File: _search.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1515 lines) | stat: -rw-r--r-- 64,602 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
"""
The :mod:`sklearn.model_selection._search` includes utilities to fine-tune the
parameters of an estimator.
"""
from __future__ import print_function
from __future__ import division

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
#         Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Andreas Mueller <amueller@ais.uni-bonn.de>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Raghav RV <rvraghav93@gmail.com>
# License: BSD 3 clause

from abc import ABCMeta, abstractmethod
from collections import namedtuple, defaultdict
from functools import partial, reduce
from itertools import product
import operator
import time
import warnings

import numpy as np
from scipy.stats import rankdata

from ..base import BaseEstimator, is_classifier, clone
from ..base import MetaEstimatorMixin
from ._split import check_cv
from ._validation import _fit_and_score
from ._validation import _aggregate_score_dicts
from ..exceptions import NotFittedError
from ..utils._joblib import Parallel, delayed
from ..externals import six
from ..utils import check_random_state
from ..utils.fixes import sp_version
from ..utils.fixes import MaskedArray
from ..utils.fixes import _Mapping as Mapping, _Sequence as Sequence
from ..utils.fixes import _Iterable as Iterable
from ..utils.random import sample_without_replacement
from ..utils.validation import indexable, check_is_fitted
from ..utils.metaestimators import if_delegate_has_method
from ..utils.deprecation import DeprecationDict
from ..metrics.scorer import _check_multimetric_scoring
from ..metrics.scorer import check_scoring


__all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point',
           'ParameterSampler', 'RandomizedSearchCV']


class ParameterGrid(object):
    """Grid of parameters with a discrete number of values for each.

    Can be used to iterate over parameter value combinations with the
    Python built-in function iter.

    Read more in the :ref:`User Guide <search>`.

    Parameters
    ----------
    param_grid : dict of string to sequence, or sequence of such
        The parameter grid to explore, as a dictionary mapping estimator
        parameters to sequences of allowed values.

        An empty dict signifies default parameters.

        A sequence of dicts signifies a sequence of grids to search, and is
        useful to avoid exploring parameter combinations that make no sense
        or have no effect. See the examples below.

    Examples
    --------
    >>> from sklearn.model_selection import ParameterGrid
    >>> param_grid = {'a': [1, 2], 'b': [True, False]}
    >>> list(ParameterGrid(param_grid)) == (
    ...    [{'a': 1, 'b': True}, {'a': 1, 'b': False},
    ...     {'a': 2, 'b': True}, {'a': 2, 'b': False}])
    True

    >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]
    >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'},
    ...                               {'kernel': 'rbf', 'gamma': 1},
    ...                               {'kernel': 'rbf', 'gamma': 10}]
    True
    >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1}
    True

    See also
    --------
    :class:`GridSearchCV`:
        Uses :class:`ParameterGrid` to perform a full parallelized parameter
        search.
    """

    def __init__(self, param_grid):
        if not isinstance(param_grid, (Mapping, Iterable)):
            raise TypeError('Parameter grid is not a dict or '
                            'a list ({!r})'.format(param_grid))

        if isinstance(param_grid, Mapping):
            # wrap dictionary in a singleton list to support either dict
            # or list of dicts
            param_grid = [param_grid]

        # check if all entries are dictionaries of lists
        for grid in param_grid:
            if not isinstance(grid, dict):
                raise TypeError('Parameter grid is not a '
                                'dict ({!r})'.format(grid))
            for key in grid:
                if not isinstance(grid[key], Iterable):
                    raise TypeError('Parameter grid value is not iterable '
                                    '(key={!r}, value={!r})'
                                    .format(key, grid[key]))

        self.param_grid = param_grid

    def __iter__(self):
        """Iterate over the points in the grid.

        Returns
        -------
        params : iterator over dict of string to any
            Yields dictionaries mapping each estimator parameter to one of its
            allowed values.
        """
        for p in self.param_grid:
            # Always sort the keys of a dictionary, for reproducibility
            items = sorted(p.items())
            if not items:
                yield {}
            else:
                keys, values = zip(*items)
                for v in product(*values):
                    params = dict(zip(keys, v))
                    yield params

    def __len__(self):
        """Number of points on the grid."""
        # Product function that can handle iterables (np.product can't).
        product = partial(reduce, operator.mul)
        return sum(product(len(v) for v in p.values()) if p else 1
                   for p in self.param_grid)

    def __getitem__(self, ind):
        """Get the parameters that would be ``ind``th in iteration

        Parameters
        ----------
        ind : int
            The iteration index

        Returns
        -------
        params : dict of string to any
            Equal to list(self)[ind]
        """
        # This is used to make discrete sampling without replacement memory
        # efficient.
        for sub_grid in self.param_grid:
            # XXX: could memoize information used here
            if not sub_grid:
                if ind == 0:
                    return {}
                else:
                    ind -= 1
                    continue

            # Reverse so most frequent cycling parameter comes first
            keys, values_lists = zip(*sorted(sub_grid.items())[::-1])
            sizes = [len(v_list) for v_list in values_lists]
            total = np.product(sizes)

            if ind >= total:
                # Try the next grid
                ind -= total
            else:
                out = {}
                for key, v_list, n in zip(keys, values_lists, sizes):
                    ind, offset = divmod(ind, n)
                    out[key] = v_list[offset]
                return out

        raise IndexError('ParameterGrid index out of range')


class ParameterSampler(object):
    """Generator on parameters sampled from given distributions.

    Non-deterministic iterable over random candidate combinations for hyper-
    parameter search. If all parameters are presented as a list,
    sampling without replacement is performed. If at least one parameter
    is given as a distribution, sampling with replacement is used.
    It is highly recommended to use continuous distributions for continuous
    parameters.

    Note that before SciPy 0.16, the ``scipy.stats.distributions`` do not
    accept a custom RNG instance and always use the singleton RNG from
    ``numpy.random``. Hence setting ``random_state`` will not guarantee a
    deterministic iteration whenever ``scipy.stats`` distributions are used to
    define the parameter search space. Deterministic behavior is however
    guaranteed from SciPy 0.16 onwards.

