File: _validation.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1482 lines) | stat: -rw-r--r-- 59,895 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
"""
The :mod:`sklearn.model_selection._validation` module includes classes and
functions to validate the model.
"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Raghav RV <rvraghav93@gmail.com>
# License: BSD 3 clause

from __future__ import print_function
from __future__ import division

import warnings
import numbers
import time
from traceback import format_exception_only

import numpy as np
import scipy.sparse as sp

from ..base import is_classifier, clone
from ..utils import indexable, check_random_state, safe_indexing
from ..utils.deprecation import DeprecationDict
from ..utils.validation import _is_arraylike, _num_samples
from ..utils.metaestimators import _safe_split
from ..utils._joblib import Parallel, delayed
from ..utils._joblib import logger
from ..externals.six.moves import zip
from ..metrics.scorer import check_scoring, _check_multimetric_scoring
from ..exceptions import FitFailedWarning
from ._split import check_cv
from ..preprocessing import LabelEncoder


__all__ = ['cross_validate', 'cross_val_score', 'cross_val_predict',
           'permutation_test_score', 'learning_curve', 'validation_curve']


def cross_validate(estimator, X, y=None, groups=None, scoring=None, cv='warn',
                   n_jobs=None, verbose=0, fit_params=None,
                   pre_dispatch='2*n_jobs', return_train_score="warn",
                   return_estimator=False, error_score='raise-deprecating'):
    """Evaluate metric(s) by cross-validation and also record fit/score times.

    Read more in the :ref:`User Guide <multimetric_cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like
        The data to fit. Can be for example a list, or an array.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    scoring : string, callable, list/tuple, dict or None, default: None
        A single string (see :ref:`scoring_parameter`) or a callable
        (see :ref:`scoring`) to evaluate the predictions on the test set.

        For evaluating multiple metrics, either give a list of (unique) strings
        or a dict with names as keys and callables as values.

        NOTE that when using custom scorers, each scorer should return a single
        value. Metric functions returning a list/array of values can be wrapped
        into multiple scorers that return one value each.

        See :ref:`multimetric_grid_search` for an example.

        If None, the estimator's default scorer (if available) is used.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    n_jobs : int or None, optional (default=None)
        The number of CPUs to use to do the computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : integer, optional
        The verbosity level.

    fit_params : dict, optional
        Parameters to pass to the fit method of the estimator.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    return_train_score : boolean, optional
        Whether to include train scores.

        Current default is ``'warn'``, which behaves as ``True`` in addition
        to raising a warning when a training score is looked up.
        That default will be changed to ``False`` in 0.21.
        Computing training scores is used to get insights on how different
        parameter settings impact the overfitting/underfitting trade-off.
        However computing the scores on the training set can be computationally
        expensive and is not strictly required to select the parameters that
        yield the best generalization performance.

    return_estimator : boolean, default False
        Whether to return the estimators fitted on each split.

    error_score : 'raise' | 'raise-deprecating' or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If set to 'raise-deprecating', a FutureWarning is printed before the
        error is raised.
        If a numeric value is given, FitFailedWarning is raised. This parameter
        does not affect the refit step, which will always raise the error.
        Default is 'raise-deprecating' but from version 0.22 it will change
        to np.nan.

    Returns
    -------
    scores : dict of float arrays of shape=(n_splits,)
        Array of scores of the estimator for each run of the cross validation.

        A dict of arrays containing the score/time arrays for each scorer is
        returned. The possible keys for this ``dict`` are:

            ``test_score``
                The score array for test scores on each cv split.
            ``train_score``
                The score array for train scores on each cv split.
                This is available only if ``return_train_score`` parameter
                is ``True``.
            ``fit_time``
                The time for fitting the estimator on the train
                set for each cv split.
            ``score_time``
                The time for scoring the estimator on the test set for each
                cv split. (Note time for scoring on the train set is not
                included even if ``return_train_score`` is set to ``True``
            ``estimator``
                The estimator objects for each cv split.
                This is available only if ``return_estimator`` parameter
                is set to ``True``.

