc_auc_score

    Notes
    -----
    Some literature promotes alternative definitions of balanced accuracy. Our
    definition is equivalent to :func:`accuracy_score` with class-balanced
    sample weights, and shares desirable properties with the binary case.
    See the :ref:`User Guide <balanced_accuracy_score>`.

    References
    ----------
    .. [1] Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010).
           The balanced accuracy and its posterior distribution.
           Proceedings of the 20th International Conference on Pattern
           Recognition, 3121-24.
    .. [2] John. D. Kelleher, Brian Mac Namee, Aoife D'Arcy, (2015).
           `Fundamentals of Machine Learning for Predictive Data Analytics:
           Algorithms, Worked Examples, and Case Studies
           <https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics>`_.

    Examples
    --------
    >>> from sklearn.metrics import balanced_accuracy_score
    >>> y_true = [0, 1, 0, 0, 1, 0]
    >>> y_pred = [0, 1, 0, 0, 0, 1]
    >>> balanced_accuracy_score(y_true, y_pred)
    0.625

    """
    C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight)
    with np.errstate(divide='ignore', invalid='ignore'):
        per_class = np.diag(C) / C.sum(axis=1)
    if np.any(np.isnan(per_class)):
        warnings.warn('y_pred contains classes not in y_true')
        per_class = per_class[~np.isnan(per_class)]
    score = np.mean(per_class)
    if adjusted:
        n_classes = len(per_class)
        chance = 1 / n_classes
        score -= chance
        score /= 1 - chance
    return score


def classification_report(y_true, y_pred, labels=None, target_names=None,
                          sample_weight=None, digits=2, output_dict=False):
    """Build a text report showing the main classification metrics

    Read more in the :ref:`User Guide <classification_report>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.

    labels : array, shape = [n_labels]
        Optional list of label indices to include in the report.

    target_names : list of strings
        Optional display names matching the labels (same order).

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    digits : int
        Number of digits for formatting output floating point values.
        When ``output_dict`` is ``True``, this will be ignored and the
        returned values will not be rounded.

    output_dict : bool (default = False)
        If True, return output as dict

    Returns
    -------
    report : string / dict
        Text summary of the precision, recall, F1 score for each class.
        Dictionary returned if output_dict is True. Dictionary has the
        following structure::

            {'label 1': {'precision':0.5,
                         'recall':1.0,
                         'f1-score':0.67,
                         'support':1},
             'label 2': { ... },
              ...
            }

        The reported averages include micro average (averaging the
        total true positives, false negatives and false positives), macro
        average (averaging the unweighted mean per label), weighted average
        (averaging the support-weighted mean per label) and sample average
        (only for multilabel classification). See also
        :func:`precision_recall_fscore_support` for more details on averages.

        Note that in binary classification, recall of the positive class
        is also known as "sensitivity"; recall of the negative class is
        "specificity".

    Examples
    --------
    >>> from sklearn.metrics import classification_report
    >>> y_true = [0, 1, 2, 2, 2]
    >>> y_pred = [0, 0, 2, 2, 1]
    >>> target_names = ['class 0', 'class 1', 'class 2']
    >>> print(classification_report(y_true, y_pred, target_names=target_names))
                  precision    recall  f1-score   support
    <BLANKLINE>
         class 0       0.50      1.00      0.67         1
         class 1       0.00      0.00      0.00         1
         class 2       1.00      0.67      0.80         3
    <BLANKLINE>
       micro avg       0.60      0.60      0.60         5
       macro avg       0.50      0.56      0.49         5
    weighted avg       0.70      0.60      0.61         5
    <BLANKLINE>
    """