    Read more in the :ref:`User Guide <search>`.

    Parameters
    ----------
    param_distributions : dict
        Dictionary where the keys are parameters and values
        are distributions from which a parameter is to be sampled.
        Distributions either have to provide a ``rvs`` function
        to sample from them, or can be given as a list of values,
        where a uniform distribution is assumed.

    n_iter : integer
        Number of parameter settings that are produced.

    random_state : int, RandomState instance or None, optional (default=None)
        Pseudo random number generator state used for random uniform sampling
        from lists of possible values instead of scipy.stats distributions.
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Returns
    -------
    params : dict of string to any
        **Yields** dictionaries mapping each estimator parameter to
        as sampled value.

    Examples
    --------
    >>> from sklearn.model_selection import ParameterSampler
    >>> from scipy.stats.distributions import expon
    >>> import numpy as np
    >>> np.random.seed(0)
    >>> param_grid = {'a':[1, 2], 'b': expon()}
    >>> param_list = list(ParameterSampler(param_grid, n_iter=4))
    >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items())
    ...                 for d in param_list]
    >>> rounded_list == [{'b': 0.89856, 'a': 1},
    ...                  {'b': 0.923223, 'a': 1},
    ...                  {'b': 1.878964, 'a': 2},
    ...                  {'b': 1.038159, 'a': 2}]
    True
    """
    def __init__(self, param_distributions, n_iter, random_state=None):
        self.param_distributions = param_distributions
        self.n_iter = n_iter
        self.random_state = random_state

    def __iter__(self):
        # check if all distributions are given as lists
        # in this case we want to sample without replacement
        all_lists = np.all([not hasattr(v, "rvs")
                            for v in self.param_distributions.values()])
        rnd = check_random_state(self.random_state)

        if all_lists:
            # look up sampled parameter settings in parameter grid
            param_grid = ParameterGrid(self.param_distributions)
            grid_size = len(param_grid)
            n_iter = self.n_iter

            if grid_size < n_iter:
                warnings.warn(
                    'The total space of parameters %d is smaller '
                    'than n_iter=%d. Running %d iterations. For exhaustive '
                    'searches, use GridSearchCV.'
                    % (grid_size, self.n_iter, grid_size), UserWarning)
                n_iter = grid_size
            for i in sample_without_replacement(grid_size, n_iter,
                                                random_state=rnd):
                yield param_grid[i]

        else:
            # Always sort the keys of a dictionary, for reproducibility
            items = sorted(self.param_distributions.items())
            for _ in six.moves.range(self.n_iter):
                params = dict()
                for k, v in items:
                    if hasattr(v, "rvs"):
                        if sp_version < (0, 16):
                            params[k] = v.rvs()
                        else:
                            params[k] = v.rvs(random_state=rnd)
                    else:
                        params[k] = v[rnd.randint(len(v))]
                yield params

    def __len__(self):
        """Number of points that will be sampled."""
        return self.n_iter


def fit_grid_point(X, y, estimator, parameters, train, test, scorer,
                   verbose, error_score='raise-deprecating', **fit_params):
    """Run fit on one set of parameters.

    Parameters
    ----------
    X : array-like, sparse matrix or list
        Input data.

    y : array-like or None
        Targets for input data.

    estimator : estimator object
        A object of that type is instantiated for each grid point.
        This is assumed to implement the scikit-learn estimator interface.
        Either estimator needs to provide a ``score`` function,
        or ``scoring`` must be passed.

    parameters : dict
        Parameters to be set on estimator for this grid point.

    train : ndarray, dtype int or bool
        Boolean mask or indices for training set.

    test : ndarray, dtype int or bool
        Boolean mask or indices for test set.

    scorer : callable or None
        The scorer callable object / function must have its signature as
        ``scorer(estimator, X, y)``.

        If ``None`` the estimator's default scorer is used.

    verbose : int
        Verbosity level.

    **fit_params : kwargs
        Additional parameter passed to the fit function of the estimator.

    error_score : 'raise' or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised. If a numeric value is given,
        FitFailedWarning is raised. This parameter does not affect the refit
        step, which will always raise the error. Default is 'raise' but from
        version 0.22 it will change to np.nan.

    Returns
    -------
    score : float
         Score of this parameter setting on given training / test split.

    parameters : dict
        The parameters that have been evaluated.

    n_samples_test : int
        Number of test samples in this split.
    """
    # NOTE we are not using the return value as the scorer by itself should be
    # validated before. We use check_scoring only to reject multimetric scorer
    check_scoring(estimator, scorer)
    scores, n_samples_test = _fit_and_score(estimator, X, y,
                                            scorer, train,
                                            test, verbose, parameters,
                                            fit_params=fit_params,
                                            return_n_test_samples=True,
                                            error_score=error_score)
    return scores, parameters, n_samples_test


def _check_param_grid(param_grid):
    if hasattr(param_grid, 'items'):
        param_grid = [param_grid]

    for p in param_grid:
        for name, v in p.items():
            if isinstance(v, np.ndarray) and v.ndim > 1:
                raise ValueError("Parameter array should be one-dimensional.")

            if (isinstance(v, six.string_types) or
                    not isinstance(v, (np.ndarray, Sequence))):
                raise ValueError("Parameter values for parameter ({0}) need "
                                 "to be a sequence(but not a string) or"
                                 " np.ndarray.".format(name))

            if len(v) == 0:
                raise ValueError("Parameter values for parameter ({0}) need "
                                 "to be a non-empty sequence.".format(name))


