1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
|
"""
The :mod:`sklearn.model_selection._validation` module includes classes and
functions to validate the model.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Olivier Grisel <olivier.grisel@ensta.org>
# Raghav RV <rvraghav93@gmail.com>
# License: BSD 3 clause
from __future__ import print_function
from __future__ import division
import warnings
import numbers
import time
from traceback import format_exception_only
import numpy as np
import scipy.sparse as sp
from ..base import is_classifier, clone
from ..utils import indexable, check_random_state, safe_indexing
from ..utils.deprecation import DeprecationDict
from ..utils.validation import _is_arraylike, _num_samples
from ..utils.metaestimators import _safe_split
from ..utils._joblib import Parallel, delayed
from ..utils._joblib import logger
from ..externals.six.moves import zip
from ..metrics.scorer import check_scoring, _check_multimetric_scoring
from ..exceptions import FitFailedWarning
from ._split import check_cv
from ..preprocessing import LabelEncoder
__all__ = ['cross_validate', 'cross_val_score', 'cross_val_predict',
'permutation_test_score', 'learning_curve', 'validation_curve']
def cross_validate(estimator, X, y=None, groups=None, scoring=None, cv='warn',
n_jobs=None, verbose=0, fit_params=None,
pre_dispatch='2*n_jobs', return_train_score="warn",
return_estimator=False, error_score='raise-deprecating'):
"""Evaluate metric(s) by cross-validation and also record fit/score times.
Read more in the :ref:`User Guide <multimetric_cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like
The data to fit. Can be for example a list, or an array.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set.
scoring : string, callable, list/tuple, dict or None, default: None
A single string (see :ref:`scoring_parameter`) or a callable
(see :ref:`scoring`) to evaluate the predictions on the test set.
For evaluating multiple metrics, either give a list of (unique) strings
or a dict with names as keys and callables as values.
NOTE that when using custom scorers, each scorer should return a single
value. Metric functions returning a list/array of values can be wrapped
into multiple scorers that return one value each.
See :ref:`multimetric_grid_search` for an example.
If None, the estimator's default scorer (if available) is used.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross validation,
- integer, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
n_jobs : int or None, optional (default=None)
The number of CPUs to use to do the computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : integer, optional
The verbosity level.
fit_params : dict, optional
Parameters to pass to the fit method of the estimator.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
return_train_score : boolean, optional
Whether to include train scores.
Current default is ``'warn'``, which behaves as ``True`` in addition
to raising a warning when a training score is looked up.
That default will be changed to ``False`` in 0.21.
Computing training scores is used to get insights on how different
parameter settings impact the overfitting/underfitting trade-off.
However computing the scores on the training set can be computationally
expensive and is not strictly required to select the parameters that
yield the best generalization performance.
return_estimator : boolean, default False
Whether to return the estimators fitted on each split.
error_score : 'raise' | 'raise-deprecating' or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If set to 'raise-deprecating', a FutureWarning is printed before the
error is raised.
If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.
Default is 'raise-deprecating' but from version 0.22 it will change
to np.nan.
Returns
-------
scores : dict of float arrays of shape=(n_splits,)
Array of scores of the estimator for each run of the cross validation.
A dict of arrays containing the score/time arrays for each scorer is
returned. The possible keys for this ``dict`` are:
``test_score``
The score array for test scores on each cv split.
``train_score``
The score array for train scores on each cv split.
This is available only if ``return_train_score`` parameter
is ``True``.
``fit_time``
The time for fitting the estimator on the train
set for each cv split.
``score_time``
The time for scoring the estimator on the test set for each
cv split. (Note time for scoring on the train set is not
included even if ``return_train_score`` is set to ``True``
``estimator``
The estimator objects for each cv split.
This is available only if ``return_estimator`` parameter
is set to ``True``.
