1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
|
from types import GeneratorType
import numpy as np
from numpy import linalg
from scipy.sparse import dok_matrix, csr_matrix, issparse
from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski
from scipy.spatial.distance import cdist, pdist, squareform
import pytest
from sklearn import config_context
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raises_regexp
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_warns_message
from sklearn.externals.six import iteritems
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.metrics.pairwise import manhattan_distances
from sklearn.metrics.pairwise import linear_kernel
from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel
from sklearn.metrics.pairwise import polynomial_kernel
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.metrics.pairwise import laplacian_kernel
from sklearn.metrics.pairwise import sigmoid_kernel
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.pairwise import cosine_distances
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.metrics.pairwise import pairwise_distances_chunked
from sklearn.metrics.pairwise import pairwise_distances_argmin_min
from sklearn.metrics.pairwise import pairwise_distances_argmin
from sklearn.metrics.pairwise import pairwise_kernels
from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS
from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS
from sklearn.metrics.pairwise import PAIRWISE_BOOLEAN_FUNCTIONS
from sklearn.metrics.pairwise import PAIRED_DISTANCES
from sklearn.metrics.pairwise import check_pairwise_arrays
from sklearn.metrics.pairwise import check_paired_arrays
from sklearn.metrics.pairwise import paired_distances
from sklearn.metrics.pairwise import paired_euclidean_distances
from sklearn.metrics.pairwise import paired_manhattan_distances
from sklearn.preprocessing import normalize
from sklearn.exceptions import DataConversionWarning
import pytest
def test_pairwise_distances():
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4))
S = pairwise_distances(X, metric="euclidean")
S2 = euclidean_distances(X)
assert_array_almost_equal(S, S2)
# Euclidean distance, with Y != X.
Y = rng.random_sample((2, 4))
S = pairwise_distances(X, Y, metric="euclidean")
S2 = euclidean_distances(X, Y)
assert_array_almost_equal(S, S2)
# Test with tuples as X and Y
X_tuples = tuple([tuple([v for v in row]) for row in X])
Y_tuples = tuple([tuple([v for v in row]) for row in Y])
S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean")
assert_array_almost_equal(S, S2)
# "cityblock" uses scikit-learn metric, cityblock (function) is
# scipy.spatial.
S = pairwise_distances(X, metric="cityblock")
S2 = pairwise_distances(X, metric=cityblock)
assert_equal(S.shape[0], S.shape[1])
assert_equal(S.shape[0], X.shape[0])
assert_array_almost_equal(S, S2)
# The manhattan metric should be equivalent to cityblock.
S = pairwise_distances(X, Y, metric="manhattan")
S2 = pairwise_distances(X, Y, metric=cityblock)
assert_equal(S.shape[0], X.shape[0])
assert_equal(S.shape[1], Y.shape[0])
assert_array_almost_equal(S, S2)
# Using size_threshold argument should raise
# a deprecation warning
assert_warns(DeprecationWarning,
manhattan_distances, X, Y, size_threshold=10)
# Test cosine as a string metric versus cosine callable
# The string "cosine" uses sklearn.metric,
# while the function cosine is scipy.spatial
S = pairwise_distances(X, Y, metric="cosine")
S2 = pairwise_distances(X, Y, metric=cosine)
assert_equal(S.shape[0], X.shape[0])
assert_equal(S.shape[1], Y.shape[0])
assert_array_almost_equal(S, S2)