# XXX Remove in 0.20
class _CVScoreTuple (namedtuple('_CVScoreTuple',
                                ('parameters',
                                 'mean_validation_score',
                                 'cv_validation_scores'))):
    # A raw namedtuple is very memory efficient as it packs the attributes
    # in a struct to get rid of the __dict__ of attributes in particular it
    # does not copy the string for the keys on each instance.
    # By deriving a namedtuple class just to introduce the __repr__ method we
    # would also reintroduce the __dict__ on the instance. By telling the
    # Python interpreter that this subclass uses static __slots__ instead of
    # dynamic attributes. Furthermore we don't need any additional slot in the
    # subclass so we set __slots__ to the empty tuple.
    __slots__ = ()

    def __repr__(self):
        """Simple custom repr to summarize the main info"""
        return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format(
            self.mean_validation_score,
            np.std(self.cv_validation_scores),
            self.parameters)


class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator,
                                      MetaEstimatorMixin)):
    """Abstract base class for hyper parameter search with cross-validation.
    """

    @abstractmethod
    def __init__(self, estimator, scoring=None,
                 fit_params=None, n_jobs=None, iid='warn',
                 refit=True, cv='warn', verbose=0, pre_dispatch='2*n_jobs',
                 error_score='raise-deprecating', return_train_score=True):

        self.scoring = scoring
        self.estimator = estimator
        self.n_jobs = n_jobs
        self.fit_params = fit_params
        self.iid = iid
        self.refit = refit
        self.cv = cv
        self.verbose = verbose
        self.pre_dispatch = pre_dispatch
        self.error_score = error_score
        self.return_train_score = return_train_score

    @property
    def _estimator_type(self):
        return self.estimator._estimator_type

    def score(self, X, y=None):
        """Returns the score on the given data, if the estimator has been refit.

        This uses the score defined by ``scoring`` where provided, and the
        ``best_estimator_.score`` method otherwise.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Input data, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.

        Returns
        -------
        score : float
        """
        self._check_is_fitted('score')
        if self.scorer_ is None:
            raise ValueError("No score function explicitly defined, "
                             "and the estimator doesn't provide one %s"
                             % self.best_estimator_)
        score = self.scorer_[self.refit] if self.multimetric_ else self.scorer_
        return score(self.best_estimator_, X, y)

    def _check_is_fitted(self, method_name):
        if not self.refit:
            raise NotFittedError('This %s instance was initialized '
                                 'with refit=False. %s is '
                                 'available only after refitting on the best '
                                 'parameters. You can refit an estimator '
                                 'manually using the ``best_params_`` '
                                 'attribute'
                                 % (type(self).__name__, method_name))
        else:
            check_is_fitted(self, 'best_estimator_')

    @if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
    def predict(self, X):
        """Call predict on the estimator with the best found parameters.

        Only available if ``refit=True`` and the underlying estimator supports
        ``predict``.

        Parameters
        -----------
        X : indexable, length n_samples
            Must fulfill the input assumptions of the
            underlying estimator.

        """
        self._check_is_fitted('predict')
        return self.best_estimator_.predict(X)

    @if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
    def predict_proba(self, X):
        """Call predict_proba on the estimator with the best found parameters.

        Only available if ``refit=True`` and the underlying estimator supports
        ``predict_proba``.

        Parameters
        -----------
        X : indexable, length n_samples
            Must fulfill the input assumptions of the
            underlying estimator.

        """
        self._check_is_fitted('predict_proba')
        return self.best_estimator_.predict_proba(X)

    @if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
    def predict_log_proba(self, X):
        """Call predict_log_proba on the estimator with the best found parameters.

        Only available if ``refit=True`` and the underlying estimator supports
        ``predict_log_proba``.

        Parameters
        -----------
        X : indexable, length n_samples
            Must fulfill the input assumptions of the
            underlying estimator.

        """
        self._check_is_fitted('predict_log_proba')
        return self.best_estimator_.predict_log_proba(X)

    @if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
    def decision_function(self, X):
        """Call decision_function on the estimator with the best found parameters.

        Only available if ``refit=True`` and the underlying estimator supports
        ``decision_function``.

        Parameters
        -----------
        X : indexable, length n_samples
            Must fulfill the input assumptions of the
            underlying estimator.

        """
        self._check_is_fitted('decision_function')
        return self.best_estimator_.decision_function(X)

    @if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
    def transform(self, X):
        """Call transform on the estimator with the best found parameters.

        Only available if the underlying estimator supports ``transform`` and
        ``refit=True``.

        Parameters
        -----------
        X : indexable, length n_samples
            Must fulfill the input assumptions of the
            underlying estimator.

        """
        self._check_is_fitted('transform')
        return self.best_estimator_.transform(X)

    @if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
    def inverse_transform(self, Xt):
        """Call inverse_transform on the estimator with the best found params.

        Only available if the underlying estimator implements
        ``inverse_transform`` and ``refit=True``.

        Parameters
        -----------
        Xt : indexable, length n_samples
            Must fulfill the input assumptions of the
            underlying estimator.

        """
        self._check_is_fitted('inverse_transform')
        return self.best_estimator_.inverse_transform(Xt)

    @property
    def classes_(self):
        self._check_is_fitted("classes_")
        return self.best_estimator_.classes_

    def _run_search(self, evaluate_candidates):
        """Repeatedly calls `evaluate_candidates` to conduct a search.

        This method, implemented in sub-classes, makes it possible to
        customize the the scheduling of evaluations: GridSearchCV and
        RandomizedSearchCV schedule evaluations for their whole parameter
        search space at once but other more sequential approaches are also
        possible: for instance is possible to iteratively schedule evaluations
        for new regions of the parameter search space based on previously
        collected evaluation results. This makes it possible to implement
        Bayesian optimization or more generally sequential model-based
        optimization by deriving from the BaseSearchCV abstract base class.

        Parameters
        ----------
        evaluate_candidates : callable
            This callback accepts a list of candidates, where each candidate is
            a dict of parameter settings. It returns a dict of all results so
            far, formatted like ``cv_results_``.

        Examples
        --------

        ::

            def _run_search(self, evaluate_candidates):
                'Try C=0.1 only if C=1 is better than C=10'
                all_results = evaluate_candidates([{'C': 1}, {'C': 10}])
                score = all_results['mean_test_score']
                if score[0] < score[1]:
                    evaluate_candidates([{'C': 0.1}])
        """
        raise NotImplementedError("_run_search not implemented.")

    def fit(self, X, y=None, groups=None, **fit_params):
        """Run fit with all sets of parameters.