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.model_selection import cross_validate
    >>> from sklearn.metrics.scorer import make_scorer
    >>> from sklearn.metrics import confusion_matrix
    >>> from sklearn.svm import LinearSVC
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()

    Single metric evaluation using ``cross_validate``

    >>> cv_results = cross_validate(lasso, X, y, cv=3,
    ...                             return_train_score=False)
    >>> sorted(cv_results.keys())                         # doctest: +ELLIPSIS
    ['fit_time', 'score_time', 'test_score']
    >>> cv_results['test_score']    # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
    array([0.33150734, 0.08022311, 0.03531764])

    Multiple metric evaluation using ``cross_validate``
    (please refer the ``scoring`` parameter doc for more information)

    >>> scores = cross_validate(lasso, X, y, cv=3,
    ...                         scoring=('r2', 'neg_mean_squared_error'),
    ...                         return_train_score=True)
    >>> print(scores['test_neg_mean_squared_error'])      # doctest: +ELLIPSIS
    [-3635.5... -3573.3... -6114.7...]
    >>> print(scores['train_r2'])                         # doctest: +ELLIPSIS
    [0.28010158 0.39088426 0.22784852]

    See Also
    ---------
    :func:`sklearn.model_selection.cross_val_score`:
        Run cross-validation for single metric evaluation.

    :func:`sklearn.model_selection.cross_val_predict`:
        Get predictions from each split of cross-validation for diagnostic
        purposes.

    :func:`sklearn.metrics.make_scorer`:
        Make a scorer from a performance metric or loss function.

    """
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    scorers, _ = _check_multimetric_scoring(estimator, scoring=scoring)

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)
    scores = parallel(
        delayed(_fit_and_score)(
            clone(estimator), X, y, scorers, train, test, verbose, None,
            fit_params, return_train_score=return_train_score,
            return_times=True, return_estimator=return_estimator,
            error_score=error_score)
        for train, test in cv.split(X, y, groups))

    zipped_scores = list(zip(*scores))
    if return_train_score:
        train_scores = zipped_scores.pop(0)
        train_scores = _aggregate_score_dicts(train_scores)
    if return_estimator:
        fitted_estimators = zipped_scores.pop()
    test_scores, fit_times, score_times = zipped_scores
    test_scores = _aggregate_score_dicts(test_scores)

    # TODO: replace by a dict in 0.21
    ret = DeprecationDict() if return_train_score == 'warn' else {}
    ret['fit_time'] = np.array(fit_times)
    ret['score_time'] = np.array(score_times)

    if return_estimator:
        ret['estimator'] = fitted_estimators

    for name in scorers:
        ret['test_%s' % name] = np.array(test_scores[name])
        if return_train_score:
            key = 'train_%s' % name
            ret[key] = np.array(train_scores[name])
            if return_train_score == 'warn':
                message = (
                    'You are accessing a training score ({!r}), '
                    'which will not be available by default '
                    'any more in 0.21. If you need training scores, '
                    'please set return_train_score=True').format(key)
                # warn on key access
                ret.add_warning(key, message, FutureWarning)

    return ret


def cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv='warn',
                    n_jobs=None, verbose=0, fit_params=None,
                    pre_dispatch='2*n_jobs', error_score='raise-deprecating'):
    """Evaluate a score by cross-validation

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like
        The data to fit. Can be for example a list, or an array.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    n_jobs : int or None, optional (default=None)
        The number of CPUs to use to do the computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : integer, optional
        The verbosity level.

    fit_params : dict, optional
        Parameters to pass to the fit method of the estimator.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    error_score : 'raise' | 'raise-deprecating' or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If set to 'raise-deprecating', a FutureWarning is printed before the
        error is raised.
        If a numeric value is given, FitFailedWarning is raised. This parameter
        does not affect the refit step, which will always raise the error.
        Default is 'raise-deprecating' but from version 0.22 it will change
        to np.nan.

    Returns
    -------
    scores : array of float, shape=(len(list(cv)),)
        Array of scores of the estimator for each run of the cross validation.

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.model_selection import cross_val_score
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()
    >>> print(cross_val_score(lasso, X, y, cv=3))  # doctest: +ELLIPSIS
    [0.33150734 0.08022311 0.03531764]

    See Also
    ---------
    :func:`sklearn.model_selection.cross_validate`:
        To run cross-validation on multiple metrics and also to return
        train scores, fit times and score times.

    :func:`sklearn.model_selection.cross_val_predict`:
        Get predictions from each split of cross-validation for diagnostic
        purposes.

    :func:`sklearn.metrics.make_scorer`:
        Make a scorer from a performance metric or loss function.

    """
    # To ensure multimetric format is not supported
    scorer = check_scoring(estimator, scoring=scoring)

    cv_results = cross_validate(estimator=estimator, X=X, y=y, groups=groups,
                                scoring={'score': scorer}, cv=cv,
                                return_train_score=False,
                                n_jobs=n_jobs, verbose=verbose,
                                fit_params=fit_params,
                                pre_dispatch=pre_dispatch,
                                error_score=error_score)
    return cv_results['test_score']


def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
                   parameters, fit_params, return_train_score=False,
                   return_parameters=False, return_n_test_samples=False,
                   return_times=False, return_estimator=False,
                   error_score='raise-deprecating'):
    """Fit estimator and compute scores for a given dataset split.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    scorer : A single callable or dict mapping scorer name to the callable
        If it is a single callable, the return value for ``train_scores`` and
        ``test_scores`` is a single float.