# Test with sparse X and Y,
# currently only supported for Euclidean, L1 and cosine.
X_sparse = csr_matrix(X)
Y_sparse = csr_matrix(Y)
S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean")
S2 = euclidean_distances(X_sparse, Y_sparse)
assert_array_almost_equal(S, S2)
S = pairwise_distances(X_sparse, Y_sparse, metric="cosine")
S2 = cosine_distances(X_sparse, Y_sparse)
assert_array_almost_equal(S, S2)
S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan")
S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo())
assert_array_almost_equal(S, S2)
S2 = manhattan_distances(X, Y)
assert_array_almost_equal(S, S2)
# Test with scipy.spatial.distance metric, with a kwd
kwds = {"p": 2.0}
S = pairwise_distances(X, Y, metric="minkowski", **kwds)
S2 = pairwise_distances(X, Y, metric=minkowski, **kwds)
assert_array_almost_equal(S, S2)
# same with Y = None
kwds = {"p": 2.0}
S = pairwise_distances(X, metric="minkowski", **kwds)
S2 = pairwise_distances(X, metric=minkowski, **kwds)
assert_array_almost_equal(S, S2)
# Test that scipy distance metrics throw an error if sparse matrix given
assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski")
assert_raises(TypeError, pairwise_distances, X, Y_sparse,
metric="minkowski")
# Test that a value error is raised if the metric is unknown
assert_raises(ValueError, pairwise_distances, X, Y, metric="blah")
@pytest.mark.parametrize('metric', PAIRWISE_BOOLEAN_FUNCTIONS)
def test_pairwise_boolean_distance(metric):
# test that we convert to boolean arrays for boolean distances
rng = np.random.RandomState(0)
X = rng.randn(5, 4)
Y = X.copy()
Y[0, 0] = 1 - Y[0, 0]
# ignore conversion to boolean in pairwise_distances
with ignore_warnings(category=DataConversionWarning):
for Z in [Y, None]:
res = pairwise_distances(X, Z, metric=metric)
res[np.isnan(res)] = 0
assert np.sum(res != 0) == 0
@pytest.mark.parametrize('func', [pairwise_distances, pairwise_kernels])
def test_pairwise_precomputed(func):
# Test correct shape
assert_raises_regexp(ValueError, '.* shape .*',
func, np.zeros((5, 3)), metric='precomputed')
# with two args
assert_raises_regexp(ValueError, '.* shape .*',
func, np.zeros((5, 3)), np.zeros((4, 4)),
metric='precomputed')
# even if shape[1] agrees (although thus second arg is spurious)
assert_raises_regexp(ValueError, '.* shape .*',
func, np.zeros((5, 3)), np.zeros((4, 3)),
metric='precomputed')
# Test not copied (if appropriate dtype)
S = np.zeros((5, 5))
S2 = func(S, metric="precomputed")
assert S is S2
# with two args
S = np.zeros((5, 3))
S2 = func(S, np.zeros((3, 3)), metric="precomputed")
assert S is S2
# Test always returns float dtype
S = func(np.array([[1]], dtype='int'), metric='precomputed')
assert_equal('f', S.dtype.kind)
# Test converts list to array-like
S = func([[1.]], metric='precomputed')
assert isinstance(S, np.ndarray)
def check_pairwise_parallel(func, metric, kwds):
rng = np.random.RandomState(0)
for make_data in (np.array, csr_matrix):
X = make_data(rng.random_sample((5, 4)))
Y = make_data(rng.random_sample((3, 4)))
try:
S = func(X, metric=metric, n_jobs=1, **kwds)
except (TypeError, ValueError) as exc:
# Not all metrics support sparse input
# ValueError may be triggered by bad callable
if make_data is csr_matrix:
assert_raises(type(exc), func, X, metric=metric,
n_jobs=2, **kwds)
continue
else:
raise
S2 = func(X, metric=metric, n_jobs=2, **kwds)
assert_array_almost_equal(S, S2)
S = func(X, Y, metric=metric, n_jobs=1, **kwds)
S2 = func(X, Y, metric=metric, n_jobs=2, **kwds)
assert_array_almost_equal(S, S2)
_wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1}
def callable_rbf_kernel(x, y, **kwds):
# Callable version of pairwise.rbf_kernel.
K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds)
return K
@pytest.mark.parametrize(
'func, metric, kwds',
[(pairwise_distances, 'euclidean', {}),
(pairwise_distances, wminkowski, _wminkowski_kwds),
(pairwise_distances, 'wminkowski', _wminkowski_kwds),
(pairwise_kernels, 'polynomial', {'degree': 1}),
(pairwise_kernels, callable_rbf_kernel, {'gamma': .1})])
def test_pairwise_parallel(func, metric, kwds):
check_pairwise_parallel(func, metric, kwds)
def test_pairwise_callable_nonstrict_metric():
# paired_distances should allow callable metric where metric(x, x) != 0
# Knowing that the callable is a strict metric would allow the diagonal to
# be left uncalculated and set to 0.
assert_equal(pairwise_distances([[1.]], metric=lambda x, y: 5)[0, 0], 5)
# Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS.