        Parameters
        ----------

        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.

        groups : array-like, with shape (n_samples,), optional
            Group labels for the samples used while splitting the dataset into
            train/test set.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of the estimator
        """

        if self.fit_params is not None:
            warnings.warn('"fit_params" as a constructor argument was '
                          'deprecated in version 0.19 and will be removed '
                          'in version 0.21. Pass fit parameters to the '
                          '"fit" method instead.', DeprecationWarning)
            if fit_params:
                warnings.warn('Ignoring fit_params passed as a constructor '
                              'argument in favor of keyword arguments to '
                              'the "fit" method.', RuntimeWarning)
            else:
                fit_params = self.fit_params
        estimator = self.estimator
        cv = check_cv(self.cv, y, classifier=is_classifier(estimator))

        scorers, self.multimetric_ = _check_multimetric_scoring(
            self.estimator, scoring=self.scoring)

        if self.multimetric_:
            if self.refit is not False and (
                    not isinstance(self.refit, six.string_types) or
                    # This will work for both dict / list (tuple)
                    self.refit not in scorers):
                raise ValueError("For multi-metric scoring, the parameter "
                                 "refit must be set to a scorer key "
                                 "to refit an estimator with the best "
                                 "parameter setting on the whole data and "
                                 "make the best_* attributes "
                                 "available for that metric. If this is not "
                                 "needed, refit should be set to False "
                                 "explicitly. %r was passed." % self.refit)
            else:
                refit_metric = self.refit
        else:
            refit_metric = 'score'

        X, y, groups = indexable(X, y, groups)
        n_splits = cv.get_n_splits(X, y, groups)

        base_estimator = clone(self.estimator)

        parallel = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                            pre_dispatch=self.pre_dispatch)

        fit_and_score_kwargs = dict(scorer=scorers,
                                    fit_params=fit_params,
                                    return_train_score=self.return_train_score,
                                    return_n_test_samples=True,
                                    return_times=True,
                                    return_parameters=False,
                                    error_score=self.error_score,
                                    verbose=self.verbose)
        results_container = [{}]
        with parallel:
            all_candidate_params = []
            all_out = []

            def evaluate_candidates(candidate_params):
                candidate_params = list(candidate_params)
                n_candidates = len(candidate_params)

                if self.verbose > 0:
                    print("Fitting {0} folds for each of {1} candidates,"
                          " totalling {2} fits".format(
                              n_splits, n_candidates, n_candidates * n_splits))

                out = parallel(delayed(_fit_and_score)(clone(base_estimator),
                                                       X, y,
                                                       train=train, test=test,
                                                       parameters=parameters,
                                                       **fit_and_score_kwargs)
                               for parameters, (train, test)
                               in product(candidate_params,
                                          cv.split(X, y, groups)))

                all_candidate_params.extend(candidate_params)
                all_out.extend(out)

                # XXX: When we drop Python 2 support, we can use nonlocal
                # instead of results_container
                results_container[0] = self._format_results(
                    all_candidate_params, scorers, n_splits, all_out)
                return results_container[0]

            self._run_search(evaluate_candidates)

        results = results_container[0]

        # For multi-metric evaluation, store the best_index_, best_params_ and
        # best_score_ iff refit is one of the scorer names
        # In single metric evaluation, refit_metric is "score"
        if self.refit or not self.multimetric_:
            self.best_index_ = results["rank_test_%s" % refit_metric].argmin()
            self.best_params_ = results["params"][self.best_index_]
            self.best_score_ = results["mean_test_%s" % refit_metric][
                self.best_index_]

        if self.refit:
            self.best_estimator_ = clone(base_estimator).set_params(
                **self.best_params_)
            refit_start_time = time.time()
            if y is not None:
                self.best_estimator_.fit(X, y, **fit_params)
            else:
                self.best_estimator_.fit(X, **fit_params)
            refit_end_time = time.time()
            self.refit_time_ = refit_end_time - refit_start_time

        # Store the only scorer not as a dict for single metric evaluation
        self.scorer_ = scorers if self.multimetric_ else scorers['score']

        self.cv_results_ = results
        self.n_splits_ = n_splits

        return self

    def _format_results(self, candidate_params, scorers, n_splits, out):
        n_candidates = len(candidate_params)

        # if one choose to see train score, "out" will contain train score info
        if self.return_train_score:
            (train_score_dicts, test_score_dicts, test_sample_counts, fit_time,
             score_time) = zip(*out)
        else:
            (test_score_dicts, test_sample_counts, fit_time,
             score_time) = zip(*out)

        # test_score_dicts and train_score dicts are lists of dictionaries and
        # we make them into dict of lists
        test_scores = _aggregate_score_dicts(test_score_dicts)
        if self.return_train_score:
            train_scores = _aggregate_score_dicts(train_score_dicts)

        # TODO: replace by a dict in 0.21
        results = (DeprecationDict() if self.return_train_score == 'warn'
                   else {})

        def _store(key_name, array, weights=None, splits=False, rank=False):
            """A small helper to store the scores/times to the cv_results_"""
            # When iterated first by splits, then by parameters
            # We want `array` to have `n_candidates` rows and `n_splits` cols.
            array = np.array(array, dtype=np.float64).reshape(n_candidates,
                                                              n_splits)
            if splits:
                for split_i in range(n_splits):
                    # Uses closure to alter the results
                    results["split%d_%s"
                            % (split_i, key_name)] = array[:, split_i]

            array_means = np.average(array, axis=1, weights=weights)
            results['mean_%s' % key_name] = array_means
            # Weighted std is not directly available in numpy
            array_stds = np.sqrt(np.average((array -
                                             array_means[:, np.newaxis]) ** 2,
                                            axis=1, weights=weights))
            results['std_%s' % key_name] = array_stds

            if rank:
                results["rank_%s" % key_name] = np.asarray(
                    rankdata(-array_means, method='min'), dtype=np.int32)