        For a dict, it should be one mapping the scorer name to the scorer
        callable object / function.

        The callable object / fn should have signature
        ``scorer(estimator, X, y)``.

    train : array-like, shape (n_train_samples,)
        Indices of training samples.

    test : array-like, shape (n_test_samples,)
        Indices of test samples.

    verbose : integer
        The verbosity level.

    error_score : 'raise' | 'raise-deprecating' or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If set to 'raise-deprecating', a FutureWarning is printed before the
        error is raised.
        If a numeric value is given, FitFailedWarning is raised. This parameter
        does not affect the refit step, which will always raise the error.
        Default is 'raise-deprecating' but from version 0.22 it will change
        to np.nan.

    parameters : dict or None
        Parameters to be set on the estimator.

    fit_params : dict or None
        Parameters that will be passed to ``estimator.fit``.

    return_train_score : boolean, optional, default: False
        Compute and return score on training set.

    return_parameters : boolean, optional, default: False
        Return parameters that has been used for the estimator.

    return_n_test_samples : boolean, optional, default: False
        Whether to return the ``n_test_samples``

    return_times : boolean, optional, default: False
        Whether to return the fit/score times.

    return_estimator : boolean, optional, default: False
        Whether to return the fitted estimator.

    Returns
    -------
    train_scores : dict of scorer name -> float, optional
        Score on training set (for all the scorers),
        returned only if `return_train_score` is `True`.

    test_scores : dict of scorer name -> float, optional
        Score on testing set (for all the scorers).

    n_test_samples : int
        Number of test samples.

    fit_time : float
        Time spent for fitting in seconds.

    score_time : float
        Time spent for scoring in seconds.

    parameters : dict or None, optional
        The parameters that have been evaluated.

    estimator : estimator object
        The fitted estimator
    """
    if verbose > 1:
        if parameters is None:
            msg = ''
        else:
            msg = '%s' % (', '.join('%s=%s' % (k, v)
                          for k, v in parameters.items()))
        print("[CV] %s %s" % (msg, (64 - len(msg)) * '.'))

    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    fit_params = dict([(k, _index_param_value(X, v, train))
                      for k, v in fit_params.items()])

    train_scores = {}
    if parameters is not None:
        estimator.set_params(**parameters)

    start_time = time.time()

    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, y_test = _safe_split(estimator, X, y, test, train)

    is_multimetric = not callable(scorer)
    n_scorers = len(scorer.keys()) if is_multimetric else 1

    try:
        if y_train is None:
            estimator.fit(X_train, **fit_params)
        else:
            estimator.fit(X_train, y_train, **fit_params)

    except Exception as e:
        # Note fit time as time until error
        fit_time = time.time() - start_time
        score_time = 0.0
        if error_score == 'raise':
            raise
        elif error_score == 'raise-deprecating':
            warnings.warn("From version 0.22, errors during fit will result "
                          "in a cross validation score of NaN by default. Use "
                          "error_score='raise' if you want an exception "
                          "raised or error_score=np.nan to adopt the "
                          "behavior from version 0.22.",
                          FutureWarning)
            raise
        elif isinstance(error_score, numbers.Number):
            if is_multimetric:
                test_scores = dict(zip(scorer.keys(),
                                   [error_score, ] * n_scorers))
                if return_train_score:
                    train_scores = dict(zip(scorer.keys(),
                                        [error_score, ] * n_scorers))
            else:
                test_scores = error_score
                if return_train_score:
                    train_scores = error_score
            warnings.warn("Estimator fit failed. The score on this train-test"
                          " partition for these parameters will be set to %f. "
                          "Details: \n%s" %
                          (error_score, format_exception_only(type(e), e)[0]),
                          FitFailedWarning)
        else:
            raise ValueError("error_score must be the string 'raise' or a"
                             " numeric value. (Hint: if using 'raise', please"
                             " make sure that it has been spelled correctly.)")

    else:
        fit_time = time.time() - start_time
        # _score will return dict if is_multimetric is True
        test_scores = _score(estimator, X_test, y_test, scorer, is_multimetric)
        score_time = time.time() - start_time - fit_time
        if return_train_score:
            train_scores = _score(estimator, X_train, y_train, scorer,
                                  is_multimetric)

    if verbose > 2:
        if is_multimetric:
            for scorer_name, score in test_scores.items():
                msg += ", %s=%s" % (scorer_name, score)
        else:
            msg += ", score=%s" % test_scores
    if verbose > 1:
        total_time = score_time + fit_time
        end_msg = "%s, total=%s" % (msg, logger.short_format_time(total_time))
        print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg))

    ret = [train_scores, test_scores] if return_train_score else [test_scores]

    if return_n_test_samples:
        ret.append(_num_samples(X_test))
    if return_times:
        ret.extend([fit_time, score_time])
    if return_parameters:
        ret.append(parameters)
    if return_estimator:
        ret.append(estimator)
    return ret


def _score(estimator, X_test, y_test, scorer, is_multimetric=False):
    """Compute the score(s) of an estimator on a given test set.