@pytest.mark.parametrize(
'metric',
["rbf", "laplacian", "sigmoid", "polynomial", "linear",
"chi2", "additive_chi2"])
def test_pairwise_kernels(metric):
# Test the pairwise_kernels helper function.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
function = PAIRWISE_KERNEL_FUNCTIONS[metric]
# Test with Y=None
K1 = pairwise_kernels(X, metric=metric)
K2 = function(X)
assert_array_almost_equal(K1, K2)
# Test with Y=Y
K1 = pairwise_kernels(X, Y=Y, metric=metric)
K2 = function(X, Y=Y)
assert_array_almost_equal(K1, K2)
# Test with tuples as X and Y
X_tuples = tuple([tuple([v for v in row]) for row in X])
Y_tuples = tuple([tuple([v for v in row]) for row in Y])
K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric)
assert_array_almost_equal(K1, K2)
# Test with sparse X and Y
X_sparse = csr_matrix(X)
Y_sparse = csr_matrix(Y)
if metric in ["chi2", "additive_chi2"]:
# these don't support sparse matrices yet
assert_raises(ValueError, pairwise_kernels,
X_sparse, Y=Y_sparse, metric=metric)
return
K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric)
assert_array_almost_equal(K1, K2)
def test_pairwise_kernels_callable():
# Test the pairwise_kernels helper function
# with a callable function, with given keywords.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
metric = callable_rbf_kernel
kwds = {'gamma': 0.1}
K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
K2 = rbf_kernel(X, Y=Y, **kwds)
assert_array_almost_equal(K1, K2)
# callable function, X=Y
K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
K2 = rbf_kernel(X, Y=X, **kwds)
assert_array_almost_equal(K1, K2)
def test_pairwise_kernels_filter_param():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((2, 4))
K = rbf_kernel(X, Y, gamma=0.1)
params = {"gamma": 0.1, "blabla": ":)"}
K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
assert_array_almost_equal(K, K2)
assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params)
@pytest.mark.parametrize('metric, func', iteritems(PAIRED_DISTANCES))
def test_paired_distances(metric, func):
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4))
# Euclidean distance, with Y != X.
Y = rng.random_sample((5, 4))
S = paired_distances(X, Y, metric=metric)
S2 = func(X, Y)
assert_array_almost_equal(S, S2)
S3 = func(csr_matrix(X), csr_matrix(Y))
assert_array_almost_equal(S, S3)
if metric in PAIRWISE_DISTANCE_FUNCTIONS:
# Check the pairwise_distances implementation
# gives the same value
distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y)
distances = np.diag(distances)
assert_array_almost_equal(distances, S)
def test_paired_distances_callable():
# Test the pairwise_distance helper function
# with the callable implementation
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((5, 4))