Examples
--------
>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics.scorer import make_scorer
>>> from sklearn.metrics import confusion_matrix
>>> from sklearn.svm import LinearSVC
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
Single metric evaluation using ``cross_validate``
>>> cv_results = cross_validate(lasso, X, y, cv=3,
... return_train_score=False)
>>> sorted(cv_results.keys()) # doctest: +ELLIPSIS
['fit_time', 'score_time', 'test_score']
>>> cv_results['test_score'] # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
array([0.33150734, 0.08022311, 0.03531764])
Multiple metric evaluation using ``cross_validate``
(please refer the ``scoring`` parameter doc for more information)
>>> scores = cross_validate(lasso, X, y, cv=3,
... scoring=('r2', 'neg_mean_squared_error'),
... return_train_score=True)
>>> print(scores['test_neg_mean_squared_error']) # doctest: +ELLIPSIS
[-3635.5... -3573.3... -6114.7...]
>>> print(scores['train_r2']) # doctest: +ELLIPSIS
[0.28010158 0.39088426 0.22784852]
See Also
---------
:func:`sklearn.model_selection.cross_val_score`:
Run cross-validation for single metric evaluation.
:func:`sklearn.model_selection.cross_val_predict`:
Get predictions from each split of cross-validation for diagnostic
purposes.
:func:`sklearn.metrics.make_scorer`:
Make a scorer from a performance metric or loss function.
"""
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
scorers, _ = _check_multimetric_scoring(estimator, scoring=scoring)
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
pre_dispatch=pre_dispatch)
scores = parallel(
delayed(_fit_and_score)(
clone(estimator), X, y, scorers, train, test, verbose, None,
fit_params, return_train_score=return_train_score,
return_times=True, return_estimator=return_estimator,
error_score=error_score)
for train, test in cv.split(X, y, groups))
zipped_scores = list(zip(*scores))
if return_train_score:
train_scores = zipped_scores.pop(0)
train_scores = _aggregate_score_dicts(train_scores)
if return_estimator:
fitted_estimators = zipped_scores.pop()
test_scores, fit_times, score_times = zipped_scores
test_scores = _aggregate_score_dicts(test_scores)
# TODO: replace by a dict in 0.21
ret = DeprecationDict() if return_train_score == 'warn' else {}
ret['fit_time'] = np.array(fit_times)
ret['score_time'] = np.array(score_times)
if return_estimator:
ret['estimator'] = fitted_estimators
for name in scorers:
ret['test_%s' % name] = np.array(test_scores[name])
if return_train_score:
key = 'train_%s' % name
ret[key] = np.array(train_scores[name])
if return_train_score == 'warn':
message = (
'You are accessing a training score ({!r}), '
'which will not be available by default '
'any more in 0.21. If you need training scores, '
'please set return_train_score=True').format(key)
# warn on key access
ret.add_warning(key, message, FutureWarning)
return ret
def cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv='warn',
n_jobs=None, verbose=0, fit_params=None,
pre_dispatch='2*n_jobs', error_score='raise-deprecating'):
"""Evaluate a score by cross-validation
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like
The data to fit. Can be for example a list, or an array.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set.
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross validation,
- integer, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
n_jobs : int or None, optional (default=None)
The number of CPUs to use to do the computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : integer, optional
The verbosity level.
fit_params : dict, optional
Parameters to pass to the fit method of the estimator.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
error_score : 'raise' | 'raise-deprecating' or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If set to 'raise-deprecating', a FutureWarning is printed before the
error is raised.
If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.
Default is 'raise-deprecating' but from version 0.22 it will change
to np.nan.
Returns
-------
scores : array of float, shape=(len(list(cv)),)
Array of scores of the estimator for each run of the cross validation.
Examples
--------
>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_score
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> print(cross_val_score(lasso, X, y, cv=3)) # doctest: +ELLIPSIS
[0.33150734 0.08022311 0.03531764]
See Also
---------
:func:`sklearn.model_selection.cross_validate`:
To run cross-validation on multiple metrics and also to return
train scores, fit times and score times.
:func:`sklearn.model_selection.cross_val_predict`:
Get predictions from each split of cross-validation for diagnostic
purposes.
:func:`sklearn.metrics.make_scorer`:
Make a scorer from a performance metric or loss function.