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)

    labels_given = True
    if labels is None:
        labels = unique_labels(y_true, y_pred)
        labels_given = False
    else:
        labels = np.asarray(labels)

    if target_names is not None and len(labels) != len(target_names):
        if labels_given:
            warnings.warn(
                "labels size, {0}, does not match size of target_names, {1}"
                .format(len(labels), len(target_names))
            )
        else:
            raise ValueError(
                "Number of classes, {0}, does not match size of "
                "target_names, {1}. Try specifying the labels "
                "parameter".format(len(labels), len(target_names))
            )
    if target_names is None:
        target_names = [u'%s' % l for l in labels]

    headers = ["precision", "recall", "f1-score", "support"]
    # compute per-class results without averaging
    p, r, f1, s = precision_recall_fscore_support(y_true, y_pred,
                                                  labels=labels,
                                                  average=None,
                                                  sample_weight=sample_weight)
    rows = zip(target_names, p, r, f1, s)

    if y_type.startswith('multilabel'):
        average_options = ('micro', 'macro', 'weighted', 'samples')
    else:
        average_options = ('micro', 'macro', 'weighted')

    if output_dict:
        report_dict = {label[0]: label[1:] for label in rows}
        for label, scores in report_dict.items():
            report_dict[label] = dict(zip(headers,
                                          [i.item() for i in scores]))
    else:
        longest_last_line_heading = 'weighted avg'
        name_width = max(len(cn) for cn in target_names)
        width = max(name_width, len(longest_last_line_heading), digits)
        head_fmt = u'{:>{width}s} ' + u' {:>9}' * len(headers)
        report = head_fmt.format(u'', *headers, width=width)
        report += u'\n\n'
        row_fmt = u'{:>{width}s} ' + u' {:>9.{digits}f}' * 3 + u' {:>9}\n'
        for row in rows:
            report += row_fmt.format(*row, width=width, digits=digits)
        report += u'\n'

    # compute all applicable averages
    for average in average_options:
        line_heading = average + ' avg'
        # compute averages with specified averaging method
        avg_p, avg_r, avg_f1, _ = precision_recall_fscore_support(
            y_true, y_pred, labels=labels,
            average=average, sample_weight=sample_weight)
        avg = [avg_p, avg_r, avg_f1, np.sum(s)]

        if output_dict:
            report_dict[line_heading] = dict(
                zip(headers, [i.item() for i in avg]))
        else:
            report += row_fmt.format(line_heading, *avg,
                                     width=width, digits=digits)

    if output_dict:
        return report_dict
    else:
        return report


def hamming_loss(y_true, y_pred, labels=None, sample_weight=None):
    """Compute the average Hamming loss.

    The Hamming loss is the fraction of labels that are incorrectly predicted.

    Read more in the :ref:`User Guide <hamming_loss>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) labels.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Predicted labels, as returned by a classifier.

    labels : array, shape = [n_labels], optional (default=None)
        Integer array of labels. If not provided, labels will be inferred
        from y_true and y_pred.

        .. versionadded:: 0.18

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

        .. versionadded:: 0.18

    Returns
    -------
    loss : float or int,
        Return the average Hamming loss between element of ``y_true`` and
        ``y_pred``.

    See Also
    --------
    accuracy_score, jaccard_similarity_score, zero_one_loss

    Notes
    -----
    In multiclass classification, the Hamming loss corresponds to the Hamming
    distance between ``y_true`` and ``y_pred`` which is equivalent to the
    subset ``zero_one_loss`` function.

    In multilabel classification, the Hamming loss is different from the
    subset zero-one loss. The zero-one loss considers the entire set of labels
    for a given sample incorrect if it does entirely match the true set of
    labels. Hamming loss is more forgiving in that it penalizes the individual
    labels.

    The Hamming loss is upperbounded by the subset zero-one loss. When
    normalized over samples, the Hamming loss is always between 0 and 1.

    References
    ----------
    .. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification:
           An Overview. International Journal of Data Warehousing & Mining,
           3(3), 1-13, July-September 2007.