    Will return a single float if is_multimetric is False and a dict of floats,
    if is_multimetric is True
    """
    if is_multimetric:
        return _multimetric_score(estimator, X_test, y_test, scorer)
    else:
        if y_test is None:
            score = scorer(estimator, X_test)
        else:
            score = scorer(estimator, X_test, y_test)

        if hasattr(score, 'item'):
            try:
                # e.g. unwrap memmapped scalars
                score = score.item()
            except ValueError:
                # non-scalar?
                pass

        if not isinstance(score, numbers.Number):
            raise ValueError("scoring must return a number, got %s (%s) "
                             "instead. (scorer=%r)"
                             % (str(score), type(score), scorer))
    return score


def _multimetric_score(estimator, X_test, y_test, scorers):
    """Return a dict of score for multimetric scoring"""
    scores = {}

    for name, scorer in scorers.items():
        if y_test is None:
            score = scorer(estimator, X_test)
        else:
            score = scorer(estimator, X_test, y_test)

        if hasattr(score, 'item'):
            try:
                # e.g. unwrap memmapped scalars
                score = score.item()
            except ValueError:
                # non-scalar?
                pass
        scores[name] = score

        if not isinstance(score, numbers.Number):
            raise ValueError("scoring must return a number, got %s (%s) "
                             "instead. (scorer=%s)"
                             % (str(score), type(score), name))
    return scores


def cross_val_predict(estimator, X, y=None, groups=None, cv='warn',
                      n_jobs=None, verbose=0, fit_params=None,
                      pre_dispatch='2*n_jobs', method='predict'):
    """Generate cross-validated estimates for each input data point

    It is not appropriate to pass these predictions into an evaluation
    metric. Use :func:`cross_validate` to measure generalization error.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit' and 'predict'
        The object to use to fit the data.

    X : array-like
        The data to fit. Can be, for example a list, or an array at least 2d.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    n_jobs : int or None, optional (default=None)
        The number of CPUs to use to do the computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : integer, optional
        The verbosity level.

    fit_params : dict, optional
        Parameters to pass to the fit method of the estimator.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    method : string, optional, default: 'predict'
        Invokes the passed method name of the passed estimator. For
        method='predict_proba', the columns correspond to the classes
        in sorted order.

    Returns
    -------
    predictions : ndarray
        This is the result of calling ``method``

    See also
    --------
    cross_val_score : calculate score for each CV split

    cross_validate : calculate one or more scores and timings for each CV split

    Notes
    -----
    In the case that one or more classes are absent in a training portion, a
    default score needs to be assigned to all instances for that class if
    ``method`` produces columns per class, as in {'decision_function',
    'predict_proba', 'predict_log_proba'}.  For ``predict_proba`` this value is
    0.  In order to ensure finite output, we approximate negative infinity by
    the minimum finite float value for the dtype in other cases.

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.model_selection import cross_val_predict
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()
    >>> y_pred = cross_val_predict(lasso, X, y, cv=3)
    """
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))

    if method in ['decision_function', 'predict_proba', 'predict_log_proba']:
        le = LabelEncoder()
        y = le.fit_transform(y)

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)
    prediction_blocks = parallel(delayed(_fit_and_predict)(
        clone(estimator), X, y, train, test, verbose, fit_params, method)
        for train, test in cv.split(X, y, groups))

    # Concatenate the predictions
    predictions = [pred_block_i for pred_block_i, _ in prediction_blocks]
    test_indices = np.concatenate([indices_i
                                   for _, indices_i in prediction_blocks])

    if not _check_is_permutation(test_indices, _num_samples(X)):
        raise ValueError('cross_val_predict only works for partitions')

    inv_test_indices = np.empty(len(test_indices), dtype=int)
    inv_test_indices[test_indices] = np.arange(len(test_indices))

    # Check for sparse predictions
    if sp.issparse(predictions[0]):
        predictions = sp.vstack(predictions, format=predictions[0].format)
    else:
        predictions = np.concatenate(predictions)
    return predictions[inv_test_indices]


def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params,
                     method):
    """Fit estimator and predict values for a given dataset split.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit' and 'predict'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    train : array-like, shape (n_train_samples,)
        Indices of training samples.

    test : array-like, shape (n_test_samples,)
        Indices of test samples.

    verbose : integer
        The verbosity level.

    fit_params : dict or None
        Parameters that will be passed to ``estimator.fit``.

    method : string
        Invokes the passed method name of the passed estimator.