"""
# To ensure multimetric format is not supported
scorer = check_scoring(estimator, scoring=scoring)
cv_results = cross_validate(estimator=estimator, X=X, y=y, groups=groups,
scoring={'score': scorer}, cv=cv,
return_train_score=False,
n_jobs=n_jobs, verbose=verbose,
fit_params=fit_params,
pre_dispatch=pre_dispatch,
error_score=error_score)
return cv_results['test_score']
def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
parameters, fit_params, return_train_score=False,
return_parameters=False, return_n_test_samples=False,
return_times=False, return_estimator=False,
error_score='raise-deprecating'):
"""Fit estimator and compute scores for a given dataset split.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like of shape at least 2D
The data to fit.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
scorer : A single callable or dict mapping scorer name to the callable
If it is a single callable, the return value for ``train_scores`` and
``test_scores`` is a single float.
For a dict, it should be one mapping the scorer name to the scorer
callable object / function.
The callable object / fn should have signature
``scorer(estimator, X, y)``.
train : array-like, shape (n_train_samples,)
Indices of training samples.
test : array-like, shape (n_test_samples,)
Indices of test samples.
verbose : integer
The verbosity level.
error_score : 'raise' | 'raise-deprecating' or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If set to 'raise-deprecating', a FutureWarning is printed before the
error is raised.
If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.
Default is 'raise-deprecating' but from version 0.22 it will change
to np.nan.
parameters : dict or None
Parameters to be set on the estimator.
fit_params : dict or None
Parameters that will be passed to ``estimator.fit``.
return_train_score : boolean, optional, default: False
Compute and return score on training set.
return_parameters : boolean, optional, default: False
Return parameters that has been used for the estimator.
return_n_test_samples : boolean, optional, default: False
Whether to return the ``n_test_samples``
return_times : boolean, optional, default: False
Whether to return the fit/score times.
return_estimator : boolean, optional, default: False
Whether to return the fitted estimator.
Returns
-------
train_scores : dict of scorer name -> float, optional
Score on training set (for all the scorers),
returned only if `return_train_score` is `True`.
test_scores : dict of scorer name -> float, optional
Score on testing set (for all the scorers).
n_test_samples : int
Number of test samples.
fit_time : float
Time spent for fitting in seconds.
score_time : float
Time spent for scoring in seconds.
parameters : dict or None, optional
The parameters that have been evaluated.
estimator : estimator object
The fitted estimator
"""
if verbose > 1:
if parameters is None:
msg = ''
else:
msg = '%s' % (', '.join('%s=%s' % (k, v)
for k, v in parameters.items()))
print("[CV] %s %s" % (msg, (64 - len(msg)) * '.'))
# Adjust length of sample weights
fit_params = fit_params if fit_params is not None else {}
fit_params = dict([(k, _index_param_value(X, v, train))
for k, v in fit_params.items()])
train_scores = {}
if parameters is not None:
estimator.set_params(**parameters)
start_time = time.time()
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
is_multimetric = not callable(scorer)
n_scorers = len(scorer.keys()) if is_multimetric else 1
try:
if y_train is None:
estimator.fit(X_train, **fit_params)
else:
estimator.fit(X_train, y_train, **fit_params)
except Exception as e:
# Note fit time as time until error
fit_time = time.time() - start_time
score_time = 0.0
if error_score == 'raise':
raise
elif error_score == 'raise-deprecating':
warnings.warn("From version 0.22, errors during fit will result "
"in a cross validation score of NaN by default. Use "
"error_score='raise' if you want an exception "
"raised or error_score=np.nan to adopt the "
"behavior from version 0.22.",
FutureWarning)
raise
elif isinstance(error_score, numbers.Number):
if is_multimetric:
test_scores = dict(zip(scorer.keys(),
[error_score, ] * n_scorers))
if return_train_score:
train_scores = dict(zip(scorer.keys(),
[error_score, ] * n_scorers))
else:
test_scores = error_score
if return_train_score:
train_scores = error_score
warnings.warn("Estimator fit failed. The score on this train-test"
" partition for these parameters will be set to %f. "
"Details: \n%s" %
(error_score, format_exception_only(type(e), e)[0]),
FitFailedWarning)
else:
raise ValueError("error_score must be the string 'raise' or a"
" numeric value. (Hint: if using 'raise', please"
" make sure that it has been spelled correctly.)")
