File: test_pairwise.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (934 lines) | stat: -rw-r--r-- 35,791 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
from types import GeneratorType

import numpy as np
from numpy import linalg

from scipy.sparse import dok_matrix, csr_matrix, issparse
from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski
from scipy.spatial.distance import cdist, pdist, squareform

import pytest

from sklearn import config_context

from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raises_regexp
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_warns_message

from sklearn.externals.six import iteritems

from sklearn.metrics.pairwise import euclidean_distances
from sklearn.metrics.pairwise import manhattan_distances
from sklearn.metrics.pairwise import linear_kernel
from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel
from sklearn.metrics.pairwise import polynomial_kernel
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.metrics.pairwise import laplacian_kernel
from sklearn.metrics.pairwise import sigmoid_kernel
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.pairwise import cosine_distances
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.metrics.pairwise import pairwise_distances_chunked
from sklearn.metrics.pairwise import pairwise_distances_argmin_min
from sklearn.metrics.pairwise import pairwise_distances_argmin
from sklearn.metrics.pairwise import pairwise_kernels
from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS
from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS
from sklearn.metrics.pairwise import PAIRWISE_BOOLEAN_FUNCTIONS
from sklearn.metrics.pairwise import PAIRED_DISTANCES
from sklearn.metrics.pairwise import check_pairwise_arrays
from sklearn.metrics.pairwise import check_paired_arrays
from sklearn.metrics.pairwise import paired_distances
from sklearn.metrics.pairwise import paired_euclidean_distances
from sklearn.metrics.pairwise import paired_manhattan_distances
from sklearn.preprocessing import normalize
from sklearn.exceptions import DataConversionWarning

import pytest


def test_pairwise_distances():
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((5, 4))
    S = pairwise_distances(X, metric="euclidean")
    S2 = euclidean_distances(X)
    assert_array_almost_equal(S, S2)
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((2, 4))
    S = pairwise_distances(X, Y, metric="euclidean")
    S2 = euclidean_distances(X, Y)
    assert_array_almost_equal(S, S2)
    # Test with tuples as X and Y
    X_tuples = tuple([tuple([v for v in row]) for row in X])
    Y_tuples = tuple([tuple([v for v in row]) for row in Y])
    S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean")
    assert_array_almost_equal(S, S2)
    # "cityblock" uses scikit-learn metric, cityblock (function) is
    # scipy.spatial.
    S = pairwise_distances(X, metric="cityblock")
    S2 = pairwise_distances(X, metric=cityblock)
    assert_equal(S.shape[0], S.shape[1])
    assert_equal(S.shape[0], X.shape[0])
    assert_array_almost_equal(S, S2)
    # The manhattan metric should be equivalent to cityblock.
    S = pairwise_distances(X, Y, metric="manhattan")
    S2 = pairwise_distances(X, Y, metric=cityblock)
    assert_equal(S.shape[0], X.shape[0])
    assert_equal(S.shape[1], Y.shape[0])
    assert_array_almost_equal(S, S2)
    # Using size_threshold argument should raise
    # a deprecation warning
    assert_warns(DeprecationWarning,
                 manhattan_distances, X, Y, size_threshold=10)
    # Test cosine as a string metric versus cosine callable
    # The string "cosine" uses sklearn.metric,
    # while the function cosine is scipy.spatial
    S = pairwise_distances(X, Y, metric="cosine")
    S2 = pairwise_distances(X, Y, metric=cosine)
    assert_equal(S.shape[0], X.shape[0])
    assert_equal(S.shape[1], Y.shape[0])
    assert_array_almost_equal(S, S2)
    # Test with sparse X and Y,
    # currently only supported for Euclidean, L1 and cosine.
    X_sparse = csr_matrix(X)
    Y_sparse = csr_matrix(Y)
    S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean")
    S2 = euclidean_distances(X_sparse, Y_sparse)
    assert_array_almost_equal(S, S2)
    S = pairwise_distances(X_sparse, Y_sparse, metric="cosine")
    S2 = cosine_distances(X_sparse, Y_sparse)
    assert_array_almost_equal(S, S2)
    S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan")
    S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo())
    assert_array_almost_equal(S, S2)
    S2 = manhattan_distances(X, Y)
    assert_array_almost_equal(S, S2)
    # Test with scipy.spatial.distance metric, with a kwd
    kwds = {"p": 2.0}
    S = pairwise_distances(X, Y, metric="minkowski", **kwds)
    S2 = pairwise_distances(X, Y, metric=minkowski, **kwds)
    assert_array_almost_equal(S, S2)
    # same with Y = None
    kwds = {"p": 2.0}
    S = pairwise_distances(X, metric="minkowski", **kwds)
    S2 = pairwise_distances(X, metric=minkowski, **kwds)
    assert_array_almost_equal(S, S2)
    # Test that scipy distance metrics throw an error if sparse matrix given
    assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski")
    assert_raises(TypeError, pairwise_distances, X, Y_sparse,
                  metric="minkowski")

