File: test_supervised.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (330 lines) | stat: -rw-r--r-- 13,290 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import numpy as np

from sklearn.metrics.cluster import adjusted_mutual_info_score
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.metrics.cluster import completeness_score
from sklearn.metrics.cluster import contingency_matrix
from sklearn.metrics.cluster import entropy
from sklearn.metrics.cluster import expected_mutual_information
from sklearn.metrics.cluster import fowlkes_mallows_score
from sklearn.metrics.cluster import homogeneity_completeness_v_measure
from sklearn.metrics.cluster import homogeneity_score
from sklearn.metrics.cluster import mutual_info_score
from sklearn.metrics.cluster import normalized_mutual_info_score
from sklearn.metrics.cluster import v_measure_score
from sklearn.metrics.cluster.supervised import _generalized_average

from sklearn.utils import assert_all_finite
from sklearn.utils.testing import (
        assert_equal, assert_almost_equal, assert_raise_message,
        assert_warns_message, ignore_warnings
)
from numpy.testing import assert_array_almost_equal


score_funcs = [
    adjusted_rand_score,
    homogeneity_score,
    completeness_score,
    v_measure_score,
    adjusted_mutual_info_score,
    normalized_mutual_info_score,
]


def test_future_warning():
    score_funcs_with_changing_means = [
        normalized_mutual_info_score,
        adjusted_mutual_info_score,
    ]
    warning_msg = "The behavior of "
    args = [0, 0, 0], [0, 0, 0]
    for score_func in score_funcs_with_changing_means:
        assert_warns_message(FutureWarning, warning_msg, score_func, *args)


@ignore_warnings(category=FutureWarning)
def test_error_messages_on_wrong_input():
    for score_func in score_funcs:
        expected = ('labels_true and labels_pred must have same size,'
                    ' got 2 and 3')
        assert_raise_message(ValueError, expected, score_func,
                             [0, 1], [1, 1, 1])

        expected = "labels_true must be 1D: shape is (2"
        assert_raise_message(ValueError, expected, score_func,
                             [[0, 1], [1, 0]], [1, 1, 1])

        expected = "labels_pred must be 1D: shape is (2"
        assert_raise_message(ValueError, expected, score_func,
                             [0, 1, 0], [[1, 1], [0, 0]])


def test_generalized_average():
    a, b = 1, 2
    methods = ["min", "geometric", "arithmetic", "max"]
    means = [_generalized_average(a, b, method) for method in methods]
    assert means[0] <= means[1] <= means[2] <= means[3]
    c, d = 12, 12
    means = [_generalized_average(c, d, method) for method in methods]
    assert means[0] == means[1] == means[2] == means[3]


@ignore_warnings(category=FutureWarning)
def test_perfect_matches():
    for score_func in score_funcs:
        assert_equal(score_func([], []), 1.0)
        assert_equal(score_func([0], [1]), 1.0)
        assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0)
        assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0)
        assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0)
        assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0)
        assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0)
    score_funcs_with_changing_means = [
        normalized_mutual_info_score,
        adjusted_mutual_info_score,
    ]
    means = {"min", "geometric", "arithmetic", "max"}
    for score_func in score_funcs_with_changing_means:
        for mean in means:
            assert score_func([], [], mean) == 1.0
            assert score_func([0], [1], mean) == 1.0
            assert score_func([0, 0, 0], [0, 0, 0], mean) == 1.0
            assert score_func([0, 1, 0], [42, 7, 42], mean) == 1.0
            assert score_func([0., 1., 0.], [42., 7., 42.], mean) == 1.0
            assert score_func([0., 1., 2.], [42., 7., 2.], mean) == 1.0
            assert score_func([0, 1, 2], [42, 7, 2], mean) == 1.0


def test_homogeneous_but_not_complete_labeling():
    # homogeneous but not complete clustering
    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 0, 1, 1, 1],
        [0, 0, 0, 1, 2, 2])
    assert_almost_equal(h, 1.00, 2)
    assert_almost_equal(c, 0.69, 2)
    assert_almost_equal(v, 0.81, 2)


def test_complete_but_not_homogeneous_labeling():
    # complete but not homogeneous clustering
    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 1, 1, 2, 2],
        [0, 0, 1, 1, 1, 1])
    assert_almost_equal(h, 0.58, 2)
    assert_almost_equal(c, 1.00, 2)
    assert_almost_equal(v, 0.73, 2)