else:
fit_time = time.time() - start_time
# _score will return dict if is_multimetric is True
test_scores = _score(estimator, X_test, y_test, scorer, is_multimetric)
score_time = time.time() - start_time - fit_time
if return_train_score:
train_scores = _score(estimator, X_train, y_train, scorer,
is_multimetric)
if verbose > 2:
if is_multimetric:
for scorer_name, score in test_scores.items():
msg += ", %s=%s" % (scorer_name, score)
else:
msg += ", score=%s" % test_scores
if verbose > 1:
total_time = score_time + fit_time
end_msg = "%s, total=%s" % (msg, logger.short_format_time(total_time))
print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg))
ret = [train_scores, test_scores] if return_train_score else [test_scores]
if return_n_test_samples:
ret.append(_num_samples(X_test))
if return_times:
ret.extend([fit_time, score_time])
if return_parameters:
ret.append(parameters)
if return_estimator:
ret.append(estimator)
return ret
def _score(estimator, X_test, y_test, scorer, is_multimetric=False):
"""Compute the score(s) of an estimator on a given test set.
Will return a single float if is_multimetric is False and a dict of floats,
if is_multimetric is True
"""
if is_multimetric:
return _multimetric_score(estimator, X_test, y_test, scorer)
else:
if y_test is None:
score = scorer(estimator, X_test)
else:
score = scorer(estimator, X_test, y_test)
if hasattr(score, 'item'):
try:
# e.g. unwrap memmapped scalars
score = score.item()
except ValueError:
# non-scalar?
pass
if not isinstance(score, numbers.Number):
raise ValueError("scoring must return a number, got %s (%s) "
"instead. (scorer=%r)"
% (str(score), type(score), scorer))
return score
def _multimetric_score(estimator, X_test, y_test, scorers):
"""Return a dict of score for multimetric scoring"""
scores = {}
for name, scorer in scorers.items():
if y_test is None:
score = scorer(estimator, X_test)
else:
score = scorer(estimator, X_test, y_test)
if hasattr(score, 'item'):
try:
# e.g. unwrap memmapped scalars
score = score.item()
except ValueError:
# non-scalar?
pass
scores[name] = score
if not isinstance(score, numbers.Number):
raise ValueError("scoring must return a number, got %s (%s) "
"instead. (scorer=%s)"
% (str(score), type(score), name))
return scores
def cross_val_predict(estimator, X, y=None, groups=None, cv='warn',
n_jobs=None, verbose=0, fit_params=None,
pre_dispatch='2*n_jobs', method='predict'):
"""Generate cross-validated estimates for each input data point
It is not appropriate to pass these predictions into an evaluation
metric. Use :func:`cross_validate` to measure generalization error.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit' and 'predict'
The object to use to fit the data.
X : array-like
The data to fit. Can be, for example a list, or an array at least 2d.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross validation,
- integer, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
n_jobs : int or None, optional (default=None)
The number of CPUs to use to do the computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : integer, optional
The verbosity level.
fit_params : dict, optional
Parameters to pass to the fit method of the estimator.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
method : string, optional, default: 'predict'
Invokes the passed method name of the passed estimator. For
method='predict_proba', the columns correspond to the classes
in sorted order.
Returns
-------
predictions : ndarray
This is the result of calling ``method``
See also
--------
cross_val_score : calculate score for each CV split
cross_validate : calculate one or more scores and timings for each CV split
Notes
-----
In the case that one or more classes are absent in a training portion, a
default score needs to be assigned to all instances for that class if
``method`` produces columns per class, as in {'decision_function',
'predict_proba', 'predict_log_proba'}. For ``predict_proba`` this value is
0. In order to ensure finite output, we approximate negative infinity by
the minimum finite float value for the dtype in other cases.
Examples
--------
>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_predict
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> y_pred = cross_val_predict(lasso, X, y, cv=3)
"""
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
if method in ['decision_function', 'predict_proba', 'predict_log_proba']:
le = LabelEncoder()
y = le.fit_transform(y)
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
pre_dispatch=pre_dispatch)
prediction_blocks = parallel(delayed(_fit_and_predict)(
clone(estimator), X, y, train, test, verbose, fit_params, method)
for train, test in cv.split(X, y, groups))
# Concatenate the predictions
predictions = [pred_block_i for pred_block_i, _ in prediction_blocks]
test_indices = np.concatenate([indices_i
for _, indices_i in prediction_blocks])
if not _check_is_permutation(test_indices, _num_samples(X)):
raise ValueError('cross_val_predict only works for partitions')
inv_test_indices = np.empty(len(test_indices), dtype=int)
inv_test_indices[test_indices] = np.arange(len(test_indices))
# Check for sparse predictions
if sp.issparse(predictions[0]):
predictions = sp.vstack(predictions, format=predictions[0].format)
else:
predictions = np.concatenate(predictions)
return predictions[inv_test_indices]
def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params,
method):
"""Fit estimator and predict values for a given dataset split.