# Euclidean distance, with Y != X.
Y = rng.random_sample((5, 4))
S = paired_distances(X, Y, metric='manhattan')
S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0))
assert_array_almost_equal(S, S2)
# Test that a value error is raised when the lengths of X and Y should not
# differ
Y = rng.random_sample((3, 4))
assert_raises(ValueError, paired_distances, X, Y)
def test_pairwise_distances_argmin_min():
# Check pairwise minimum distances computation for any metric
X = [[0], [1]]
Y = [[-2], [3]]
Xsp = dok_matrix(X)
Ysp = csr_matrix(Y, dtype=np.float32)
expected_idx = [0, 1]
expected_vals = [2, 2]
expected_vals_sq = [4, 4]
# euclidean metric
idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean")
idx2 = pairwise_distances_argmin(X, Y, metric="euclidean")
assert_array_almost_equal(idx, expected_idx)
assert_array_almost_equal(idx2, expected_idx)
assert_array_almost_equal(vals, expected_vals)
# sparse matrix case
idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean")
assert_array_almost_equal(idxsp, expected_idx)
assert_array_almost_equal(valssp, expected_vals)
# We don't want np.matrix here
assert_equal(type(idxsp), np.ndarray)
assert_equal(type(valssp), np.ndarray)
# euclidean metric squared
idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean",
metric_kwargs={"squared": True})
assert_array_almost_equal(idx, expected_idx)
assert_array_almost_equal(vals, expected_vals_sq)
# Non-euclidean scikit-learn metric
idx, vals = pairwise_distances_argmin_min(X, Y, metric="manhattan")
idx2 = pairwise_distances_argmin(X, Y, metric="manhattan")
assert_array_almost_equal(idx, expected_idx)
assert_array_almost_equal(idx2, expected_idx)
assert_array_almost_equal(vals, expected_vals)
# sparse matrix case
idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan")
assert_array_almost_equal(idxsp, expected_idx)
assert_array_almost_equal(valssp, expected_vals)
# Non-euclidean Scipy distance (callable)
idx, vals = pairwise_distances_argmin_min(X, Y, metric=minkowski,
metric_kwargs={"p": 2})
assert_array_almost_equal(idx, expected_idx)
assert_array_almost_equal(vals, expected_vals)
# Non-euclidean Scipy distance (string)
idx, vals = pairwise_distances_argmin_min(X, Y, metric="minkowski",
metric_kwargs={"p": 2})
assert_array_almost_equal(idx, expected_idx)
assert_array_almost_equal(vals, expected_vals)
# Compare with naive implementation
rng = np.random.RandomState(0)
X = rng.randn(97, 149)
Y = rng.randn(111, 149)
dist = pairwise_distances(X, Y, metric="manhattan")
dist_orig_ind = dist.argmin(axis=0)
dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))]
dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min(
X, Y, axis=0, metric="manhattan")
np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7)
np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7)
# Test batch_size deprecation warning
assert_warns_message(DeprecationWarning, "version 0.22",
pairwise_distances_argmin_min, X, Y, batch_size=500,
metric='euclidean')
def _reduce_func(dist, start):
return dist[:, :100]
def test_pairwise_distances_chunked_reduce():
rng = np.random.RandomState(0)
X = rng.random_sample((400, 4))
# Reduced Euclidean distance
S = pairwise_distances(X)[:, :100]
S_chunks = pairwise_distances_chunked(X, None, reduce_func=_reduce_func,
working_memory=2 ** -16)
assert isinstance(S_chunks, GeneratorType)
S_chunks = list(S_chunks)
assert len(S_chunks) > 1
# atol is for diagonal where S is explicitly zeroed on the diagonal
assert_allclose(np.vstack(S_chunks), S, atol=1e-7)
@pytest.mark.parametrize('good_reduce', [
lambda D, start: list(D),
lambda D, start: np.array(D),
lambda D, start: csr_matrix(D),
lambda D, start: (list(D), list(D)),
lambda D, start: (dok_matrix(D), np.array(D), list(D)),
])
