File: test_bicluster.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (50 lines) | stat: -rw-r--r-- 1,770 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""Testing for bicluster metrics module"""

import numpy as np

from sklearn.utils.testing import assert_equal, assert_almost_equal

from sklearn.metrics.cluster.bicluster import _jaccard
from sklearn.metrics import consensus_score


def test_jaccard():
    a1 = np.array([True, True, False, False])
    a2 = np.array([True, True, True, True])
    a3 = np.array([False, True, True, False])
    a4 = np.array([False, False, True, True])

    assert_equal(_jaccard(a1, a1, a1, a1), 1)
    assert_equal(_jaccard(a1, a1, a2, a2), 0.25)
    assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7)
    assert_equal(_jaccard(a1, a1, a4, a4), 0)


def test_consensus_score():
    a = [[True, True, False, False],
         [False, False, True, True]]
    b = a[::-1]

    assert_equal(consensus_score((a, a), (a, a)), 1)
    assert_equal(consensus_score((a, a), (b, b)), 1)
    assert_equal(consensus_score((a, b), (a, b)), 1)
    assert_equal(consensus_score((a, b), (b, a)), 1)

    assert_equal(consensus_score((a, a), (b, a)), 0)
    assert_equal(consensus_score((a, a), (a, b)), 0)
    assert_equal(consensus_score((b, b), (a, b)), 0)
    assert_equal(consensus_score((b, b), (b, a)), 0)


def test_consensus_score_issue2445():
    ''' Different number of biclusters in A and B'''
    a_rows = np.array([[True, True, False, False],
                       [False, False, True, True],
                       [False, False, False, True]])
    a_cols = np.array([[True, True, False, False],
                       [False, False, True, True],
                       [False, False, False, True]])
    idx = [0, 2]
    s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx]))
    # B contains 2 of the 3 biclusters in A, so score should be 2/3
    assert_almost_equal(s, 2.0/3.0)