    # Test that a value error is raised if the metric is unknown
    assert_raises(ValueError, pairwise_distances, X, Y, metric="blah")


@pytest.mark.parametrize('metric', PAIRWISE_BOOLEAN_FUNCTIONS)
def test_pairwise_boolean_distance(metric):
    # test that we convert to boolean arrays for boolean distances
    rng = np.random.RandomState(0)
    X = rng.randn(5, 4)
    Y = X.copy()
    Y[0, 0] = 1 - Y[0, 0]

    # ignore conversion to boolean in pairwise_distances
    with ignore_warnings(category=DataConversionWarning):
        for Z in [Y, None]:
            res = pairwise_distances(X, Z, metric=metric)
            res[np.isnan(res)] = 0
            assert np.sum(res != 0) == 0


@pytest.mark.parametrize('func', [pairwise_distances, pairwise_kernels])
def test_pairwise_precomputed(func):
    # Test correct shape
    assert_raises_regexp(ValueError, '.* shape .*',
                         func, np.zeros((5, 3)), metric='precomputed')
    # with two args
    assert_raises_regexp(ValueError, '.* shape .*',
                         func, np.zeros((5, 3)), np.zeros((4, 4)),
                         metric='precomputed')
    # even if shape[1] agrees (although thus second arg is spurious)
    assert_raises_regexp(ValueError, '.* shape .*',
                         func, np.zeros((5, 3)), np.zeros((4, 3)),
                         metric='precomputed')

    # Test not copied (if appropriate dtype)
    S = np.zeros((5, 5))
    S2 = func(S, metric="precomputed")
    assert S is S2
    # with two args
    S = np.zeros((5, 3))
    S2 = func(S, np.zeros((3, 3)), metric="precomputed")
    assert S is S2

    # Test always returns float dtype
    S = func(np.array([[1]], dtype='int'), metric='precomputed')
    assert_equal('f', S.dtype.kind)

    # Test converts list to array-like
    S = func([[1.]], metric='precomputed')
    assert isinstance(S, np.ndarray)


def check_pairwise_parallel(func, metric, kwds):
    rng = np.random.RandomState(0)
    for make_data in (np.array, csr_matrix):
        X = make_data(rng.random_sample((5, 4)))
        Y = make_data(rng.random_sample((3, 4)))

        try:
            S = func(X, metric=metric, n_jobs=1, **kwds)
        except (TypeError, ValueError) as exc:
            # Not all metrics support sparse input
            # ValueError may be triggered by bad callable
            if make_data is csr_matrix:
                assert_raises(type(exc), func, X, metric=metric,
                              n_jobs=2, **kwds)
                continue
            else:
                raise
        S2 = func(X, metric=metric, n_jobs=2, **kwds)
        assert_array_almost_equal(S, S2)

        S = func(X, Y, metric=metric, n_jobs=1, **kwds)
        S2 = func(X, Y, metric=metric, n_jobs=2, **kwds)
        assert_array_almost_equal(S, S2)


_wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1}


def callable_rbf_kernel(x, y, **kwds):
    # Callable version of pairwise.rbf_kernel.
    K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds)
    return K