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit' and 'predict'
The object to use to fit the data.
X : array-like of shape at least 2D
The data to fit.
y : array-like, optional, default: None
The target variable to try to predict in the case of
supervised learning.
train : array-like, shape (n_train_samples,)
Indices of training samples.
test : array-like, shape (n_test_samples,)
Indices of test samples.
verbose : integer
The verbosity level.
fit_params : dict or None
Parameters that will be passed to ``estimator.fit``.
method : string
Invokes the passed method name of the passed estimator.
Returns
-------
predictions : sequence
Result of calling 'estimator.method'
test : array-like
This is the value of the test parameter
"""
# Adjust length of sample weights
fit_params = fit_params if fit_params is not None else {}
fit_params = dict([(k, _index_param_value(X, v, train))
for k, v in fit_params.items()])
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, _ = _safe_split(estimator, X, y, test, train)
if y_train is None:
estimator.fit(X_train, **fit_params)
else:
estimator.fit(X_train, y_train, **fit_params)
func = getattr(estimator, method)
predictions = func(X_test)
if method in ['decision_function', 'predict_proba', 'predict_log_proba']:
n_classes = len(set(y))
if n_classes != len(estimator.classes_):
recommendation = (
'To fix this, use a cross-validation '
'technique resulting in properly '
'stratified folds')
warnings.warn('Number of classes in training fold ({}) does '
'not match total number of classes ({}). '
'Results may not be appropriate for your use case. '
'{}'.format(len(estimator.classes_),
n_classes, recommendation),
RuntimeWarning)
if method == 'decision_function':
if (predictions.ndim == 2 and
predictions.shape[1] != len(estimator.classes_)):
# This handles the case when the shape of predictions
# does not match the number of classes used to train
# it with. This case is found when sklearn.svm.SVC is
# set to `decision_function_shape='ovo'`.
raise ValueError('Output shape {} of {} does not match '
'number of classes ({}) in fold. '
'Irregular decision_function outputs '
'are not currently supported by '
'cross_val_predict'.format(
predictions.shape, method,
len(estimator.classes_),
recommendation))
if len(estimator.classes_) <= 2:
# In this special case, `predictions` contains a 1D array.
raise ValueError('Only {} class/es in training fold, this '
'is not supported for decision_function '
'with imbalanced folds. {}'.format(
len(estimator.classes_),
recommendation))
float_min = np.finfo(predictions.dtype).min
default_values = {'decision_function': float_min,
'predict_log_proba': float_min,
'predict_proba': 0}
predictions_for_all_classes = np.full((_num_samples(predictions),
n_classes),
default_values[method])
predictions_for_all_classes[:, estimator.classes_] = predictions
predictions = predictions_for_all_classes
return predictions, test
def _check_is_permutation(indices, n_samples):
"""Check whether indices is a reordering of the array np.arange(n_samples)
Parameters
----------
indices : ndarray
integer array to test
n_samples : int
number of expected elements
Returns
-------
is_partition : bool
True iff sorted(indices) is np.arange(n)
"""
if len(indices) != n_samples:
return False
hit = np.zeros(n_samples, dtype=bool)
hit[indices] = True
if not np.all(hit):
return False
return True
def _index_param_value(X, v, indices):
"""Private helper function for parameter value indexing."""
if not _is_arraylike(v) or _num_samples(v) != _num_samples(X):
# pass through: skip indexing
return v
if sp.issparse(v):
v = v.tocsr()
return safe_indexing(v, indices)
def permutation_test_score(estimator, X, y, groups=None, cv='warn',
n_permutations=100, n_jobs=None, random_state=0,
verbose=0, scoring=None):
"""Evaluate the significance of a cross-validated score with permutations
Read more in the :ref:`User Guide <cross_validation>`.