def test_pairwise_distances_chunked_reduce_valid(good_reduce):
X = np.arange(10).reshape(-1, 1)
S_chunks = pairwise_distances_chunked(X, None, reduce_func=good_reduce,
working_memory=64)
next(S_chunks)
@pytest.mark.parametrize(('bad_reduce', 'err_type', 'message'), [
(lambda D, s: np.concatenate([D, D[-1:]]), ValueError,
r'length 11\..* input: 10\.'),
(lambda D, s: (D, np.concatenate([D, D[-1:]])), ValueError,
r'length \(10, 11\)\..* input: 10\.'),
(lambda D, s: (D[:9], D), ValueError,
r'length \(9, 10\)\..* input: 10\.'),
(lambda D, s: 7, TypeError,
r'returned 7\. Expected sequence\(s\) of length 10\.'),
(lambda D, s: (7, 8), TypeError,
r'returned \(7, 8\)\. Expected sequence\(s\) of length 10\.'),
(lambda D, s: (np.arange(10), 9), TypeError,
r', 9\)\. Expected sequence\(s\) of length 10\.'),
])
def test_pairwise_distances_chunked_reduce_invalid(bad_reduce, err_type,
message):
X = np.arange(10).reshape(-1, 1)
S_chunks = pairwise_distances_chunked(X, None, reduce_func=bad_reduce,
working_memory=64)
assert_raises_regexp(err_type, message, next, S_chunks)
def check_pairwise_distances_chunked(X, Y, working_memory, metric='euclidean'):
gen = pairwise_distances_chunked(X, Y, working_memory=working_memory,
metric=metric)
assert isinstance(gen, GeneratorType)
blockwise_distances = list(gen)
Y = X if Y is None else Y
min_block_mib = len(Y) * 8 * 2 ** -20
for block in blockwise_distances:
memory_used = block.nbytes
assert memory_used <= max(working_memory, min_block_mib) * 2 ** 20
blockwise_distances = np.vstack(blockwise_distances)
S = pairwise_distances(X, Y, metric=metric)
assert_array_almost_equal(blockwise_distances, S)
@pytest.mark.parametrize(
'metric',
('euclidean', 'l2', 'sqeuclidean'))
def test_pairwise_distances_chunked_diagonal(metric):
rng = np.random.RandomState(0)
X = rng.normal(size=(1000, 10), scale=1e10)
chunks = list(pairwise_distances_chunked(X, working_memory=1,
metric=metric))
assert len(chunks) > 1
assert_array_almost_equal(np.diag(np.vstack(chunks)), 0, decimal=10)
@ignore_warnings
def test_pairwise_distances_chunked():
# Test the pairwise_distance helper function.
rng = np.random.RandomState(0)
# Euclidean distance should be equivalent to calling the function.
X = rng.random_sample((400, 4))
check_pairwise_distances_chunked(X, None, working_memory=1,
metric='euclidean')
# Test small amounts of memory
for power in range(-16, 0):
check_pairwise_distances_chunked(X, None, working_memory=2 ** power,
metric='euclidean')
# X as list
check_pairwise_distances_chunked(X.tolist(), None, working_memory=1,
metric='euclidean')
# Euclidean distance, with Y != X.
Y = rng.random_sample((200, 4))
check_pairwise_distances_chunked(X, Y, working_memory=1,
metric='euclidean')
check_pairwise_distances_chunked(X.tolist(), Y.tolist(), working_memory=1,
metric='euclidean')
# absurdly large working_memory
check_pairwise_distances_chunked(X, Y, working_memory=10000,
metric='euclidean')
# "cityblock" uses scikit-learn metric, cityblock (function) is
# scipy.spatial.
check_pairwise_distances_chunked(X, Y, working_memory=1,
metric='cityblock')
# Test that a value error is raised if the metric is unknown
assert_raises(ValueError, next,
pairwise_distances_chunked(X, Y, metric="blah"))
# Test precomputed returns all at once
D = pairwise_distances(X)
gen = pairwise_distances_chunked(D,
working_memory=2 ** -16,
metric='precomputed')
assert isinstance(gen, GeneratorType)
assert next(gen) is D
assert_raises(StopIteration, next, gen)
def test_euclidean_distances():
# Check the pairwise Euclidean distances computation
X = [[0]]
Y = [[1], [2]]
D = euclidean_distances(X, Y)
assert_array_almost_equal(D, [[1., 2.]])
X = csr_matrix(X)
Y = csr_matrix(Y)
D = euclidean_distances(X, Y)
assert_array_almost_equal(D, [[1., 2.]])