@pytest.mark.parametrize(
        'func, metric, kwds',
        [(pairwise_distances, 'euclidean', {}),
         (pairwise_distances, wminkowski, _wminkowski_kwds),
         (pairwise_distances, 'wminkowski', _wminkowski_kwds),
         (pairwise_kernels, 'polynomial', {'degree': 1}),
         (pairwise_kernels, callable_rbf_kernel, {'gamma': .1})])
def test_pairwise_parallel(func, metric, kwds):
    check_pairwise_parallel(func, metric, kwds)


def test_pairwise_callable_nonstrict_metric():
    # paired_distances should allow callable metric where metric(x, x) != 0
    # Knowing that the callable is a strict metric would allow the diagonal to
    # be left uncalculated and set to 0.
    assert_equal(pairwise_distances([[1.]], metric=lambda x, y: 5)[0, 0], 5)


# Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS.
@pytest.mark.parametrize(
        'metric',
        ["rbf", "laplacian", "sigmoid", "polynomial", "linear",
         "chi2", "additive_chi2"])
def test_pairwise_kernels(metric):
    # Test the pairwise_kernels helper function.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    function = PAIRWISE_KERNEL_FUNCTIONS[metric]
    # Test with Y=None
    K1 = pairwise_kernels(X, metric=metric)
    K2 = function(X)
    assert_array_almost_equal(K1, K2)
    # Test with Y=Y
    K1 = pairwise_kernels(X, Y=Y, metric=metric)
    K2 = function(X, Y=Y)
    assert_array_almost_equal(K1, K2)
    # Test with tuples as X and Y
    X_tuples = tuple([tuple([v for v in row]) for row in X])
    Y_tuples = tuple([tuple([v for v in row]) for row in Y])
    K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric)
    assert_array_almost_equal(K1, K2)

    # Test with sparse X and Y
    X_sparse = csr_matrix(X)
    Y_sparse = csr_matrix(Y)
    if metric in ["chi2", "additive_chi2"]:
        # these don't support sparse matrices yet
        assert_raises(ValueError, pairwise_kernels,
                      X_sparse, Y=Y_sparse, metric=metric)
        return
    K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric)
    assert_array_almost_equal(K1, K2)


def test_pairwise_kernels_callable():
    # Test the pairwise_kernels helper function
    # with a callable function, with given keywords.
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))

    metric = callable_rbf_kernel
    kwds = {'gamma': 0.1}
    K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=Y, **kwds)
    assert_array_almost_equal(K1, K2)

    # callable function, X=Y
    K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=X, **kwds)
    assert_array_almost_equal(K1, K2)


def test_pairwise_kernels_filter_param():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    K = rbf_kernel(X, Y, gamma=0.1)
    params = {"gamma": 0.1, "blabla": ":)"}
    K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
    assert_array_almost_equal(K, K2)

    assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params)


@pytest.mark.parametrize('metric, func', iteritems(PAIRED_DISTANCES))
def test_paired_distances(metric, func):
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((5, 4))
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((5, 4))

    S = paired_distances(X, Y, metric=metric)
    S2 = func(X, Y)
    assert_array_almost_equal(S, S2)
    S3 = func(csr_matrix(X), csr_matrix(Y))
    assert_array_almost_equal(S, S3)
    if metric in PAIRWISE_DISTANCE_FUNCTIONS:
        # Check the pairwise_distances implementation
        # gives the same value
        distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y)
        distances = np.diag(distances)
        assert_array_almost_equal(distances, S)


def test_paired_distances_callable():
    # Test the pairwise_distance helper function
    # with the callable implementation
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((5, 4))
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((5, 4))

    S = paired_distances(X, Y, metric='manhattan')
    S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0))
    assert_array_almost_equal(S, S2)

    # Test that a value error is raised when the lengths of X and Y should not
    # differ
    Y = rng.random_sample((3, 4))
    assert_raises(ValueError, paired_distances, X, Y)


def test_pairwise_distances_argmin_min():
    # Check pairwise minimum distances computation for any metric
    X = [[0], [1]]
    Y = [[-2], [3]]

    Xsp = dok_matrix(X)
    Ysp = csr_matrix(Y, dtype=np.float32)

    expected_idx = [0, 1]
    expected_vals = [2, 2]
    expected_vals_sq = [4, 4]

    # euclidean metric
    idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean")
    idx2 = pairwise_distances_argmin(X, Y, metric="euclidean")
    assert_array_almost_equal(idx, expected_idx)
    assert_array_almost_equal(idx2, expected_idx)
    assert_array_almost_equal(vals, expected_vals)
    # sparse matrix case
    idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean")
    assert_array_almost_equal(idxsp, expected_idx)
    assert_array_almost_equal(valssp, expected_vals)
    # We don't want np.matrix here
    assert_equal(type(idxsp), np.ndarray)
    assert_equal(type(valssp), np.ndarray)