Parameters
----------
estimator : estimator object implementing 'fit'
The object to use to fit the data.
X : array-like of shape at least 2D
The data to fit.
y : array-like
The target variable to try to predict in the case of
supervised learning.
groups : array-like, with shape (n_samples,), optional
Labels to constrain permutation within groups, i.e. ``y`` values
are permuted among samples with the same group identifier.
When not specified, ``y`` values are permuted among all samples.
When a grouped cross-validator is used, the group labels are
also passed on to the ``split`` method of the cross-validator. The
cross-validator uses them for grouping the samples while splitting
the dataset into train/test set.
scoring : string, callable or None, optional, default: None
A single string (see :ref:`scoring_parameter`) or a callable
(see :ref:`scoring`) to evaluate the predictions on the test set.
If None the estimator's default scorer, if available, is used.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross validation,
- integer, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
n_permutations : integer, optional
Number of times to permute ``y``.
n_jobs : int or None, optional (default=None)
The number of CPUs to use to do the computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance or None, optional (default=0)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
verbose : integer, optional
The verbosity level.
Returns
-------
score : float
The true score without permuting targets.
permutation_scores : array, shape (n_permutations,)
The scores obtained for each permutations.
pvalue : float
The p-value, which approximates the probability that the score would
be obtained by chance. This is calculated as:
`(C + 1) / (n_permutations + 1)`
Where C is the number of permutations whose score >= the true score.
The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.
Notes
-----
This function implements Test 1 in:
Ojala and Garriga. Permutation Tests for Studying Classifier
Performance. The Journal of Machine Learning Research (2010)
vol. 11
"""
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
random_state = check_random_state(random_state)
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
score = _permutation_test_score(clone(estimator), X, y, groups, cv, scorer)
permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_permutation_test_score)(
clone(estimator), X, _shuffle(y, groups, random_state),
groups, cv, scorer)
for _ in range(n_permutations))
permutation_scores = np.array(permutation_scores)
pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
return score, permutation_scores, pvalue
def _permutation_test_score(estimator, X, y, groups, cv, scorer):
"""Auxiliary function for permutation_test_score"""
avg_score = []
for train, test in cv.split(X, y, groups):
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
estimator.fit(X_train, y_train)
avg_score.append(scorer(estimator, X_test, y_test))
return np.mean(avg_score)
def _shuffle(y, groups, random_state):
"""Return a shuffled copy of y eventually shuffle among same groups."""
if groups is None:
indices = random_state.permutation(len(y))
else:
indices = np.arange(len(groups))
for group in np.unique(groups):
this_mask = (groups == group)
indices[this_mask] = random_state.permutation(indices[this_mask])
return safe_indexing(y, indices)
def learning_curve(estimator, X, y, groups=None,
train_sizes=np.linspace(0.1, 1.0, 5), cv='warn',
scoring=None, exploit_incremental_learning=False,
n_jobs=None, pre_dispatch="all", verbose=0, shuffle=False,
random_state=None, error_score='raise-deprecating'):
"""Learning curve.
Determines cross-validated training and test scores for different training
set sizes.
A cross-validation generator splits the whole dataset k times in training
and test data. Subsets of the training set with varying sizes will be used
to train the estimator and a score for each training subset size and the
test set will be computed. Afterwards, the scores will be averaged over
all k runs for each training subset size.
Read more in the :ref:`User Guide <learning_curve>`.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set.
train_sizes : array-like, shape (n_ticks,), dtype float or int
Relative or absolute numbers of training examples that will be used to
generate the learning curve. If the dtype is float, it is regarded as a
fraction of the maximum size of the training set (that is determined
by the selected validation method), i.e. it has to be within (0, 1].
Otherwise it is interpreted as absolute sizes of the training sets.
Note that for classification the number of samples usually have to
be big enough to contain at least one sample from each class.