        _store('fit_time', fit_time)
        _store('score_time', score_time)
        # Use one MaskedArray and mask all the places where the param is not
        # applicable for that candidate. Use defaultdict as each candidate may
        # not contain all the params
        param_results = defaultdict(partial(MaskedArray,
                                            np.empty(n_candidates,),
                                            mask=True,
                                            dtype=object))
        for cand_i, params in enumerate(candidate_params):
            for name, value in params.items():
                # An all masked empty array gets created for the key
                # `"param_%s" % name` at the first occurrence of `name`.
                # Setting the value at an index also unmasks that index
                param_results["param_%s" % name][cand_i] = value

        results.update(param_results)
        # Store a list of param dicts at the key 'params'
        results['params'] = candidate_params

        # NOTE test_sample counts (weights) remain the same for all candidates
        test_sample_counts = np.array(test_sample_counts[:n_splits],
                                      dtype=np.int)
        iid = self.iid
        if self.iid == 'warn':
            warn = False
            for scorer_name in scorers.keys():
                scores = test_scores[scorer_name].reshape(n_candidates,
                                                          n_splits)
                means_weighted = np.average(scores, axis=1,
                                            weights=test_sample_counts)
                means_unweighted = np.average(scores, axis=1)
                if not np.allclose(means_weighted, means_unweighted,
                                   rtol=1e-4, atol=1e-4):
                    warn = True
                    break

            if warn:
                warnings.warn("The default of the `iid` parameter will change "
                              "from True to False in version 0.22 and will be"
                              " removed in 0.24. This will change numeric"
                              " results when test-set sizes are unequal.",
                              DeprecationWarning)
            iid = True

        for scorer_name in scorers.keys():
            # Computed the (weighted) mean and std for test scores alone
            _store('test_%s' % scorer_name, test_scores[scorer_name],
                   splits=True, rank=True,
                   weights=test_sample_counts if iid else None)
            if self.return_train_score:
                prev_keys = set(results.keys())
                _store('train_%s' % scorer_name, train_scores[scorer_name],
                       splits=True)
                if self.return_train_score == 'warn':
                    for key in set(results.keys()) - prev_keys:
                        message = (
                            'You are accessing a training score ({!r}), '
                            'which will not be available by default '
                            'any more in 0.21. If you need training scores, '
                            'please set return_train_score=True').format(key)
                        # warn on key access
                        results.add_warning(key, message, FutureWarning)

        return results


class GridSearchCV(BaseSearchCV):
    """Exhaustive search over specified parameter values for an estimator.

    Important members are fit, predict.

    GridSearchCV implements a "fit" and a "score" method.
    It also implements "predict", "predict_proba", "decision_function",
    "transform" and "inverse_transform" if they are implemented in the
    estimator used.

    The parameters of the estimator used to apply these methods are optimized
    by cross-validated grid-search over a parameter grid.

    Read more in the :ref:`User Guide <grid_search>`.

    Parameters
    ----------
    estimator : estimator object.
        This is assumed to implement the scikit-learn estimator interface.
        Either estimator needs to provide a ``score`` function,
        or ``scoring`` must be passed.

    param_grid : dict or list of dictionaries
        Dictionary with parameters names (string) as keys and lists of
        parameter settings to try as values, or a list of such
        dictionaries, in which case the grids spanned by each dictionary
        in the list are explored. This enables searching over any sequence
        of parameter settings.

    scoring : string, callable, list/tuple, dict or None, default: None
        A single string (see :ref:`scoring_parameter`) or a callable
        (see :ref:`scoring`) to evaluate the predictions on the test set.

        For evaluating multiple metrics, either give a list of (unique) strings
        or a dict with names as keys and callables as values.

        NOTE that when using custom scorers, each scorer should return a single
        value. Metric functions returning a list/array of values can be wrapped
        into multiple scorers that return one value each.

        See :ref:`multimetric_grid_search` for an example.

        If None, the estimator's default scorer (if available) is used.

    fit_params : dict, optional
        Parameters to pass to the fit method.

        .. deprecated:: 0.19
           ``fit_params`` as a constructor argument was deprecated in version
           0.19 and will be removed in version 0.21. Pass fit parameters to
           the ``fit`` method instead.

    n_jobs : int or None, optional (default=None)
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    iid : boolean, default='warn'
        If True, return the average score across folds, weighted by the number
        of samples in each test set. In this case, the data is assumed to be
        identically distributed across the folds, and the loss minimized is
        the total loss per sample, and not the mean loss across the folds. If
        False, return the average score across folds. Default is True, but
        will change to False in version 0.21, to correspond to the standard
        definition of cross-validation.

        .. versionchanged:: 0.20
            Parameter ``iid`` will change from True to False by default in
            version 0.22, and will be removed in 0.24.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    refit : boolean, or string, default=True
        Refit an estimator using the best found parameters on the whole
        dataset.

        For multiple metric evaluation, this needs to be a string denoting the
        scorer is used to find the best parameters for refitting the estimator
        at the end.

        The refitted estimator is made available at the ``best_estimator_``
        attribute and permits using ``predict`` directly on this
        ``GridSearchCV`` instance.

        Also for multiple metric evaluation, the attributes ``best_index_``,
        ``best_score_`` and ``best_params_`` will only be available if
        ``refit`` is set and all of them will be determined w.r.t this specific
        scorer.

        See ``scoring`` parameter to know more about multiple metric
        evaluation.

    verbose : integer
        Controls the verbosity: the higher, the more messages.

    error_score : 'raise' or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised. If a numeric value is given,
        FitFailedWarning is raised. This parameter does not affect the refit
        step, which will always raise the error. Default is 'raise' but from
        version 0.22 it will change to np.nan.

    return_train_score : boolean, optional
        If ``False``, the ``cv_results_`` attribute will not include training
        scores.