def test_not_complete_and_not_homogeneous_labeling():
    # neither complete nor homogeneous but not so bad either
    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 0, 1, 1, 1],
        [0, 1, 0, 1, 2, 2])
    assert_almost_equal(h, 0.67, 2)
    assert_almost_equal(c, 0.42, 2)
    assert_almost_equal(v, 0.52, 2)


def test_non_consecutive_labels():
    # regression tests for labels with gaps
    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 0, 2, 2, 2],
        [0, 1, 0, 1, 2, 2])
    assert_almost_equal(h, 0.67, 2)
    assert_almost_equal(c, 0.42, 2)
    assert_almost_equal(v, 0.52, 2)

    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 0, 1, 1, 1],
        [0, 4, 0, 4, 2, 2])
    assert_almost_equal(h, 0.67, 2)
    assert_almost_equal(c, 0.42, 2)
    assert_almost_equal(v, 0.52, 2)

    ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2])
    ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2])
    assert_almost_equal(ari_1, 0.24, 2)
    assert_almost_equal(ari_2, 0.24, 2)


@ignore_warnings(category=FutureWarning)
def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10,
                             seed=42):
    # Compute score for random uniform cluster labelings
    random_labels = np.random.RandomState(seed).randint
    scores = np.zeros((len(k_range), n_runs))
    for i, k in enumerate(k_range):
        for j in range(n_runs):
            labels_a = random_labels(low=0, high=k, size=n_samples)
            labels_b = random_labels(low=0, high=k, size=n_samples)
            scores[i, j] = score_func(labels_a, labels_b)
    return scores


@ignore_warnings(category=FutureWarning)
def test_adjustment_for_chance():
    # Check that adjusted scores are almost zero on random labels
    n_clusters_range = [2, 10, 50, 90]
    n_samples = 100
    n_runs = 10

    scores = uniform_labelings_scores(
        adjusted_rand_score, n_samples, n_clusters_range, n_runs)

    max_abs_scores = np.abs(scores).max(axis=1)
    assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2)


@ignore_warnings(category=FutureWarning)
def test_adjusted_mutual_info_score():
    # Compute the Adjusted Mutual Information and test against known values
    labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
    labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
    # Mutual information
    mi = mutual_info_score(labels_a, labels_b)
    assert_almost_equal(mi, 0.41022, 5)
    # with provided sparse contingency
    C = contingency_matrix(labels_a, labels_b, sparse=True)
    mi = mutual_info_score(labels_a, labels_b, contingency=C)
    assert_almost_equal(mi, 0.41022, 5)
    # with provided dense contingency
    C = contingency_matrix(labels_a, labels_b)
    mi = mutual_info_score(labels_a, labels_b, contingency=C)
    assert_almost_equal(mi, 0.41022, 5)
    # Expected mutual information
    n_samples = C.sum()
    emi = expected_mutual_information(C, n_samples)
    assert_almost_equal(emi, 0.15042, 5)
    # Adjusted mutual information
    ami = adjusted_mutual_info_score(labels_a, labels_b)
    assert_almost_equal(ami, 0.27502, 5)
    ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3])
    assert_equal(ami, 1.0)
    # Test with a very large array
    a110 = np.array([list(labels_a) * 110]).flatten()
    b110 = np.array([list(labels_b) * 110]).flatten()
    ami = adjusted_mutual_info_score(a110, b110)
    # This is not accurate to more than 2 places
    assert_almost_equal(ami, 0.37, 2)


def test_expected_mutual_info_overflow():
    # Test for regression where contingency cell exceeds 2**16
    # leading to overflow in np.outer, resulting in EMI > 1
    assert expected_mutual_information(np.array([[70000]]), 70000) <= 1


def test_int_overflow_mutual_info_fowlkes_mallows_score():
    # Test overflow in mutual_info_classif and fowlkes_mallows_score
    x = np.array([1] * (52632 + 2529) + [2] * (14660 + 793) + [3] * (3271 +
                 204) + [4] * (814 + 39) + [5] * (316 + 20))
    y = np.array([0] * 52632 + [1] * 2529 + [0] * 14660 + [1] * 793 +
                 [0] * 3271 + [1] * 204 + [0] * 814 + [1] * 39 + [0] * 316 +
                 [1] * 20)