    .. [2] `Wikipedia entry on the Hamming distance
           <https://en.wikipedia.org/wiki/Hamming_distance>`_

    Examples
    --------
    >>> from sklearn.metrics import hamming_loss
    >>> y_pred = [1, 2, 3, 4]
    >>> y_true = [2, 2, 3, 4]
    >>> hamming_loss(y_true, y_pred)
    0.25

    In the multilabel case with binary label indicators:

    >>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
    0.75
    """

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels)

    if sample_weight is None:
        weight_average = 1.
    else:
        weight_average = np.mean(sample_weight)

    if y_type.startswith('multilabel'):
        n_differences = count_nonzero(y_true - y_pred,
                                      sample_weight=sample_weight)
        return (n_differences /
                (y_true.shape[0] * len(labels) * weight_average))

    elif y_type in ["binary", "multiclass"]:
        return _weighted_sum(y_true != y_pred, sample_weight, normalize=True)
    else:
        raise ValueError("{0} is not supported".format(y_type))


def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None,
             labels=None):
    """Log loss, aka logistic loss or cross-entropy loss.

    This is the loss function used in (multinomial) logistic regression
    and extensions of it such as neural networks, defined as the negative
    log-likelihood of the true labels given a probabilistic classifier's
    predictions. The log loss is only defined for two or more labels.
    For a single sample with true label yt in {0,1} and
    estimated probability yp that yt = 1, the log loss is

        -log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp))

    Read more in the :ref:`User Guide <log_loss>`.

    Parameters
    ----------
    y_true : array-like or label indicator matrix
        Ground truth (correct) labels for n_samples samples.

    y_pred : array-like of float, shape = (n_samples, n_classes) or (n_samples,)
        Predicted probabilities, as returned by a classifier's
        predict_proba method. If ``y_pred.shape = (n_samples,)``
        the probabilities provided are assumed to be that of the
        positive class. The labels in ``y_pred`` are assumed to be
        ordered alphabetically, as done by
        :class:`preprocessing.LabelBinarizer`.

    eps : float
        Log loss is undefined for p=0 or p=1, so probabilities are
        clipped to max(eps, min(1 - eps, p)).

    normalize : bool, optional (default=True)
        If true, return the mean loss per sample.
        Otherwise, return the sum of the per-sample losses.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    labels : array-like, optional (default=None)
        If not provided, labels will be inferred from y_true. If ``labels``
        is ``None`` and ``y_pred`` has shape (n_samples,) the labels are
        assumed to be binary and are inferred from ``y_true``.
        .. versionadded:: 0.18

    Returns
    -------
    loss : float

    Examples
    --------
    >>> log_loss(["spam", "ham", "ham", "spam"],  # doctest: +ELLIPSIS
    ...          [[.1, .9], [.9, .1], [.8, .2], [.35, .65]])
    0.21616...

    References
    ----------
    C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer,
    p. 209.

    Notes
    -----
    The logarithm used is the natural logarithm (base-e).
    """
    y_pred = check_array(y_pred, ensure_2d=False)
    check_consistent_length(y_pred, y_true, sample_weight)

    lb = LabelBinarizer()

    if labels is not None:
        lb.fit(labels)
    else:
        lb.fit(y_true)

    if len(lb.classes_) == 1:
        if labels is None:
            raise ValueError('y_true contains only one label ({0}). Please '
                             'provide the true labels explicitly through the '
                             'labels argument.'.format(lb.classes_[0]))
        else:
            raise ValueError('The labels array needs to contain at least two '
                             'labels for log_loss, '
                             'got {0}.'.format(lb.classes_))

    transformed_labels = lb.transform(y_true)

    if transformed_labels.shape[1] == 1:
        transformed_labels = np.append(1 - transformed_labels,
                                       transformed_labels, axis=1)

    # Clipping
    y_pred = np.clip(y_pred, eps, 1 - eps)

    # If y_pred is of single dimension, assume y_true to be binary
    # and then check.
    if y_pred.ndim == 1:
        y_pred = y_pred[:, np.newaxis]
    if y_pred.shape[1] == 1:
        y_pred = np.append(1 - y_pred, y_pred, axis=1)

    # Check if dimensions are consistent.
    transformed_labels = check_array(transformed_labels)
    if len(lb.classes_) != y_pred.shape[1]:
        if labels is None:
            raise ValueError("y_true and y_pred contain different number of "
                             "classes {0}, {1}. Please provide the true "
                             "labels explicitly through the labels argument. "
                             "Classes found in "
                             "y_true: {2}".format(transformed_labels.shape[1],
                                                  y_pred.shape[1],
                                                  lb.classes_))
        else:
            raise ValueError('The number of classes in labels is different '
                             'from that in y_pred. Classes found in '
                             'labels: {0}'.format(lb.classes_))