    Returns
    -------
    predictions : sequence
        Result of calling 'estimator.method'

    test : array-like
        This is the value of the test parameter
    """
    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    fit_params = dict([(k, _index_param_value(X, v, train))
                      for k, v in fit_params.items()])

    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, _ = _safe_split(estimator, X, y, test, train)

    if y_train is None:
        estimator.fit(X_train, **fit_params)
    else:
        estimator.fit(X_train, y_train, **fit_params)
    func = getattr(estimator, method)
    predictions = func(X_test)
    if method in ['decision_function', 'predict_proba', 'predict_log_proba']:
        n_classes = len(set(y))
        if n_classes != len(estimator.classes_):
            recommendation = (
                'To fix this, use a cross-validation '
                'technique resulting in properly '
                'stratified folds')
            warnings.warn('Number of classes in training fold ({}) does '
                          'not match total number of classes ({}). '
                          'Results may not be appropriate for your use case. '
                          '{}'.format(len(estimator.classes_),
                                      n_classes, recommendation),
                          RuntimeWarning)
            if method == 'decision_function':
                if (predictions.ndim == 2 and
                        predictions.shape[1] != len(estimator.classes_)):
                    # This handles the case when the shape of predictions
                    # does not match the number of classes used to train
                    # it with. This case is found when sklearn.svm.SVC is
                    # set to `decision_function_shape='ovo'`.
                    raise ValueError('Output shape {} of {} does not match '
                                     'number of classes ({}) in fold. '
                                     'Irregular decision_function outputs '
                                     'are not currently supported by '
                                     'cross_val_predict'.format(
                                        predictions.shape, method,
                                        len(estimator.classes_),
                                        recommendation))
                if len(estimator.classes_) <= 2:
                    # In this special case, `predictions` contains a 1D array.
                    raise ValueError('Only {} class/es in training fold, this '
                                     'is not supported for decision_function '
                                     'with imbalanced folds. {}'.format(
                                        len(estimator.classes_),
                                        recommendation))

            float_min = np.finfo(predictions.dtype).min
            default_values = {'decision_function': float_min,
                              'predict_log_proba': float_min,
                              'predict_proba': 0}
            predictions_for_all_classes = np.full((_num_samples(predictions),
                                                   n_classes),
                                                  default_values[method])
            predictions_for_all_classes[:, estimator.classes_] = predictions
            predictions = predictions_for_all_classes
    return predictions, test


def _check_is_permutation(indices, n_samples):
    """Check whether indices is a reordering of the array np.arange(n_samples)

    Parameters
    ----------
    indices : ndarray
        integer array to test
    n_samples : int
        number of expected elements

    Returns
    -------
    is_partition : bool
        True iff sorted(indices) is np.arange(n)
    """
    if len(indices) != n_samples:
        return False
    hit = np.zeros(n_samples, dtype=bool)
    hit[indices] = True
    if not np.all(hit):
        return False
    return True


def _index_param_value(X, v, indices):
    """Private helper function for parameter value indexing."""
    if not _is_arraylike(v) or _num_samples(v) != _num_samples(X):
        # pass through: skip indexing
        return v
    if sp.issparse(v):
        v = v.tocsr()
    return safe_indexing(v, indices)


def permutation_test_score(estimator, X, y, groups=None, cv='warn',
                           n_permutations=100, n_jobs=None, random_state=0,
                           verbose=0, scoring=None):
    """Evaluate the significance of a cross-validated score with permutations

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like, with shape (n_samples,), optional
        Labels to constrain permutation within groups, i.e. ``y`` values
        are permuted among samples with the same group identifier.
        When not specified, ``y`` values are permuted among all samples.

        When a grouped cross-validator is used, the group labels are
        also passed on to the ``split`` method of the cross-validator. The
        cross-validator uses them for grouping the samples  while splitting
        the dataset into train/test set.

    scoring : string, callable or None, optional, default: None
        A single string (see :ref:`scoring_parameter`) or a callable
        (see :ref:`scoring`) to evaluate the predictions on the test set.

        If None the estimator's default scorer, if available, is used.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    n_permutations : integer, optional
        Number of times to permute ``y``.

    n_jobs : int or None, optional (default=None)
        The number of CPUs to use to do the computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    random_state : int, RandomState instance or None, optional (default=0)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : integer, optional
        The verbosity level.