rng = np.random.RandomState(0)
X = rng.random_sample((10, 4))
Y = rng.random_sample((20, 4))
X_norm_sq = (X ** 2).sum(axis=1).reshape(1, -1)
Y_norm_sq = (Y ** 2).sum(axis=1).reshape(1, -1)
# check that we still get the right answers with {X,Y}_norm_squared
D1 = euclidean_distances(X, Y)
D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq)
D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq)
D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq,
Y_norm_squared=Y_norm_sq)
assert_array_almost_equal(D2, D1)
assert_array_almost_equal(D3, D1)
assert_array_almost_equal(D4, D1)
# check we get the wrong answer with wrong {X,Y}_norm_squared
X_norm_sq *= 0.5
Y_norm_sq *= 0.5
wrong_D = euclidean_distances(X, Y,
X_norm_squared=np.zeros_like(X_norm_sq),
Y_norm_squared=np.zeros_like(Y_norm_sq))
assert_greater(np.max(np.abs(wrong_D - D1)), .01)
def test_cosine_distances():
# Check the pairwise Cosine distances computation
rng = np.random.RandomState(1337)
x = np.abs(rng.rand(910))
XA = np.vstack([x, x])
D = cosine_distances(XA)
assert_array_almost_equal(D, [[0., 0.], [0., 0.]])
# check that all elements are in [0, 2]
assert np.all(D >= 0.)
assert np.all(D <= 2.)
# check that diagonal elements are equal to 0
assert_array_almost_equal(D[np.diag_indices_from(D)], [0., 0.])
XB = np.vstack([x, -x])
D2 = cosine_distances(XB)
# check that all elements are in [0, 2]
assert np.all(D2 >= 0.)
assert np.all(D2 <= 2.)
# check that diagonal elements are equal to 0 and non diagonal to 2
assert_array_almost_equal(D2, [[0., 2.], [2., 0.]])
# check large random matrix
X = np.abs(rng.rand(1000, 5000))
D = cosine_distances(X)
# check that diagonal elements are equal to 0
assert_array_almost_equal(D[np.diag_indices_from(D)], [0.] * D.shape[0])
assert np.all(D >= 0.)
assert np.all(D <= 2.)
# Paired distances
def test_paired_euclidean_distances():
# Check the paired Euclidean distances computation
X = [[0], [0]]
Y = [[1], [2]]
D = paired_euclidean_distances(X, Y)
assert_array_almost_equal(D, [1., 2.])
def test_paired_manhattan_distances():
# Check the paired manhattan distances computation
X = [[0], [0]]
Y = [[1], [2]]
D = paired_manhattan_distances(X, Y)
assert_array_almost_equal(D, [1., 2.])
def test_chi_square_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((10, 4))
K_add = additive_chi2_kernel(X, Y)
gamma = 0.1
K = chi2_kernel(X, Y, gamma=gamma)
assert_equal(K.dtype, np.float)
for i, x in enumerate(X):
for j, y in enumerate(Y):
chi2 = -np.sum((x - y) ** 2 / (x + y))
chi2_exp = np.exp(gamma * chi2)
assert_almost_equal(K_add[i, j], chi2)
assert_almost_equal(K[i, j], chi2_exp)
# check diagonal is ones for data with itself
K = chi2_kernel(Y)
assert_array_equal(np.diag(K), 1)
# check off-diagonal is < 1 but > 0:
assert np.all(K > 0)
assert np.all(K - np.diag(np.diag(K)) < 1)
# check that float32 is preserved
X = rng.random_sample((5, 4)).astype(np.float32)
Y = rng.random_sample((10, 4)).astype(np.float32)
K = chi2_kernel(X, Y)
assert_equal(K.dtype, np.float32)
# check integer type gets converted,
# check that zeros are handled
X = rng.random_sample((10, 4)).astype(np.int32)
K = chi2_kernel(X, X)
assert np.isfinite(K).all()
assert_equal(K.dtype, np.float)
# check that kernel of similar things is greater than dissimilar ones
X = [[.3, .7], [1., 0]]
Y = [[0, 1], [.9, .1]]
K = chi2_kernel(X, Y)
assert_greater(K[0, 0], K[0, 1])
assert_greater(K[1, 1], K[1, 0])
# test negative input
assert_raises(ValueError, chi2_kernel, [[0, -1]])
assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]])
assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]])
# different n_features in X and Y
assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]])
# sparse matrices
assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y))
assert_raises(ValueError, additive_chi2_kernel,
csr_matrix(X), csr_matrix(Y))