    # Renormalize
    y_pred /= y_pred.sum(axis=1)[:, np.newaxis]
    loss = -(transformed_labels * np.log(y_pred)).sum(axis=1)

    return _weighted_sum(loss, sample_weight, normalize)


def hinge_loss(y_true, pred_decision, labels=None, sample_weight=None):
    """Average hinge loss (non-regularized)

    In binary class case, assuming labels in y_true are encoded with +1 and -1,
    when a prediction mistake is made, ``margin = y_true * pred_decision`` is
    always negative (since the signs disagree), implying ``1 - margin`` is
    always greater than 1.  The cumulated hinge loss is therefore an upper
    bound of the number of mistakes made by the classifier.

    In multiclass case, the function expects that either all the labels are
    included in y_true or an optional labels argument is provided which
    contains all the labels. The multilabel margin is calculated according
    to Crammer-Singer's method. As in the binary case, the cumulated hinge loss
    is an upper bound of the number of mistakes made by the classifier.

    Read more in the :ref:`User Guide <hinge_loss>`.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True target, consisting of integers of two values. The positive label
        must be greater than the negative label.

    pred_decision : array, shape = [n_samples] or [n_samples, n_classes]
        Predicted decisions, as output by decision_function (floats).

    labels : array, optional, default None
        Contains all the labels for the problem. Used in multiclass hinge loss.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    loss : float

    References
    ----------
    .. [1] `Wikipedia entry on the Hinge loss
           <https://en.wikipedia.org/wiki/Hinge_loss>`_

    .. [2] Koby Crammer, Yoram Singer. On the Algorithmic
           Implementation of Multiclass Kernel-based Vector
           Machines. Journal of Machine Learning Research 2,
           (2001), 265-292

    .. [3] `L1 AND L2 Regularization for Multiclass Hinge Loss Models
           by Robert C. Moore, John DeNero.
           <http://www.ttic.edu/sigml/symposium2011/papers/
           Moore+DeNero_Regularization.pdf>`_

    Examples
    --------
    >>> from sklearn import svm
    >>> from sklearn.metrics import hinge_loss
    >>> X = [[0], [1]]
    >>> y = [-1, 1]
    >>> est = svm.LinearSVC(random_state=0)
    >>> est.fit(X, y)
    LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
         intercept_scaling=1, loss='squared_hinge', max_iter=1000,
         multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
         verbose=0)
    >>> pred_decision = est.decision_function([[-2], [3], [0.5]])
    >>> pred_decision  # doctest: +ELLIPSIS
    array([-2.18...,  2.36...,  0.09...])
    >>> hinge_loss([-1, 1, 1], pred_decision)  # doctest: +ELLIPSIS
    0.30...

    In the multiclass case:

    >>> X = np.array([[0], [1], [2], [3]])
    >>> Y = np.array([0, 1, 2, 3])
    >>> labels = np.array([0, 1, 2, 3])
    >>> est = svm.LinearSVC()
    >>> est.fit(X, Y)
    LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
         intercept_scaling=1, loss='squared_hinge', max_iter=1000,
         multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
         verbose=0)
    >>> pred_decision = est.decision_function([[-1], [2], [3]])
    >>> y_true = [0, 2, 3]
    >>> hinge_loss(y_true, pred_decision, labels)  #doctest: +ELLIPSIS
    0.56...
    """
    check_consistent_length(y_true, pred_decision, sample_weight)
    pred_decision = check_array(pred_decision, ensure_2d=False)
    y_true = column_or_1d(y_true)
    y_true_unique = np.unique(y_true)
    if y_true_unique.size > 2:
        if (labels is None and pred_decision.ndim > 1 and
                (np.size(y_true_unique) != pred_decision.shape[1])):
            raise ValueError("Please include all labels in y_true "
                             "or pass labels as third argument")
        if labels is None:
            labels = y_true_unique
        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        mask = np.ones_like(pred_decision, dtype=bool)
        mask[np.arange(y_true.shape[0]), y_true] = False
        margin = pred_decision[~mask]
        margin -= np.max(pred_decision[mask].reshape(y_true.shape[0], -1),
                         axis=1)