    Returns
    -------
    score : float
        The true score without permuting targets.

    permutation_scores : array, shape (n_permutations,)
        The scores obtained for each permutations.

    pvalue : float
        The p-value, which approximates the probability that the score would
        be obtained by chance. This is calculated as:

        `(C + 1) / (n_permutations + 1)`

        Where C is the number of permutations whose score >= the true score.

        The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.

    Notes
    -----
    This function implements Test 1 in:

        Ojala and Garriga. Permutation Tests for Studying Classifier
        Performance.  The Journal of Machine Learning Research (2010)
        vol. 11

    """
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    scorer = check_scoring(estimator, scoring=scoring)
    random_state = check_random_state(random_state)

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    score = _permutation_test_score(clone(estimator), X, y, groups, cv, scorer)
    permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
        delayed(_permutation_test_score)(
            clone(estimator), X, _shuffle(y, groups, random_state),
            groups, cv, scorer)
        for _ in range(n_permutations))
    permutation_scores = np.array(permutation_scores)
    pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
    return score, permutation_scores, pvalue


def _permutation_test_score(estimator, X, y, groups, cv, scorer):
    """Auxiliary function for permutation_test_score"""
    avg_score = []
    for train, test in cv.split(X, y, groups):
        X_train, y_train = _safe_split(estimator, X, y, train)
        X_test, y_test = _safe_split(estimator, X, y, test, train)
        estimator.fit(X_train, y_train)
        avg_score.append(scorer(estimator, X_test, y_test))
    return np.mean(avg_score)


def _shuffle(y, groups, random_state):
    """Return a shuffled copy of y eventually shuffle among same groups."""
    if groups is None:
        indices = random_state.permutation(len(y))
    else:
        indices = np.arange(len(groups))
        for group in np.unique(groups):
            this_mask = (groups == group)
            indices[this_mask] = random_state.permutation(indices[this_mask])
    return safe_indexing(y, indices)


def learning_curve(estimator, X, y, groups=None,
                   train_sizes=np.linspace(0.1, 1.0, 5), cv='warn',
                   scoring=None, exploit_incremental_learning=False,
                   n_jobs=None, pre_dispatch="all", verbose=0, shuffle=False,
                   random_state=None,  error_score='raise-deprecating'):
    """Learning curve.

    Determines cross-validated training and test scores for different training
    set sizes.

    A cross-validation generator splits the whole dataset k times in training
    and test data. Subsets of the training set with varying sizes will be used
    to train the estimator and a score for each training subset size and the
    test set will be computed. Afterwards, the scores will be averaged over
    all k runs for each training subset size.

    Read more in the :ref:`User Guide <learning_curve>`.

    Parameters
    ----------
    estimator : object type that implements the "fit" and "predict" methods
        An object of that type which is cloned for each validation.

    X : array-like, shape (n_samples, n_features)
        Training vector, where n_samples is the number of samples and
        n_features is the number of features.

    y : array-like, shape (n_samples) or (n_samples, n_features), optional
        Target relative to X for classification or regression;
        None for unsupervised learning.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    train_sizes : array-like, shape (n_ticks,), dtype float or int
        Relative or absolute numbers of training examples that will be used to
        generate the learning curve. If the dtype is float, it is regarded as a
        fraction of the maximum size of the training set (that is determined
        by the selected validation method), i.e. it has to be within (0, 1].
        Otherwise it is interpreted as absolute sizes of the training sets.
        Note that for classification the number of samples usually have to
        be big enough to contain at least one sample from each class.
        (default: np.linspace(0.1, 1.0, 5))

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    exploit_incremental_learning : boolean, optional, default: False
        If the estimator supports incremental learning, this will be
        used to speed up fitting for different training set sizes.

    n_jobs : int or None, optional (default=None)
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    pre_dispatch : integer or string, optional
        Number of predispatched jobs for parallel execution (default is
        all). The option can reduce the allocated memory. The string can
        be an expression like '2*n_jobs'.

    verbose : integer, optional
        Controls the verbosity: the higher, the more messages.

    shuffle : boolean, optional
        Whether to shuffle training data before taking prefixes of it
        based on``train_sizes``.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`. Used when ``shuffle`` is True.

    error_score : 'raise' | 'raise-deprecating' or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If set to 'raise-deprecating', a FutureWarning is printed before the
        error is raised.
        If a numeric value is given, FitFailedWarning is raised. This parameter
        does not affect the refit step, which will always raise the error.
        Default is 'raise-deprecating' but from version 0.22 it will change
        to np.nan.