@pytest.mark.parametrize(
'kernel',
(linear_kernel, polynomial_kernel, rbf_kernel,
laplacian_kernel, sigmoid_kernel, cosine_similarity))
def test_kernel_symmetry(kernel):
# Valid kernels should be symmetric
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = kernel(X, X)
assert_array_almost_equal(K, K.T, 15)
@pytest.mark.parametrize(
'kernel',
(linear_kernel, polynomial_kernel, rbf_kernel,
laplacian_kernel, sigmoid_kernel, cosine_similarity))
def test_kernel_sparse(kernel):
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
X_sparse = csr_matrix(X)
K = kernel(X, X)
K2 = kernel(X_sparse, X_sparse)
assert_array_almost_equal(K, K2)
def test_linear_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = linear_kernel(X, X)
# the diagonal elements of a linear kernel are their squared norm
assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X])
def test_rbf_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = rbf_kernel(X, X)
# the diagonal elements of a rbf kernel are 1
assert_array_almost_equal(K.flat[::6], np.ones(5))
def test_laplacian_kernel():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
K = laplacian_kernel(X, X)
# the diagonal elements of a laplacian kernel are 1
assert_array_almost_equal(np.diag(K), np.ones(5))
# off-diagonal elements are < 1 but > 0:
assert np.all(K > 0)
assert np.all(K - np.diag(np.diag(K)) < 1)
@pytest.mark.parametrize('metric, pairwise_func',
[('linear', linear_kernel),
('cosine', cosine_similarity)])
def test_pairwise_similarity_sparse_output(metric, pairwise_func):
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((3, 4))
Xcsr = csr_matrix(X)
Ycsr = csr_matrix(Y)
# should be sparse
K1 = pairwise_func(Xcsr, Ycsr, dense_output=False)
assert issparse(K1)
# should be dense, and equal to K1
K2 = pairwise_func(X, Y, dense_output=True)
assert not issparse(K2)
assert_array_almost_equal(K1.todense(), K2)
# show the kernel output equal to the sparse.todense()
K3 = pairwise_kernels(X, Y=Y, metric=metric)
assert_array_almost_equal(K1.todense(), K3)
def test_cosine_similarity():
# Test the cosine_similarity.
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
Y = rng.random_sample((3, 4))
Xcsr = csr_matrix(X)
Ycsr = csr_matrix(Y)
for X_, Y_ in ((X, None), (X, Y),
(Xcsr, None), (Xcsr, Ycsr)):
# Test that the cosine is kernel is equal to a linear kernel when data
# has been previously normalized by L2-norm.
K1 = pairwise_kernels(X_, Y=Y_, metric="cosine")
X_ = normalize(X_)
if Y_ is not None:
Y_ = normalize(Y_)
K2 = pairwise_kernels(X_, Y=Y_, metric="linear")
assert_array_almost_equal(K1, K2)
def test_check_dense_matrices():
# Ensure that pairwise array check works for dense matrices.
# Check that if XB is None, XB is returned as reference to XA
XA = np.resize(np.arange(40), (5, 8))
XA_checked, XB_checked = check_pairwise_arrays(XA, None)
assert XA_checked is XB_checked
assert_array_equal(XA, XA_checked)
def test_check_XB_returned():
# Ensure that if XA and XB are given correctly, they return as equal.
# Check that if XB is not None, it is returned equal.
# Note that the second dimension of XB is the same as XA.
XA = np.resize(np.arange(40), (5, 8))
XB = np.resize(np.arange(32), (4, 8))
XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
assert_array_equal(XA, XA_checked)
assert_array_equal(XB, XB_checked)
XB = np.resize(np.arange(40), (5, 8))
XA_checked, XB_checked = check_paired_arrays(XA, XB)
assert_array_equal(XA, XA_checked)
assert_array_equal(XB, XB_checked)
def test_check_different_dimensions():
# Ensure an error is raised if the dimensions are different.
XA = np.resize(np.arange(45), (5, 9))
XB = np.resize(np.arange(32), (4, 8))
assert_raises(ValueError, check_pairwise_arrays, XA, XB)
XB = np.resize(np.arange(4 * 9), (4, 9))
assert_raises(ValueError, check_paired_arrays, XA, XB)
def test_check_invalid_dimensions():