        Current default is ``'warn'``, which behaves as ``True`` in addition
        to raising a warning when a training score is looked up.
        That default will be changed to ``False`` in 0.21.
        Computing training scores is used to get insights on how different
        parameter settings impact the overfitting/underfitting trade-off.
        However computing the scores on the training set can be computationally
        expensive and is not strictly required to select the parameters that
        yield the best generalization performance.


    Examples
    --------
    >>> from sklearn import svm, datasets
    >>> from sklearn.model_selection import GridSearchCV
    >>> iris = datasets.load_iris()
    >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
    >>> svc = svm.SVC(gamma="scale")
    >>> clf = GridSearchCV(svc, parameters, cv=5)
    >>> clf.fit(iris.data, iris.target)
    ...                             # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
    GridSearchCV(cv=5, error_score=...,
           estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,
                         decision_function_shape='ovr', degree=..., gamma=...,
                         kernel='rbf', max_iter=-1, probability=False,
                         random_state=None, shrinking=True, tol=...,
                         verbose=False),
           fit_params=None, iid=..., n_jobs=None,
           param_grid=..., pre_dispatch=..., refit=..., return_train_score=...,
           scoring=..., verbose=...)
    >>> sorted(clf.cv_results_.keys())
    ...                             # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
    ['mean_fit_time', 'mean_score_time', 'mean_test_score',...
     'mean_train_score', 'param_C', 'param_kernel', 'params',...
     'rank_test_score', 'split0_test_score',...
     'split0_train_score', 'split1_test_score', 'split1_train_score',...
     'split2_test_score', 'split2_train_score',...
     'std_fit_time', 'std_score_time', 'std_test_score', 'std_train_score'...]

    Attributes
    ----------
    cv_results_ : dict of numpy (masked) ndarrays
        A dict with keys as column headers and values as columns, that can be
        imported into a pandas ``DataFrame``.

        For instance the below given table

        +------------+-----------+------------+-----------------+---+---------+
        |param_kernel|param_gamma|param_degree|split0_test_score|...|rank_t...|
        +============+===========+============+=================+===+=========+
        |  'poly'    |     --    |      2     |       0.80      |...|    2    |
        +------------+-----------+------------+-----------------+---+---------+
        |  'poly'    |     --    |      3     |       0.70      |...|    4    |
        +------------+-----------+------------+-----------------+---+---------+
        |  'rbf'     |     0.1   |     --     |       0.80      |...|    3    |
        +------------+-----------+------------+-----------------+---+---------+
        |  'rbf'     |     0.2   |     --     |       0.93      |...|    1    |
        +------------+-----------+------------+-----------------+---+---------+

        will be represented by a ``cv_results_`` dict of::

            {
            'param_kernel': masked_array(data = ['poly', 'poly', 'rbf', 'rbf'],
                                         mask = [False False False False]...)
            'param_gamma': masked_array(data = [-- -- 0.1 0.2],
                                        mask = [ True  True False False]...),
            'param_degree': masked_array(data = [2.0 3.0 -- --],
                                         mask = [False False  True  True]...),
            'split0_test_score'  : [0.80, 0.70, 0.80, 0.93],
            'split1_test_score'  : [0.82, 0.50, 0.70, 0.78],
            'mean_test_score'    : [0.81, 0.60, 0.75, 0.85],
            'std_test_score'     : [0.01, 0.10, 0.05, 0.08],
            'rank_test_score'    : [2, 4, 3, 1],
            'split0_train_score' : [0.80, 0.92, 0.70, 0.93],
            'split1_train_score' : [0.82, 0.55, 0.70, 0.87],
            'mean_train_score'   : [0.81, 0.74, 0.70, 0.90],
            'std_train_score'    : [0.01, 0.19, 0.00, 0.03],
            'mean_fit_time'      : [0.73, 0.63, 0.43, 0.49],
            'std_fit_time'       : [0.01, 0.02, 0.01, 0.01],
            'mean_score_time'    : [0.01, 0.06, 0.04, 0.04],
            'std_score_time'     : [0.00, 0.00, 0.00, 0.01],
            'params'             : [{'kernel': 'poly', 'degree': 2}, ...],
            }

        NOTE

        The key ``'params'`` is used to store a list of parameter
        settings dicts for all the parameter candidates.

        The ``mean_fit_time``, ``std_fit_time``, ``mean_score_time`` and
        ``std_score_time`` are all in seconds.

        For multi-metric evaluation, the scores for all the scorers are
        available in the ``cv_results_`` dict at the keys ending with that
        scorer's name (``'_<scorer_name>'``) instead of ``'_score'`` shown
        above. ('split0_test_precision', 'mean_train_precision' etc.)

    best_estimator_ : estimator or dict
        Estimator that was chosen by the search, i.e. estimator
        which gave highest score (or smallest loss if specified)
        on the left out data. Not available if ``refit=False``.

        See ``refit`` parameter for more information on allowed values.

    best_score_ : float
        Mean cross-validated score of the best_estimator

        For multi-metric evaluation, this is present only if ``refit`` is
        specified.

    best_params_ : dict
        Parameter setting that gave the best results on the hold out data.

        For multi-metric evaluation, this is present only if ``refit`` is
        specified.

    best_index_ : int
        The index (of the ``cv_results_`` arrays) which corresponds to the best
        candidate parameter setting.

        The dict at ``search.cv_results_['params'][search.best_index_]`` gives
        the parameter setting for the best model, that gives the highest
        mean score (``search.best_score_``).

        For multi-metric evaluation, this is present only if ``refit`` is
        specified.

    scorer_ : function or a dict
        Scorer function used on the held out data to choose the best
        parameters for the model.

        For multi-metric evaluation, this attribute holds the validated
        ``scoring`` dict which maps the scorer key to the scorer callable.

    n_splits_ : int
        The number of cross-validation splits (folds/iterations).

    refit_time_ : float
        Seconds used for refitting the best model on the whole dataset.

        This is present only if ``refit`` is not False.

