File: test_unsupervised.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (230 lines) | stat: -rw-r--r-- 9,090 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import scipy.sparse as sp
import pytest
from scipy.sparse import csr_matrix

from sklearn import datasets
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_raises_regexp
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_greater
from sklearn.metrics.cluster import silhouette_score
from sklearn.metrics.cluster import silhouette_samples
from sklearn.metrics import pairwise_distances
from sklearn.metrics.cluster import calinski_harabaz_score
from sklearn.metrics.cluster import davies_bouldin_score


def test_silhouette():
    # Tests the Silhouette Coefficient.
    dataset = datasets.load_iris()
    X_dense = dataset.data
    X_csr = csr_matrix(X_dense)
    X_dok = sp.dok_matrix(X_dense)
    X_lil = sp.lil_matrix(X_dense)
    y = dataset.target

    for X in [X_dense, X_csr, X_dok, X_lil]:
        D = pairwise_distances(X, metric='euclidean')
        # Given that the actual labels are used, we can assume that S would be
        # positive.
        score_precomputed = silhouette_score(D, y, metric='precomputed')
        assert_greater(score_precomputed, 0)
        # Test without calculating D
        score_euclidean = silhouette_score(X, y, metric='euclidean')
        pytest.approx(score_precomputed, score_euclidean)

        if X is X_dense:
            score_dense_without_sampling = score_precomputed
        else:
            pytest.approx(score_euclidean,
                          score_dense_without_sampling)

        # Test with sampling
        score_precomputed = silhouette_score(D, y, metric='precomputed',
                                             sample_size=int(X.shape[0] / 2),
                                             random_state=0)
        score_euclidean = silhouette_score(X, y, metric='euclidean',
                                           sample_size=int(X.shape[0] / 2),
                                           random_state=0)
        assert_greater(score_precomputed, 0)
        assert_greater(score_euclidean, 0)
        pytest.approx(score_euclidean, score_precomputed)

        if X is X_dense:
            score_dense_with_sampling = score_precomputed
        else:
            pytest.approx(score_euclidean, score_dense_with_sampling)


def test_cluster_size_1():
    # Assert Silhouette Coefficient == 0 when there is 1 sample in a cluster
    # (cluster 0). We also test the case where there are identical samples
    # as the only members of a cluster (cluster 2). To our knowledge, this case
    # is not discussed in reference material, and we choose for it a sample
    # score of 1.
    X = [[0.], [1.], [1.], [2.], [3.], [3.]]
    labels = np.array([0, 1, 1, 1, 2, 2])

    # Cluster 0: 1 sample -> score of 0 by Rousseeuw's convention
    # Cluster 1: intra-cluster = [.5, .5, 1]
    #            inter-cluster = [1, 1, 1]
    #            silhouette    = [.5, .5, 0]
    # Cluster 2: intra-cluster = [0, 0]
    #            inter-cluster = [arbitrary, arbitrary]
    #            silhouette    = [1., 1.]

    silhouette = silhouette_score(X, labels)
    assert_false(np.isnan(silhouette))
    ss = silhouette_samples(X, labels)
    assert_array_equal(ss, [0, .5, .5, 0, 1, 1])


def test_silhouette_paper_example():
    # Explicitly check per-sample results against Rousseeuw (1987)
    # Data from Table 1
    lower = [5.58,
             7.00, 6.50,
             7.08, 7.00, 3.83,
             4.83, 5.08, 8.17, 5.83,
             2.17, 5.75, 6.67, 6.92, 4.92,
             6.42, 5.00, 5.58, 6.00, 4.67, 6.42,
             3.42, 5.50, 6.42, 6.42, 5.00, 3.92, 6.17,
             2.50, 4.92, 6.25, 7.33, 4.50, 2.25, 6.33, 2.75,
             6.08, 6.67, 4.25, 2.67, 6.00, 6.17, 6.17, 6.92, 6.17,
             5.25, 6.83, 4.50, 3.75, 5.75, 5.42, 6.08, 5.83, 6.67, 3.67,
             4.75, 3.00, 6.08, 6.67, 5.00, 5.58, 4.83, 6.17, 5.67, 6.50, 6.92]
    D = np.zeros((12, 12))
    D[np.tril_indices(12, -1)] = lower
    D += D.T

    names = ['BEL', 'BRA', 'CHI', 'CUB', 'EGY', 'FRA', 'IND', 'ISR', 'USA',
             'USS', 'YUG', 'ZAI']

    # Data from Figure 2
    labels1 = [1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1]
    expected1 = {'USA': .43, 'BEL': .39, 'FRA': .35, 'ISR': .30, 'BRA': .22,
                 'EGY': .20, 'ZAI': .19, 'CUB': .40, 'USS': .34, 'CHI': .33,
                 'YUG': .26, 'IND': -.04}
    score1 = .28