    # euclidean metric squared
    idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean",
                                              metric_kwargs={"squared": True})
    assert_array_almost_equal(idx, expected_idx)
    assert_array_almost_equal(vals, expected_vals_sq)

    # Non-euclidean scikit-learn metric
    idx, vals = pairwise_distances_argmin_min(X, Y, metric="manhattan")
    idx2 = pairwise_distances_argmin(X, Y, metric="manhattan")
    assert_array_almost_equal(idx, expected_idx)
    assert_array_almost_equal(idx2, expected_idx)
    assert_array_almost_equal(vals, expected_vals)
    # sparse matrix case
    idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan")
    assert_array_almost_equal(idxsp, expected_idx)
    assert_array_almost_equal(valssp, expected_vals)

    # Non-euclidean Scipy distance (callable)
    idx, vals = pairwise_distances_argmin_min(X, Y, metric=minkowski,
                                              metric_kwargs={"p": 2})
    assert_array_almost_equal(idx, expected_idx)
    assert_array_almost_equal(vals, expected_vals)

    # Non-euclidean Scipy distance (string)
    idx, vals = pairwise_distances_argmin_min(X, Y, metric="minkowski",
                                              metric_kwargs={"p": 2})
    assert_array_almost_equal(idx, expected_idx)
    assert_array_almost_equal(vals, expected_vals)

    # Compare with naive implementation
    rng = np.random.RandomState(0)
    X = rng.randn(97, 149)
    Y = rng.randn(111, 149)

    dist = pairwise_distances(X, Y, metric="manhattan")
    dist_orig_ind = dist.argmin(axis=0)
    dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))]

    dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min(
        X, Y, axis=0, metric="manhattan")
    np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7)
    np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7)

    # Test batch_size deprecation warning
    assert_warns_message(DeprecationWarning, "version 0.22",
                         pairwise_distances_argmin_min, X, Y, batch_size=500,
                         metric='euclidean')


def _reduce_func(dist, start):
    return dist[:, :100]


def test_pairwise_distances_chunked_reduce():
    rng = np.random.RandomState(0)
    X = rng.random_sample((400, 4))
    # Reduced Euclidean distance
    S = pairwise_distances(X)[:, :100]
    S_chunks = pairwise_distances_chunked(X, None, reduce_func=_reduce_func,
                                          working_memory=2 ** -16)
    assert isinstance(S_chunks, GeneratorType)
    S_chunks = list(S_chunks)
    assert len(S_chunks) > 1
    # atol is for diagonal where S is explicitly zeroed on the diagonal
    assert_allclose(np.vstack(S_chunks), S, atol=1e-7)


@pytest.mark.parametrize('good_reduce', [
    lambda D, start: list(D),
    lambda D, start: np.array(D),
    lambda D, start: csr_matrix(D),
    lambda D, start: (list(D), list(D)),
    lambda D, start: (dok_matrix(D), np.array(D), list(D)),
    ])
def test_pairwise_distances_chunked_reduce_valid(good_reduce):
    X = np.arange(10).reshape(-1, 1)
    S_chunks = pairwise_distances_chunked(X, None, reduce_func=good_reduce,
                                          working_memory=64)
    next(S_chunks)


@pytest.mark.parametrize(('bad_reduce', 'err_type', 'message'), [
    (lambda D, s: np.concatenate([D, D[-1:]]), ValueError,
     r'length 11\..* input: 10\.'),
    (lambda D, s: (D, np.concatenate([D, D[-1:]])), ValueError,
     r'length \(10, 11\)\..* input: 10\.'),
    (lambda D, s: (D[:9], D), ValueError,
     r'length \(9, 10\)\..* input: 10\.'),
    (lambda D, s: 7, TypeError,
     r'returned 7\. Expected sequence\(s\) of length 10\.'),
    (lambda D, s: (7, 8), TypeError,
     r'returned \(7, 8\)\. Expected sequence\(s\) of length 10\.'),
    (lambda D, s: (np.arange(10), 9), TypeError,
     r', 9\)\. Expected sequence\(s\) of length 10\.'),
])
def test_pairwise_distances_chunked_reduce_invalid(bad_reduce, err_type,
                                                   message):
    X = np.arange(10).reshape(-1, 1)
    S_chunks = pairwise_distances_chunked(X, None, reduce_func=bad_reduce,
                                          working_memory=64)
    assert_raises_regexp(err_type, message, next, S_chunks)