    else:
        # Handles binary class case
        # this code assumes that positive and negative labels
        # are encoded as +1 and -1 respectively
        pred_decision = column_or_1d(pred_decision)
        pred_decision = np.ravel(pred_decision)

        lbin = LabelBinarizer(neg_label=-1)
        y_true = lbin.fit_transform(y_true)[:, 0]

        try:
            margin = y_true * pred_decision
        except TypeError:
            raise TypeError("pred_decision should be an array of floats.")

    losses = 1 - margin
    # The hinge_loss doesn't penalize good enough predictions.
    np.clip(losses, 0, None, out=losses)
    return np.average(losses, weights=sample_weight)


def _check_binary_probabilistic_predictions(y_true, y_prob):
    """Check that y_true is binary and y_prob contains valid probabilities"""
    check_consistent_length(y_true, y_prob)

    labels = np.unique(y_true)

    if len(labels) > 2:
        raise ValueError("Only binary classification is supported. "
                         "Provided labels %s." % labels)

    if y_prob.max() > 1:
        raise ValueError("y_prob contains values greater than 1.")

    if y_prob.min() < 0:
        raise ValueError("y_prob contains values less than 0.")

    return label_binarize(y_true, labels)[:, 0]


def brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None):
    """Compute the Brier score.
    The smaller the Brier score, the better, hence the naming with "loss".
    Across all items in a set N predictions, the Brier score measures the
    mean squared difference between (1) the predicted probability assigned
    to the possible outcomes for item i, and (2) the actual outcome.
    Therefore, the lower the Brier score is for a set of predictions, the
    better the predictions are calibrated. Note that the Brier score always
    takes on a value between zero and one, since this is the largest
    possible difference between a predicted probability (which must be
    between zero and one) and the actual outcome (which can take on values
    of only 0 and 1). The Brier loss is composed of refinement loss and
    calibration loss.
    The Brier score is appropriate for binary and categorical outcomes that
    can be structured as true or false, but is inappropriate for ordinal
    variables which can take on three or more values (this is because the
    Brier score assumes that all possible outcomes are equivalently
    "distant" from one another). Which label is considered to be the positive
    label is controlled via the parameter pos_label, which defaults to 1.
    Read more in the :ref:`User Guide <calibration>`.

    Parameters
    ----------
    y_true : array, shape (n_samples,)
        True targets.

    y_prob : array, shape (n_samples,)
        Probabilities of the positive class.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    pos_label : int or str, default=None
        Label of the positive class. If None, the maximum label is used as
        positive class

    Returns
    -------
    score : float
        Brier score

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import brier_score_loss
    >>> y_true = np.array([0, 1, 1, 0])
    >>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
    >>> y_prob = np.array([0.1, 0.9, 0.8, 0.3])
    >>> brier_score_loss(y_true, y_prob)  # doctest: +ELLIPSIS
    0.037...
    >>> brier_score_loss(y_true, 1-y_prob, pos_label=0)  # doctest: +ELLIPSIS
    0.037...
    >>> brier_score_loss(y_true_categorical, y_prob, \
                         pos_label="ham")  # doctest: +ELLIPSIS
    0.037...
    >>> brier_score_loss(y_true, np.array(y_prob) > 0.5)
    0.0

    References
    ----------
    .. [1] `Wikipedia entry for the Brier score.
            <https://en.wikipedia.org/wiki/Brier_score>`_
    """
    y_true = column_or_1d(y_true)
    y_prob = column_or_1d(y_prob)
    assert_all_finite(y_true)
    assert_all_finite(y_prob)
    check_consistent_length(y_true, y_prob, sample_weight)

    if pos_label is None:
        pos_label = y_true.max()
    y_true = np.array(y_true == pos_label, int)
    y_true = _check_binary_probabilistic_predictions(y_true, y_prob)
    return np.average((y_true - y_prob) ** 2, weights=sample_weight)