    Notes
    ------
    The parameters selected are those that maximize the score of the left out
    data, unless an explicit score is passed in which case it is used instead.

    If `n_jobs` was set to a value higher than one, the data is copied for each
    point in the grid (and not `n_jobs` times). This is done for efficiency
    reasons if individual jobs take very little time, but may raise errors if
    the dataset is large and not enough memory is available.  A workaround in
    this case is to set `pre_dispatch`. Then, the memory is copied only
    `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *
    n_jobs`.

    See Also
    ---------
    :class:`ParameterGrid`:
        generates all the combinations of a hyperparameter grid.

    :func:`sklearn.model_selection.train_test_split`:
        utility function to split the data into a development set usable
        for fitting a GridSearchCV instance and an evaluation set for
        its final evaluation.

    :func:`sklearn.metrics.make_scorer`:
        Make a scorer from a performance metric or loss function.

    """

    def __init__(self, estimator, param_grid, scoring=None, fit_params=None,
                 n_jobs=None, iid='warn', refit=True, cv='warn', verbose=0,
                 pre_dispatch='2*n_jobs', error_score='raise-deprecating',
                 return_train_score="warn"):
        super(GridSearchCV, self).__init__(
            estimator=estimator, scoring=scoring, fit_params=fit_params,
            n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose,
            pre_dispatch=pre_dispatch, error_score=error_score,
            return_train_score=return_train_score)
        self.param_grid = param_grid
        _check_param_grid(param_grid)

    def _run_search(self, evaluate_candidates):
        """Search all candidates in param_grid"""
        evaluate_candidates(ParameterGrid(self.param_grid))


class RandomizedSearchCV(BaseSearchCV):
    """Randomized search on hyper parameters.

    RandomizedSearchCV implements a "fit" and a "score" method.
    It also implements "predict", "predict_proba", "decision_function",
    "transform" and "inverse_transform" if they are implemented in the
    estimator used.

    The parameters of the estimator used to apply these methods are optimized
    by cross-validated search over parameter settings.

    In contrast to GridSearchCV, not all parameter values are tried out, but
    rather a fixed number of parameter settings is sampled from the specified
    distributions. The number of parameter settings that are tried is
    given by n_iter.

    If all parameters are presented as a list,
    sampling without replacement is performed. If at least one parameter
    is given as a distribution, sampling with replacement is used.
    It is highly recommended to use continuous distributions for continuous
    parameters.

    Note that before SciPy 0.16, the ``scipy.stats.distributions`` do not
    accept a custom RNG instance and always use the singleton RNG from
    ``numpy.random``. Hence setting ``random_state`` will not guarantee a
    deterministic iteration whenever ``scipy.stats`` distributions are used to
    define the parameter search space.

    Read more in the :ref:`User Guide <randomized_parameter_search>`.

    Parameters
    ----------
    estimator : estimator object.
        A object of that type is instantiated for each grid point.
        This is assumed to implement the scikit-learn estimator interface.
        Either estimator needs to provide a ``score`` function,
        or ``scoring`` must be passed.

    param_distributions : dict
        Dictionary with parameters names (string) as keys and distributions
        or lists of parameters to try. Distributions must provide a ``rvs``
        method for sampling (such as those from scipy.stats.distributions).
        If a list is given, it is sampled uniformly.

    n_iter : int, default=10
        Number of parameter settings that are sampled. n_iter trades
        off runtime vs quality of the solution.

    scoring : string, callable, list/tuple, dict or None, default: None
        A single string (see :ref:`scoring_parameter`) or a callable
        (see :ref:`scoring`) to evaluate the predictions on the test set.

        For evaluating multiple metrics, either give a list of (unique) strings
        or a dict with names as keys and callables as values.

        NOTE that when using custom scorers, each scorer should return a single
        value. Metric functions returning a list/array of values can be wrapped
        into multiple scorers that return one value each.

        See :ref:`multimetric_grid_search` for an example.

        If None, the estimator's default scorer (if available) is used.

    fit_params : dict, optional
        Parameters to pass to the fit method.

        .. deprecated:: 0.19
           ``fit_params`` as a constructor argument was deprecated in version
           0.19 and will be removed in version 0.21. Pass fit parameters to
           the ``fit`` method instead.

    n_jobs : int or None, optional (default=None)
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    iid : boolean, default='warn'
        If True, return the average score across folds, weighted by the number
        of samples in each test set. In this case, the data is assumed to be
        identically distributed across the folds, and the loss minimized is
        the total loss per sample, and not the mean loss across the folds. If
        False, return the average score across folds. Default is True, but
        will change to False in version 0.21, to correspond to the standard
        definition of cross-validation.

        .. versionchanged:: 0.20
            Parameter ``iid`` will change from True to False by default in
            version 0.22, and will be removed in 0.24.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    refit : boolean, or string default=True
        Refit an estimator using the best found parameters on the whole
        dataset.

        For multiple metric evaluation, this needs to be a string denoting the
        scorer that would be used to find the best parameters for refitting
        the estimator at the end.

        The refitted estimator is made available at the ``best_estimator_``
        attribute and permits using ``predict`` directly on this
        ``RandomizedSearchCV`` instance.

        Also for multiple metric evaluation, the attributes ``best_index_``,
        ``best_score_`` and ``best_params_`` will only be available if
        ``refit`` is set and all of them will be determined w.r.t this specific
        scorer.

        See ``scoring`` parameter to know more about multiple metric
        evaluation.

    verbose : integer
        Controls the verbosity: the higher, the more messages.

    random_state : int, RandomState instance or None, optional, default=None
        Pseudo random number generator state used for random uniform sampling
        from lists of possible values instead of scipy.stats distributions.
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    error_score : 'raise' or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised. If a numeric value is given,
        FitFailedWarning is raised. This parameter does not affect the refit
        step, which will always raise the error. Default is 'raise' but from
        version 0.22 it will change to np.nan.

    return_train_score : boolean, optional
        If ``False``, the ``cv_results_`` attribute will not include training
        scores.