    assert_all_finite(mutual_info_score(x, y))
    assert_all_finite(fowlkes_mallows_score(x, y))


def test_entropy():
    ent = entropy([0, 0, 42.])
    assert_almost_equal(ent, 0.6365141, 5)
    assert_almost_equal(entropy([]), 1)


def test_contingency_matrix():
    labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
    labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
    C = contingency_matrix(labels_a, labels_b)
    C2 = np.histogram2d(labels_a, labels_b,
                        bins=(np.arange(1, 5),
                              np.arange(1, 5)))[0]
    assert_array_almost_equal(C, C2)
    C = contingency_matrix(labels_a, labels_b, eps=.1)
    assert_array_almost_equal(C, C2 + .1)


def test_contingency_matrix_sparse():
    labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
    labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
    C = contingency_matrix(labels_a, labels_b)
    C_sparse = contingency_matrix(labels_a, labels_b, sparse=True).toarray()
    assert_array_almost_equal(C, C_sparse)
    C_sparse = assert_raise_message(ValueError,
                                    "Cannot set 'eps' when sparse=True",
                                    contingency_matrix, labels_a, labels_b,
                                    eps=1e-10, sparse=True)


@ignore_warnings(category=FutureWarning)
def test_exactly_zero_info_score():
    # Check numerical stability when information is exactly zero
    for i in np.logspace(1, 4, 4).astype(np.int):
        labels_a, labels_b = (np.ones(i, dtype=np.int),
                              np.arange(i, dtype=np.int))
        assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0)
        assert_equal(v_measure_score(labels_a, labels_b), 0.0)
        assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0)
        assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0)
        for method in ["min", "geometric", "arithmetic", "max"]:
            assert adjusted_mutual_info_score(labels_a, labels_b,
                                              method) == 0.0
            assert normalized_mutual_info_score(labels_a, labels_b,
                                                method) == 0.0


def test_v_measure_and_mutual_information(seed=36):
    # Check relation between v_measure, entropy and mutual information
    for i in np.logspace(1, 4, 4).astype(np.int):
        random_state = np.random.RandomState(seed)
        labels_a, labels_b = (random_state.randint(0, 10, i),
                              random_state.randint(0, 10, i))
        assert_almost_equal(v_measure_score(labels_a, labels_b),
                            2.0 * mutual_info_score(labels_a, labels_b) /
                            (entropy(labels_a) + entropy(labels_b)), 0)
        avg = 'arithmetic'
        assert_almost_equal(v_measure_score(labels_a, labels_b),
                            normalized_mutual_info_score(labels_a, labels_b,
                                                         average_method=avg)
                            )


def test_fowlkes_mallows_score():
    # General case
    score = fowlkes_mallows_score([0, 0, 0, 1, 1, 1],
                                  [0, 0, 1, 1, 2, 2])
    assert_almost_equal(score, 4. / np.sqrt(12. * 6.))

    # Perfect match but where the label names changed
    perfect_score = fowlkes_mallows_score([0, 0, 0, 1, 1, 1],
                                          [1, 1, 1, 0, 0, 0])
    assert_almost_equal(perfect_score, 1.)

    # Worst case
    worst_score = fowlkes_mallows_score([0, 0, 0, 0, 0, 0],
                                        [0, 1, 2, 3, 4, 5])
    assert_almost_equal(worst_score, 0.)


def test_fowlkes_mallows_score_properties():
    # handcrafted example
    labels_a = np.array([0, 0, 0, 1, 1, 2])
    labels_b = np.array([1, 1, 2, 2, 0, 0])
    expected = 1. / np.sqrt((1. + 3.) * (1. + 2.))
    # FMI = TP / sqrt((TP + FP) * (TP + FN))

    score_original = fowlkes_mallows_score(labels_a, labels_b)
    assert_almost_equal(score_original, expected)

    # symmetric property
    score_symmetric = fowlkes_mallows_score(labels_b, labels_a)
    assert_almost_equal(score_symmetric, expected)

    # permutation property
    score_permuted = fowlkes_mallows_score((labels_a + 1) % 3, labels_b)
    assert_almost_equal(score_permuted, expected)

    # symmetric and permutation(both together)
    score_both = fowlkes_mallows_score(labels_b, (labels_a + 2) % 3)
    assert_almost_equal(score_both, expected)