def check_pairwise_distances_chunked(X, Y, working_memory, metric='euclidean'):
    gen = pairwise_distances_chunked(X, Y, working_memory=working_memory,
                                     metric=metric)
    assert isinstance(gen, GeneratorType)
    blockwise_distances = list(gen)
    Y = X if Y is None else Y
    min_block_mib = len(Y) * 8 * 2 ** -20

    for block in blockwise_distances:
        memory_used = block.nbytes
        assert memory_used <= max(working_memory, min_block_mib) * 2 ** 20

    blockwise_distances = np.vstack(blockwise_distances)
    S = pairwise_distances(X, Y, metric=metric)
    assert_array_almost_equal(blockwise_distances, S)


@pytest.mark.parametrize(
        'metric',
        ('euclidean', 'l2', 'sqeuclidean'))
def test_pairwise_distances_chunked_diagonal(metric):
    rng = np.random.RandomState(0)
    X = rng.normal(size=(1000, 10), scale=1e10)
    chunks = list(pairwise_distances_chunked(X, working_memory=1,
                                             metric=metric))
    assert len(chunks) > 1
    assert_array_almost_equal(np.diag(np.vstack(chunks)), 0, decimal=10)


@ignore_warnings
def test_pairwise_distances_chunked():
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((400, 4))
    check_pairwise_distances_chunked(X, None, working_memory=1,
                                     metric='euclidean')
    # Test small amounts of memory
    for power in range(-16, 0):
        check_pairwise_distances_chunked(X, None, working_memory=2 ** power,
                                         metric='euclidean')
    # X as list
    check_pairwise_distances_chunked(X.tolist(), None, working_memory=1,
                                     metric='euclidean')
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((200, 4))
    check_pairwise_distances_chunked(X, Y, working_memory=1,
                                     metric='euclidean')
    check_pairwise_distances_chunked(X.tolist(), Y.tolist(), working_memory=1,
                                     metric='euclidean')
    # absurdly large working_memory
    check_pairwise_distances_chunked(X, Y, working_memory=10000,
                                     metric='euclidean')
    # "cityblock" uses scikit-learn metric, cityblock (function) is
    # scipy.spatial.
    check_pairwise_distances_chunked(X, Y, working_memory=1,
                                     metric='cityblock')
    # Test that a value error is raised if the metric is unknown
    assert_raises(ValueError, next,
                  pairwise_distances_chunked(X, Y, metric="blah"))

    # Test precomputed returns all at once
    D = pairwise_distances(X)
    gen = pairwise_distances_chunked(D,
                                     working_memory=2 ** -16,
                                     metric='precomputed')
    assert isinstance(gen, GeneratorType)
    assert next(gen) is D
    assert_raises(StopIteration, next, gen)


def test_euclidean_distances():
    # Check the pairwise Euclidean distances computation
    X = [[0]]
    Y = [[1], [2]]
    D = euclidean_distances(X, Y)
    assert_array_almost_equal(D, [[1., 2.]])

    X = csr_matrix(X)
    Y = csr_matrix(Y)
    D = euclidean_distances(X, Y)
    assert_array_almost_equal(D, [[1., 2.]])

    rng = np.random.RandomState(0)
    X = rng.random_sample((10, 4))
    Y = rng.random_sample((20, 4))
    X_norm_sq = (X ** 2).sum(axis=1).reshape(1, -1)
    Y_norm_sq = (Y ** 2).sum(axis=1).reshape(1, -1)

    # check that we still get the right answers with {X,Y}_norm_squared
    D1 = euclidean_distances(X, Y)
    D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq)
    D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq)
    D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq,
                             Y_norm_squared=Y_norm_sq)
    assert_array_almost_equal(D2, D1)
    assert_array_almost_equal(D3, D1)
    assert_array_almost_equal(D4, D1)