(default: np.linspace(0.1, 1.0, 5))
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross validation,
- integer, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
exploit_incremental_learning : boolean, optional, default: False
If the estimator supports incremental learning, this will be
used to speed up fitting for different training set sizes.
n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
pre_dispatch : integer or string, optional
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can
be an expression like '2*n_jobs'.
verbose : integer, optional
Controls the verbosity: the higher, the more messages.
shuffle : boolean, optional
Whether to shuffle training data before taking prefixes of it
based on``train_sizes``.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`. Used when ``shuffle`` is True.
error_score : 'raise' | 'raise-deprecating' or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If set to 'raise-deprecating', a FutureWarning is printed before the
error is raised.
If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.
Default is 'raise-deprecating' but from version 0.22 it will change
to np.nan.
Returns
-------
train_sizes_abs : array, shape (n_unique_ticks,), dtype int
Numbers of training examples that has been used to generate the
learning curve. Note that the number of ticks might be less
than n_ticks because duplicate entries will be removed.
train_scores : array, shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : array, shape (n_ticks, n_cv_folds)
Scores on test set.
Notes
-----
See :ref:`examples/model_selection/plot_learning_curve.py
<sphx_glr_auto_examples_model_selection_plot_learning_curve.py>`
"""
if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
raise ValueError("An estimator must support the partial_fit interface "
"to exploit incremental learning")
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
# Store it as list as we will be iterating over the list multiple times
cv_iter = list(cv.split(X, y, groups))
scorer = check_scoring(estimator, scoring=scoring)
n_max_training_samples = len(cv_iter[0][0])
# Because the lengths of folds can be significantly different, it is
# not guaranteed that we use all of the available training data when we
# use the first 'n_max_training_samples' samples.
train_sizes_abs = _translate_train_sizes(train_sizes,
n_max_training_samples)
n_unique_ticks = train_sizes_abs.shape[0]
if verbose > 0:
print("[learning_curve] Training set sizes: " + str(train_sizes_abs))
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
verbose=verbose)
if shuffle:
rng = check_random_state(random_state)
cv_iter = ((rng.permutation(train), test) for train, test in cv_iter)
if exploit_incremental_learning:
classes = np.unique(y) if is_classifier(estimator) else None
out = parallel(delayed(_incremental_fit_estimator)(
clone(estimator), X, y, classes, train, test, train_sizes_abs,
scorer, verbose) for train, test in cv_iter)
else:
train_test_proportions = []
for train, test in cv_iter:
for n_train_samples in train_sizes_abs:
train_test_proportions.append((train[:n_train_samples], test))
out = parallel(delayed(_fit_and_score)(
clone(estimator), X, y, scorer, train, test, verbose,
parameters=None, fit_params=None, return_train_score=True,
error_score=error_score)
for train, test in train_test_proportions)
out = np.array(out)
n_cv_folds = out.shape[0] // n_unique_ticks
out = out.reshape(n_cv_folds, n_unique_ticks, 2)
out = np.asarray(out).transpose((2, 1, 0))
return train_sizes_abs, out[0], out[1]
def _translate_train_sizes(train_sizes, n_max_training_samples):
"""Determine absolute sizes of training subsets and validate 'train_sizes'.
Examples:
_translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
_translate_train_sizes([5, 10], 10) -> [5, 10]
Parameters
----------
train_sizes : array-like, shape (n_ticks,), dtype float or int
Numbers of training examples that will be used to generate the
learning curve. If the dtype is float, it is regarded as a
fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].
n_max_training_samples : int
Maximum number of training samples (upper bound of 'train_sizes').
Returns
-------
train_sizes_abs : array, shape (n_unique_ticks,), dtype int
Numbers of training examples that will be used to generate the
learning curve. Note that the number of ticks might be less
than n_ticks because duplicate entries will be removed.
"""
train_sizes_abs = np.asarray(train_sizes)
n_ticks = train_sizes_abs.shape[0]
n_min_required_samples = np.min(train_sizes_abs)
n_max_required_samples = np.max(train_sizes_abs)
if np.issubdtype(train_sizes_abs.dtype, np.floating):
if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
raise ValueError("train_sizes has been interpreted as fractions "
"of the maximum number of training samples and "
"must be within (0, 1], but is within [%f, %f]."