    Returns
    -------
    train_sizes_abs : array, shape (n_unique_ticks,), dtype int
        Numbers of training examples that has been used to generate the
        learning curve. Note that the number of ticks might be less
        than n_ticks because duplicate entries will be removed.

    train_scores : array, shape (n_ticks, n_cv_folds)
        Scores on training sets.

    test_scores : array, shape (n_ticks, n_cv_folds)
        Scores on test set.

    Notes
    -----
    See :ref:`examples/model_selection/plot_learning_curve.py
    <sphx_glr_auto_examples_model_selection_plot_learning_curve.py>`
    """
    if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
        raise ValueError("An estimator must support the partial_fit interface "
                         "to exploit incremental learning")
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    # Store it as list as we will be iterating over the list multiple times
    cv_iter = list(cv.split(X, y, groups))

    scorer = check_scoring(estimator, scoring=scoring)

    n_max_training_samples = len(cv_iter[0][0])
    # Because the lengths of folds can be significantly different, it is
    # not guaranteed that we use all of the available training data when we
    # use the first 'n_max_training_samples' samples.
    train_sizes_abs = _translate_train_sizes(train_sizes,
                                             n_max_training_samples)
    n_unique_ticks = train_sizes_abs.shape[0]
    if verbose > 0:
        print("[learning_curve] Training set sizes: " + str(train_sizes_abs))

    parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
                        verbose=verbose)

    if shuffle:
        rng = check_random_state(random_state)
        cv_iter = ((rng.permutation(train), test) for train, test in cv_iter)

    if exploit_incremental_learning:
        classes = np.unique(y) if is_classifier(estimator) else None
        out = parallel(delayed(_incremental_fit_estimator)(
            clone(estimator), X, y, classes, train, test, train_sizes_abs,
            scorer, verbose) for train, test in cv_iter)
    else:
        train_test_proportions = []
        for train, test in cv_iter:
            for n_train_samples in train_sizes_abs:
                train_test_proportions.append((train[:n_train_samples], test))

        out = parallel(delayed(_fit_and_score)(
            clone(estimator), X, y, scorer, train, test, verbose,
            parameters=None, fit_params=None, return_train_score=True,
            error_score=error_score)
            for train, test in train_test_proportions)
        out = np.array(out)
        n_cv_folds = out.shape[0] // n_unique_ticks
        out = out.reshape(n_cv_folds, n_unique_ticks, 2)

    out = np.asarray(out).transpose((2, 1, 0))

    return train_sizes_abs, out[0], out[1]


def _translate_train_sizes(train_sizes, n_max_training_samples):
    """Determine absolute sizes of training subsets and validate 'train_sizes'.

    Examples:
        _translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
        _translate_train_sizes([5, 10], 10) -> [5, 10]

    Parameters
    ----------
    train_sizes : array-like, shape (n_ticks,), dtype float or int
        Numbers of training examples that will be used to generate the
        learning curve. If the dtype is float, it is regarded as a
        fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].

    n_max_training_samples : int
        Maximum number of training samples (upper bound of 'train_sizes').

    Returns
    -------
    train_sizes_abs : array, shape (n_unique_ticks,), dtype int
        Numbers of training examples that will be used to generate the
        learning curve. Note that the number of ticks might be less
        than n_ticks because duplicate entries will be removed.
    """
    train_sizes_abs = np.asarray(train_sizes)
    n_ticks = train_sizes_abs.shape[0]
    n_min_required_samples = np.min(train_sizes_abs)
    n_max_required_samples = np.max(train_sizes_abs)
    if np.issubdtype(train_sizes_abs.dtype, np.floating):
        if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
            raise ValueError("train_sizes has been interpreted as fractions "
                             "of the maximum number of training samples and "
                             "must be within (0, 1], but is within [%f, %f]."
                             % (n_min_required_samples,
                                n_max_required_samples))
        train_sizes_abs = (train_sizes_abs * n_max_training_samples).astype(
                             dtype=np.int, copy=False)
        train_sizes_abs = np.clip(train_sizes_abs, 1,
                                  n_max_training_samples)
    else:
        if (n_min_required_samples <= 0 or
                n_max_required_samples > n_max_training_samples):
            raise ValueError("train_sizes has been interpreted as absolute "
                             "numbers of training samples and must be within "
                             "(0, %d], but is within [%d, %d]."
                             % (n_max_training_samples,
                                n_min_required_samples,
                                n_max_required_samples))

    train_sizes_abs = np.unique(train_sizes_abs)
    if n_ticks > train_sizes_abs.shape[0]:
        warnings.warn("Removed duplicate entries from 'train_sizes'. Number "
                      "of ticks will be less than the size of "
                      "'train_sizes' %d instead of %d)."
                      % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning)