    # check we get the wrong answer with wrong {X,Y}_norm_squared
    X_norm_sq *= 0.5
    Y_norm_sq *= 0.5
    wrong_D = euclidean_distances(X, Y,
                                  X_norm_squared=np.zeros_like(X_norm_sq),
                                  Y_norm_squared=np.zeros_like(Y_norm_sq))
    assert_greater(np.max(np.abs(wrong_D - D1)), .01)


def test_cosine_distances():
    # Check the pairwise Cosine distances computation
    rng = np.random.RandomState(1337)
    x = np.abs(rng.rand(910))
    XA = np.vstack([x, x])
    D = cosine_distances(XA)
    assert_array_almost_equal(D, [[0., 0.], [0., 0.]])
    # check that all elements are in [0, 2]
    assert np.all(D >= 0.)
    assert np.all(D <= 2.)
    # check that diagonal elements are equal to 0
    assert_array_almost_equal(D[np.diag_indices_from(D)], [0., 0.])

    XB = np.vstack([x, -x])
    D2 = cosine_distances(XB)
    # check that all elements are in [0, 2]
    assert np.all(D2 >= 0.)
    assert np.all(D2 <= 2.)
    # check that diagonal elements are equal to 0 and non diagonal to 2
    assert_array_almost_equal(D2, [[0., 2.], [2., 0.]])

    # check large random matrix
    X = np.abs(rng.rand(1000, 5000))
    D = cosine_distances(X)
    # check that diagonal elements are equal to 0
    assert_array_almost_equal(D[np.diag_indices_from(D)], [0.] * D.shape[0])
    assert np.all(D >= 0.)
    assert np.all(D <= 2.)


# Paired distances

def test_paired_euclidean_distances():
    # Check the paired Euclidean distances computation
    X = [[0], [0]]
    Y = [[1], [2]]
    D = paired_euclidean_distances(X, Y)
    assert_array_almost_equal(D, [1., 2.])


def test_paired_manhattan_distances():
    # Check the paired manhattan distances computation
    X = [[0], [0]]
    Y = [[1], [2]]
    D = paired_manhattan_distances(X, Y)
    assert_array_almost_equal(D, [1., 2.])


def test_chi_square_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((10, 4))
    K_add = additive_chi2_kernel(X, Y)
    gamma = 0.1
    K = chi2_kernel(X, Y, gamma=gamma)
    assert_equal(K.dtype, np.float)
    for i, x in enumerate(X):
        for j, y in enumerate(Y):
            chi2 = -np.sum((x - y) ** 2 / (x + y))
            chi2_exp = np.exp(gamma * chi2)
            assert_almost_equal(K_add[i, j], chi2)
            assert_almost_equal(K[i, j], chi2_exp)

    # check diagonal is ones for data with itself
    K = chi2_kernel(Y)
    assert_array_equal(np.diag(K), 1)
    # check off-diagonal is < 1 but > 0:
    assert np.all(K > 0)
    assert np.all(K - np.diag(np.diag(K)) < 1)
    # check that float32 is preserved
    X = rng.random_sample((5, 4)).astype(np.float32)
    Y = rng.random_sample((10, 4)).astype(np.float32)
    K = chi2_kernel(X, Y)
    assert_equal(K.dtype, np.float32)

    # check integer type gets converted,
    # check that zeros are handled
    X = rng.random_sample((10, 4)).astype(np.int32)
    K = chi2_kernel(X, X)
    assert np.isfinite(K).all()
    assert_equal(K.dtype, np.float)

    # check that kernel of similar things is greater than dissimilar ones
    X = [[.3, .7], [1., 0]]
    Y = [[0, 1], [.9, .1]]
    K = chi2_kernel(X, Y)
    assert_greater(K[0, 0], K[0, 1])
    assert_greater(K[1, 1], K[1, 0])

    # test negative input
    assert_raises(ValueError, chi2_kernel, [[0, -1]])
    assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]])
    assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]])

    # different n_features in X and Y
    assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]])

    # sparse matrices
    assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y))
    assert_raises(ValueError, additive_chi2_kernel,
                  csr_matrix(X), csr_matrix(Y))


@pytest.mark.parametrize(
        'kernel',
        (linear_kernel, polynomial_kernel, rbf_kernel,
         laplacian_kernel, sigmoid_kernel, cosine_similarity))
def test_kernel_symmetry(kernel):
    # Valid kernels should be symmetric
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = kernel(X, X)
    assert_array_almost_equal(K, K.T, 15)