% (n_min_required_samples,
n_max_required_samples))
train_sizes_abs = (train_sizes_abs * n_max_training_samples).astype(
dtype=np.int, copy=False)
train_sizes_abs = np.clip(train_sizes_abs, 1,
n_max_training_samples)
else:
if (n_min_required_samples <= 0 or
n_max_required_samples > n_max_training_samples):
raise ValueError("train_sizes has been interpreted as absolute "
"numbers of training samples and must be within "
"(0, %d], but is within [%d, %d]."
% (n_max_training_samples,
n_min_required_samples,
n_max_required_samples))
train_sizes_abs = np.unique(train_sizes_abs)
if n_ticks > train_sizes_abs.shape[0]:
warnings.warn("Removed duplicate entries from 'train_sizes'. Number "
"of ticks will be less than the size of "
"'train_sizes' %d instead of %d)."
% (train_sizes_abs.shape[0], n_ticks), RuntimeWarning)
return train_sizes_abs
def _incremental_fit_estimator(estimator, X, y, classes, train, test,
train_sizes, scorer, verbose):
"""Train estimator on training subsets incrementally and compute scores."""
train_scores, test_scores = [], []
partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
for n_train_samples, partial_train in partitions:
train_subset = train[:n_train_samples]
X_train, y_train = _safe_split(estimator, X, y, train_subset)
X_partial_train, y_partial_train = _safe_split(estimator, X, y,
partial_train)
X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
if y_partial_train is None:
estimator.partial_fit(X_partial_train, classes=classes)
else:
estimator.partial_fit(X_partial_train, y_partial_train,
classes=classes)
train_scores.append(_score(estimator, X_train, y_train, scorer))
test_scores.append(_score(estimator, X_test, y_test, scorer))
return np.array((train_scores, test_scores)).T
def validation_curve(estimator, X, y, param_name, param_range, groups=None,
cv='warn', scoring=None, n_jobs=None, pre_dispatch="all",
verbose=0, error_score='raise-deprecating'):
"""Validation curve.
Determine training and test scores for varying parameter values.
Compute scores for an estimator with different values of a specified
parameter. This is similar to grid search with one parameter. However, this
will also compute training scores and is merely a utility for plotting the
results.
Read more in the :ref:`User Guide <learning_curve>`.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
param_name : string
Name of the parameter that will be varied.
param_range : array-like, shape (n_values,)
The values of the parameter that will be evaluated.
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross validation,
- integer, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
pre_dispatch : integer or string, optional
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can
be an expression like '2*n_jobs'.
verbose : integer, optional
Controls the verbosity: the higher, the more messages.
error_score : 'raise' | 'raise-deprecating' or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
If set to 'raise-deprecating', a FutureWarning is printed before the
error is raised.
If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.
Default is 'raise-deprecating' but from version 0.22 it will change
to np.nan.
Returns
-------
train_scores : array, shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : array, shape (n_ticks, n_cv_folds)
Scores on test set.
Notes
-----
See :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py`
"""
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
verbose=verbose)
out = parallel(delayed(_fit_and_score)(
clone(estimator), X, y, scorer, train, test, verbose,
parameters={param_name: v}, fit_params=None, return_train_score=True,
error_score=error_score)
# NOTE do not change order of iteration to allow one time cv splitters
for train, test in cv.split(X, y, groups) for v in param_range)
out = np.asarray(out)
n_params = len(param_range)
n_cv_folds = out.shape[0] // n_params
out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0))
return out[0], out[1]
def _aggregate_score_dicts(scores):
"""Aggregate the list of dict to dict of np ndarray
The aggregated output of _fit_and_score will be a list of dict
of form [{'prec': 0.1, 'acc':1.0}, {'prec': 0.1, 'acc':1.0}, ...]
Convert it to a dict of array {'prec': np.array([0.1 ...]), ...}
Parameters
----------
scores : list of dict
List of dicts of the scores for all scorers. This is a flat list,
assumed originally to be of row major order.
Example
-------
>>> scores = [{'a': 1, 'b':10}, {'a': 2, 'b':2}, {'a': 3, 'b':3},
... {'a': 10, 'b': 10}] # doctest: +SKIP
>>> _aggregate_score_dicts(scores) # doctest: +SKIP
{'a': array([1, 2, 3, 10]),
'b': array([10, 2, 3, 10])}
"""
out = {}
for key in scores[0]:
out[key] = np.asarray([score[key] for score in scores])
return out
|