    return train_sizes_abs


def _incremental_fit_estimator(estimator, X, y, classes, train, test,
                               train_sizes, scorer, verbose):
    """Train estimator on training subsets incrementally and compute scores."""
    train_scores, test_scores = [], []
    partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
    for n_train_samples, partial_train in partitions:
        train_subset = train[:n_train_samples]
        X_train, y_train = _safe_split(estimator, X, y, train_subset)
        X_partial_train, y_partial_train = _safe_split(estimator, X, y,
                                                       partial_train)
        X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
        if y_partial_train is None:
            estimator.partial_fit(X_partial_train, classes=classes)
        else:
            estimator.partial_fit(X_partial_train, y_partial_train,
                                  classes=classes)
        train_scores.append(_score(estimator, X_train, y_train, scorer))
        test_scores.append(_score(estimator, X_test, y_test, scorer))
    return np.array((train_scores, test_scores)).T


def validation_curve(estimator, X, y, param_name, param_range, groups=None,
                     cv='warn', scoring=None, n_jobs=None, pre_dispatch="all",
                     verbose=0, error_score='raise-deprecating'):
    """Validation curve.

    Determine training and test scores for varying parameter values.

    Compute scores for an estimator with different values of a specified
    parameter. This is similar to grid search with one parameter. However, this
    will also compute training scores and is merely a utility for plotting the
    results.

    Read more in the :ref:`User Guide <learning_curve>`.

    Parameters
    ----------
    estimator : object type that implements the "fit" and "predict" methods
        An object of that type which is cloned for each validation.

    X : array-like, shape (n_samples, n_features)
        Training vector, where n_samples is the number of samples and
        n_features is the number of features.

    y : array-like, shape (n_samples) or (n_samples, n_features), optional
        Target relative to X for classification or regression;
        None for unsupervised learning.

    param_name : string
        Name of the parameter that will be varied.

    param_range : array-like, shape (n_values,)
        The values of the parameter that will be evaluated.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    n_jobs : int or None, optional (default=None)
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    pre_dispatch : integer or string, optional
        Number of predispatched jobs for parallel execution (default is
        all). The option can reduce the allocated memory. The string can
        be an expression like '2*n_jobs'.

    verbose : integer, optional
        Controls the verbosity: the higher, the more messages.

    error_score : 'raise' | 'raise-deprecating' or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised.
        If set to 'raise-deprecating', a FutureWarning is printed before the
        error is raised.
        If a numeric value is given, FitFailedWarning is raised. This parameter
        does not affect the refit step, which will always raise the error.
        Default is 'raise-deprecating' but from version 0.22 it will change
        to np.nan.

    Returns
    -------
    train_scores : array, shape (n_ticks, n_cv_folds)
        Scores on training sets.

    test_scores : array, shape (n_ticks, n_cv_folds)
        Scores on test set.

    Notes
    -----
    See :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py`

    """
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    scorer = check_scoring(estimator, scoring=scoring)

    parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
                        verbose=verbose)
    out = parallel(delayed(_fit_and_score)(
        clone(estimator), X, y, scorer, train, test, verbose,
        parameters={param_name: v}, fit_params=None, return_train_score=True,
        error_score=error_score)
        # NOTE do not change order of iteration to allow one time cv splitters
        for train, test in cv.split(X, y, groups) for v in param_range)
    out = np.asarray(out)
    n_params = len(param_range)
    n_cv_folds = out.shape[0] // n_params
    out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0))

    return out[0], out[1]


def _aggregate_score_dicts(scores):
    """Aggregate the list of dict to dict of np ndarray

    The aggregated output of _fit_and_score will be a list of dict
    of form [{'prec': 0.1, 'acc':1.0}, {'prec': 0.1, 'acc':1.0}, ...]
    Convert it to a dict of array {'prec': np.array([0.1 ...]), ...}

    Parameters
    ----------

    scores : list of dict
        List of dicts of the scores for all scorers. This is a flat list,
        assumed originally to be of row major order.

    Example
    -------

    >>> scores = [{'a': 1, 'b':10}, {'a': 2, 'b':2}, {'a': 3, 'b':3},
    ...           {'a': 10, 'b': 10}]                         # doctest: +SKIP
    >>> _aggregate_score_dicts(scores)                        # doctest: +SKIP
    {'a': array([1, 2, 3, 10]),
     'b': array([10, 2, 3, 10])}
    """
    out = {}
    for key in scores[0]:
        out[key] = np.asarray([score[key] for score in scores])
    return out