@pytest.mark.parametrize(
        'kernel',
        (linear_kernel, polynomial_kernel, rbf_kernel,
         laplacian_kernel, sigmoid_kernel, cosine_similarity))
def test_kernel_sparse(kernel):
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    X_sparse = csr_matrix(X)
    K = kernel(X, X)
    K2 = kernel(X_sparse, X_sparse)
    assert_array_almost_equal(K, K2)


def test_linear_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = linear_kernel(X, X)
    # the diagonal elements of a linear kernel are their squared norm
    assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X])


def test_rbf_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = rbf_kernel(X, X)
    # the diagonal elements of a rbf kernel are 1
    assert_array_almost_equal(K.flat[::6], np.ones(5))


def test_laplacian_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = laplacian_kernel(X, X)
    # the diagonal elements of a laplacian kernel are 1
    assert_array_almost_equal(np.diag(K), np.ones(5))

    # off-diagonal elements are < 1 but > 0:
    assert np.all(K > 0)
    assert np.all(K - np.diag(np.diag(K)) < 1)


@pytest.mark.parametrize('metric, pairwise_func',
                         [('linear', linear_kernel),
                          ('cosine', cosine_similarity)])
def test_pairwise_similarity_sparse_output(metric, pairwise_func):
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_matrix(X)
    Ycsr = csr_matrix(Y)

    # should be sparse
    K1 = pairwise_func(Xcsr, Ycsr, dense_output=False)
    assert issparse(K1)

    # should be dense, and equal to K1
    K2 = pairwise_func(X, Y, dense_output=True)
    assert not issparse(K2)
    assert_array_almost_equal(K1.todense(), K2)

    # show the kernel output equal to the sparse.todense()
    K3 = pairwise_kernels(X, Y=Y, metric=metric)
    assert_array_almost_equal(K1.todense(), K3)


def test_cosine_similarity():
    # Test the cosine_similarity.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_matrix(X)
    Ycsr = csr_matrix(Y)

    for X_, Y_ in ((X, None), (X, Y),
                   (Xcsr, None), (Xcsr, Ycsr)):
        # Test that the cosine is kernel is equal to a linear kernel when data
        # has been previously normalized by L2-norm.
        K1 = pairwise_kernels(X_, Y=Y_, metric="cosine")
        X_ = normalize(X_)
        if Y_ is not None:
            Y_ = normalize(Y_)
        K2 = pairwise_kernels(X_, Y=Y_, metric="linear")
        assert_array_almost_equal(K1, K2)


def test_check_dense_matrices():
    # Ensure that pairwise array check works for dense matrices.
    # Check that if XB is None, XB is returned as reference to XA
    XA = np.resize(np.arange(40), (5, 8))
    XA_checked, XB_checked = check_pairwise_arrays(XA, None)
    assert XA_checked is XB_checked
    assert_array_equal(XA, XA_checked)


def test_check_XB_returned():
    # Ensure that if XA and XB are given correctly, they return as equal.
    # Check that if XB is not None, it is returned equal.
    # Note that the second dimension of XB is the same as XA.
    XA = np.resize(np.arange(40), (5, 8))
    XB = np.resize(np.arange(32), (4, 8))
    XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
    assert_array_equal(XA, XA_checked)
    assert_array_equal(XB, XB_checked)

    XB = np.resize(np.arange(40), (5, 8))
    XA_checked, XB_checked = check_paired_arrays(XA, XB)
    assert_array_equal(XA, XA_checked)
    assert_array_equal(XB, XB_checked)


def test_check_different_dimensions():
    # Ensure an error is raised if the dimensions are different.
    XA = np.resize(np.arange(45), (5, 9))
    XB = np.resize(np.arange(32), (4, 8))
    assert_raises(ValueError, check_pairwise_arrays, XA, XB)