# Ensure an error is raised on 1D input arrays.
# The modified tests are not 1D. In the old test, the array was internally
# converted to 2D anyways
XA = np.arange(45).reshape(9, 5)
XB = np.arange(32).reshape(4, 8)
assert_raises(ValueError, check_pairwise_arrays, XA, XB)
XA = np.arange(45).reshape(9, 5)
XB = np.arange(32).reshape(4, 8)
assert_raises(ValueError, check_pairwise_arrays, XA, XB)
def test_check_sparse_arrays():
# Ensures that checks return valid sparse matrices.
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_sparse = csr_matrix(XA)
XB = rng.random_sample((5, 4))
XB_sparse = csr_matrix(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse)
# compare their difference because testing csr matrices for
# equality with '==' does not work as expected.
assert issparse(XA_checked)
assert_equal(abs(XA_sparse - XA_checked).sum(), 0)
assert issparse(XB_checked)
assert_equal(abs(XB_sparse - XB_checked).sum(), 0)
XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse)
assert issparse(XA_checked)
assert_equal(abs(XA_sparse - XA_checked).sum(), 0)
assert issparse(XA_2_checked)
assert_equal(abs(XA_2_checked - XA_checked).sum(), 0)
def tuplify(X):
# Turns a numpy matrix (any n-dimensional array) into tuples.
s = X.shape
if len(s) > 1:
# Tuplify each sub-array in the input.
return tuple(tuplify(row) for row in X)
else:
# Single dimension input, just return tuple of contents.
return tuple(r for r in X)
def test_check_tuple_input():
# Ensures that checks return valid tuples.
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_tuples = tuplify(XA)
XB = rng.random_sample((5, 4))
XB_tuples = tuplify(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples)
assert_array_equal(XA_tuples, XA_checked)
assert_array_equal(XB_tuples, XB_checked)
def test_check_preserve_type():
# Ensures that type float32 is preserved.
XA = np.resize(np.arange(40), (5, 8)).astype(np.float32)
XB = np.resize(np.arange(40), (5, 8)).astype(np.float32)
XA_checked, XB_checked = check_pairwise_arrays(XA, None)
assert_equal(XA_checked.dtype, np.float32)
# both float32
XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
assert_equal(XA_checked.dtype, np.float32)
assert_equal(XB_checked.dtype, np.float32)
# mismatched A
XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float),
XB)
assert_equal(XA_checked.dtype, np.float)
assert_equal(XB_checked.dtype, np.float)
# mismatched B
XA_checked, XB_checked = check_pairwise_arrays(XA,
XB.astype(np.float))
assert_equal(XA_checked.dtype, np.float)
assert_equal(XB_checked.dtype, np.float)
@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"])
@pytest.mark.parametrize("dist_function",
[pairwise_distances, pairwise_distances_chunked])
@pytest.mark.parametrize("y_is_x", [True, False], ids=["Y is X", "Y is not X"])
def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function,
y_is_x):
# check that pairwise_distances give the same result in sequential and
# parallel, when metric has data-derived parameters.
with config_context(working_memory=0.1): # to have more than 1 chunk
rng = np.random.RandomState(0)
X = rng.random_sample((1000, 10))
if y_is_x:
Y = X
expected_dist_default_params = squareform(pdist(X, metric=metric))
if metric == "seuclidean":
params = {'V': np.var(X, axis=0, ddof=1)}
else:
params = {'VI': np.linalg.inv(np.cov(X.T)).T}
else:
Y = rng.random_sample((1000, 10))
expected_dist_default_params = cdist(X, Y, metric=metric)
if metric == "seuclidean":
params = {'V': np.var(np.vstack([X, Y]), axis=0, ddof=1)}
else:
params = {'VI': np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T}
expected_dist_explicit_params = cdist(X, Y, metric=metric, **params)
dist = np.vstack(tuple(dist_function(X, Y,
metric=metric, n_jobs=n_jobs)))
assert_allclose(dist, expected_dist_explicit_params)
assert_allclose(dist, expected_dist_default_params)
|