        Current default is ``'warn'``, which behaves as ``True`` in addition
        to raising a warning when a training score is looked up.
        That default will be changed to ``False`` in 0.21.
        Computing training scores is used to get insights on how different
        parameter settings impact the overfitting/underfitting trade-off.
        However computing the scores on the training set can be computationally
        expensive and is not strictly required to select the parameters that
        yield the best generalization performance.

    Attributes
    ----------
    cv_results_ : dict of numpy (masked) ndarrays
        A dict with keys as column headers and values as columns, that can be
        imported into a pandas ``DataFrame``.

        For instance the below given table

        +--------------+-------------+-------------------+---+---------------+
        | param_kernel | param_gamma | split0_test_score |...|rank_test_score|
        +==============+=============+===================+===+===============+
        |    'rbf'     |     0.1     |       0.80        |...|       2       |
        +--------------+-------------+-------------------+---+---------------+
        |    'rbf'     |     0.2     |       0.90        |...|       1       |
        +--------------+-------------+-------------------+---+---------------+
        |    'rbf'     |     0.3     |       0.70        |...|       1       |
        +--------------+-------------+-------------------+---+---------------+

        will be represented by a ``cv_results_`` dict of::

            {
            'param_kernel' : masked_array(data = ['rbf', 'rbf', 'rbf'],
                                          mask = False),
            'param_gamma'  : masked_array(data = [0.1 0.2 0.3], mask = False),
            'split0_test_score'  : [0.80, 0.90, 0.70],
            'split1_test_score'  : [0.82, 0.50, 0.70],
            'mean_test_score'    : [0.81, 0.70, 0.70],
            'std_test_score'     : [0.01, 0.20, 0.00],
            'rank_test_score'    : [3, 1, 1],
            'split0_train_score' : [0.80, 0.92, 0.70],
            'split1_train_score' : [0.82, 0.55, 0.70],
            'mean_train_score'   : [0.81, 0.74, 0.70],
            'std_train_score'    : [0.01, 0.19, 0.00],
            'mean_fit_time'      : [0.73, 0.63, 0.43],
            'std_fit_time'       : [0.01, 0.02, 0.01],
            'mean_score_time'    : [0.01, 0.06, 0.04],
            'std_score_time'     : [0.00, 0.00, 0.00],
            'params'             : [{'kernel' : 'rbf', 'gamma' : 0.1}, ...],
            }

        NOTE

        The key ``'params'`` is used to store a list of parameter
        settings dicts for all the parameter candidates.

        The ``mean_fit_time``, ``std_fit_time``, ``mean_score_time`` and
        ``std_score_time`` are all in seconds.

        For multi-metric evaluation, the scores for all the scorers are
        available in the ``cv_results_`` dict at the keys ending with that
        scorer's name (``'_<scorer_name>'``) instead of ``'_score'`` shown
        above. ('split0_test_precision', 'mean_train_precision' etc.)

    best_estimator_ : estimator or dict
        Estimator that was chosen by the search, i.e. estimator
        which gave highest score (or smallest loss if specified)
        on the left out data. Not available if ``refit=False``.

        For multi-metric evaluation, this attribute is present only if
        ``refit`` is specified.

        See ``refit`` parameter for more information on allowed values.

    best_score_ : float
        Mean cross-validated score of the best_estimator.

        For multi-metric evaluation, this is not available if ``refit`` is
        ``False``. See ``refit`` parameter for more information.

    best_params_ : dict
        Parameter setting that gave the best results on the hold out data.

        For multi-metric evaluation, this is not available if ``refit`` is
        ``False``. See ``refit`` parameter for more information.

    best_index_ : int
        The index (of the ``cv_results_`` arrays) which corresponds to the best
        candidate parameter setting.

        The dict at ``search.cv_results_['params'][search.best_index_]`` gives
        the parameter setting for the best model, that gives the highest
        mean score (``search.best_score_``).

        For multi-metric evaluation, this is not available if ``refit`` is
        ``False``. See ``refit`` parameter for more information.

    scorer_ : function or a dict
        Scorer function used on the held out data to choose the best
        parameters for the model.

        For multi-metric evaluation, this attribute holds the validated
        ``scoring`` dict which maps the scorer key to the scorer callable.

    n_splits_ : int
        The number of cross-validation splits (folds/iterations).

    refit_time_ : float
        Seconds used for refitting the best model on the whole dataset.

        This is present only if ``refit`` is not False.

    Notes
    -----
    The parameters selected are those that maximize the score of the held-out
    data, according to the scoring parameter.

    If `n_jobs` was set to a value higher than one, the data is copied for each
    parameter setting(and not `n_jobs` times). This is done for efficiency
    reasons if individual jobs take very little time, but may raise errors if
    the dataset is large and not enough memory is available.  A workaround in
    this case is to set `pre_dispatch`. Then, the memory is copied only
    `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *
    n_jobs`.

    See Also
    --------
    :class:`GridSearchCV`:
        Does exhaustive search over a grid of parameters.

    :class:`ParameterSampler`:
        A generator over parameter settings, constructed from
        param_distributions.

    """

    def __init__(self, estimator, param_distributions, n_iter=10, scoring=None,
                 fit_params=None, n_jobs=None, iid='warn', refit=True,
                 cv='warn', verbose=0, pre_dispatch='2*n_jobs',
                 random_state=None, error_score='raise-deprecating',
                 return_train_score="warn"):
        self.param_distributions = param_distributions
        self.n_iter = n_iter
        self.random_state = random_state
        super(RandomizedSearchCV, self).__init__(
            estimator=estimator, scoring=scoring, fit_params=fit_params,
            n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose,
            pre_dispatch=pre_dispatch, error_score=error_score,
            return_train_score=return_train_score)

    def _run_search(self, evaluate_candidates):
        """Search n_iter candidates from param_distributions"""
        evaluate_candidates(ParameterSampler(
            self.param_distributions, self.n_iter,
            random_state=self.random_state))