    # Data from Figure 3
    labels2 = [1, 2, 3, 3, 1, 1, 2, 1, 1, 3, 3, 2]
    expected2 = {'USA': .47, 'FRA': .44, 'BEL': .42, 'ISR': .37, 'EGY': .02,
                 'ZAI': .28, 'BRA': .25, 'IND': .17, 'CUB': .48, 'USS': .44,
                 'YUG': .31, 'CHI': .31}
    score2 = .33

    for labels, expected, score in [(labels1, expected1, score1),
                                    (labels2, expected2, score2)]:
        expected = [expected[name] for name in names]
        # we check to 2dp because that's what's in the paper
        pytest.approx(expected,
                      silhouette_samples(D, np.array(labels),
                                         metric='precomputed'),
                      abs=1e-2)
        pytest.approx(score,
                      silhouette_score(D, np.array(labels),
                                       metric='precomputed'),
                      abs=1e-2)


def test_correct_labelsize():
    # Assert 1 < n_labels < n_samples
    dataset = datasets.load_iris()
    X = dataset.data

    # n_labels = n_samples
    y = np.arange(X.shape[0])
    assert_raises_regexp(ValueError,
                         r'Number of labels is %d\. Valid values are 2 '
                         r'to n_samples - 1 \(inclusive\)' % len(np.unique(y)),
                         silhouette_score, X, y)

    # n_labels = 1
    y = np.zeros(X.shape[0])
    assert_raises_regexp(ValueError,
                         r'Number of labels is %d\. Valid values are 2 '
                         r'to n_samples - 1 \(inclusive\)' % len(np.unique(y)),
                         silhouette_score, X, y)


def test_non_encoded_labels():
    dataset = datasets.load_iris()
    X = dataset.data
    labels = dataset.target
    assert_equal(
        silhouette_score(X, labels * 2 + 10), silhouette_score(X, labels))
    assert_array_equal(
        silhouette_samples(X, labels * 2 + 10), silhouette_samples(X, labels))


def test_non_numpy_labels():
    dataset = datasets.load_iris()
    X = dataset.data
    y = dataset.target
    assert_equal(
        silhouette_score(list(X), list(y)), silhouette_score(X, y))


def assert_raises_on_only_one_label(func):
    """Assert message when there is only one label"""
    rng = np.random.RandomState(seed=0)
    assert_raise_message(ValueError, "Number of labels is",
                         func,
                         rng.rand(10, 2), np.zeros(10))


def assert_raises_on_all_points_same_cluster(func):
    """Assert message when all point are in different clusters"""
    rng = np.random.RandomState(seed=0)
    assert_raise_message(ValueError, "Number of labels is",
                         func,
                         rng.rand(10, 2), np.arange(10))


def test_calinski_harabaz_score():
    assert_raises_on_only_one_label(calinski_harabaz_score)

    assert_raises_on_all_points_same_cluster(calinski_harabaz_score)

    # Assert the value is 1. when all samples are equals
    assert_equal(1., calinski_harabaz_score(np.ones((10, 2)),
                                            [0] * 5 + [1] * 5))

    # Assert the value is 0. when all the mean cluster are equal
    assert_equal(0., calinski_harabaz_score([[-1, -1], [1, 1]] * 10,
                                            [0] * 10 + [1] * 10))

    # General case (with non numpy arrays)
    X = ([[0, 0], [1, 1]] * 5 + [[3, 3], [4, 4]] * 5 +
         [[0, 4], [1, 3]] * 5 + [[3, 1], [4, 0]] * 5)
    labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10
    pytest.approx(calinski_harabaz_score(X, labels),
                        45 * (40 - 4) / (5 * (4 - 1)))


def test_davies_bouldin_score():
    assert_raises_on_only_one_label(davies_bouldin_score)
    assert_raises_on_all_points_same_cluster(davies_bouldin_score)

    # Assert the value is 0. when all samples are equals
    assert davies_bouldin_score(np.ones((10, 2)),
                                [0] * 5 + [1] * 5) == pytest.approx(0.0)

    # Assert the value is 0. when all the mean cluster are equal
    assert davies_bouldin_score([[-1, -1], [1, 1]] * 10,
                                [0] * 10 + [1] * 10) == pytest.approx(0.0)

    # General case (with non numpy arrays)
    X = ([[0, 0], [1, 1]] * 5 + [[3, 3], [4, 4]] * 5 +
         [[0, 4], [1, 3]] * 5 + [[3, 1], [4, 0]] * 5)
    labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10
    pytest.approx(davies_bouldin_score(X, labels), 2 * np.sqrt(0.5) / 3)

    # General case - cluster have one sample
    X = ([[0, 0], [2, 2], [3, 3], [5, 5]])
    labels = [0, 0, 1, 2]
    pytest.approx(davies_bouldin_score(X, labels), (5. / 4) / 3)