    XB = np.resize(np.arange(4 * 9), (4, 9))
    assert_raises(ValueError, check_paired_arrays, XA, XB)


def test_check_invalid_dimensions():
    # Ensure an error is raised on 1D input arrays.
    # The modified tests are not 1D. In the old test, the array was internally
    # converted to 2D anyways
    XA = np.arange(45).reshape(9, 5)
    XB = np.arange(32).reshape(4, 8)
    assert_raises(ValueError, check_pairwise_arrays, XA, XB)
    XA = np.arange(45).reshape(9, 5)
    XB = np.arange(32).reshape(4, 8)
    assert_raises(ValueError, check_pairwise_arrays, XA, XB)


def test_check_sparse_arrays():
    # Ensures that checks return valid sparse matrices.
    rng = np.random.RandomState(0)
    XA = rng.random_sample((5, 4))
    XA_sparse = csr_matrix(XA)
    XB = rng.random_sample((5, 4))
    XB_sparse = csr_matrix(XB)
    XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse)
    # compare their difference because testing csr matrices for
    # equality with '==' does not work as expected.
    assert issparse(XA_checked)
    assert_equal(abs(XA_sparse - XA_checked).sum(), 0)
    assert issparse(XB_checked)
    assert_equal(abs(XB_sparse - XB_checked).sum(), 0)

    XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse)
    assert issparse(XA_checked)
    assert_equal(abs(XA_sparse - XA_checked).sum(), 0)
    assert issparse(XA_2_checked)
    assert_equal(abs(XA_2_checked - XA_checked).sum(), 0)


def tuplify(X):
    # Turns a numpy matrix (any n-dimensional array) into tuples.
    s = X.shape
    if len(s) > 1:
        # Tuplify each sub-array in the input.
        return tuple(tuplify(row) for row in X)
    else:
        # Single dimension input, just return tuple of contents.
        return tuple(r for r in X)


def test_check_tuple_input():
    # Ensures that checks return valid tuples.
    rng = np.random.RandomState(0)
    XA = rng.random_sample((5, 4))
    XA_tuples = tuplify(XA)
    XB = rng.random_sample((5, 4))
    XB_tuples = tuplify(XB)
    XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples)
    assert_array_equal(XA_tuples, XA_checked)
    assert_array_equal(XB_tuples, XB_checked)


def test_check_preserve_type():
    # Ensures that type float32 is preserved.
    XA = np.resize(np.arange(40), (5, 8)).astype(np.float32)
    XB = np.resize(np.arange(40), (5, 8)).astype(np.float32)

    XA_checked, XB_checked = check_pairwise_arrays(XA, None)
    assert_equal(XA_checked.dtype, np.float32)

    # both float32
    XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
    assert_equal(XA_checked.dtype, np.float32)
    assert_equal(XB_checked.dtype, np.float32)

    # mismatched A
    XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float),
                                                   XB)
    assert_equal(XA_checked.dtype, np.float)
    assert_equal(XB_checked.dtype, np.float)

    # mismatched B
    XA_checked, XB_checked = check_pairwise_arrays(XA,
                                                   XB.astype(np.float))
    assert_equal(XA_checked.dtype, np.float)
    assert_equal(XB_checked.dtype, np.float)


@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"])
@pytest.mark.parametrize("dist_function",
                         [pairwise_distances, pairwise_distances_chunked])
@pytest.mark.parametrize("y_is_x", [True, False], ids=["Y is X", "Y is not X"])
def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function,
                                                y_is_x):
    # check that pairwise_distances give the same result in sequential and
    # parallel, when metric has data-derived parameters.
    with config_context(working_memory=0.1):  # to have more than 1 chunk
        rng = np.random.RandomState(0)
        X = rng.random_sample((1000, 10))

        if y_is_x:
            Y = X
            expected_dist_default_params = squareform(pdist(X, metric=metric))
            if metric == "seuclidean":
                params = {'V': np.var(X, axis=0, ddof=1)}
            else:
                params = {'VI': np.linalg.inv(np.cov(X.T)).T}
        else:
            Y = rng.random_sample((1000, 10))
            expected_dist_default_params = cdist(X, Y, metric=metric)
            if metric == "seuclidean":
                params = {'V': np.var(np.vstack([X, Y]), axis=0, ddof=1)}
            else:
                params = {'VI': np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T}

        expected_dist_explicit_params = cdist(X, Y, metric=metric, **params)
        dist = np.vstack(tuple(dist_function(X, Y,
                                             metric=metric, n_jobs=n_jobs)))

        assert_allclose(dist, expected_dist_explicit_params)
        assert_allclose(dist, expected_dist_default_params)