1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
|
"""Test the search module"""
from sklearn.externals.six.moves import cStringIO as StringIO
from sklearn.externals.six.moves import xrange
from itertools import chain, product
import pickle
import sys
from types import GeneratorType
import re
import warnings
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils.fixes import PY3_OR_LATER
from sklearn.utils.fixes import _Iterable as Iterable, _Sized as Sized
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_no_warnings
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_false, assert_true
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.exceptions import ConvergenceWarning
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier(object):
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert_equal(list(grid), [grid[i] for i in range(len(grid))])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter grid is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter grid is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter grid value is not iterable "
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_grid_input(input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
ParameterGrid(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert_equal(len(grid1), 3)
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert_equal(len(grid2), 6)
# loop to assert we can iterate over the grid multiple times
for i in xrange(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert_equal(points,
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert_equal(len(empty), 1)
assert_equal(list(empty), [{}])
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert_equal(len(has_empty), 4)
assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}])
assert_grid_iter_equals_getitem(has_empty)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert_equal(grid_search.best_estimator_.foo_param, 2)
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def check_hyperparameter_searcher_with_fit_params(klass, **klass_kwargs):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = klass(clf, {'foo_param': [1, 2, 3]}, cv=2, **klass_kwargs)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
assert_raise_message(AssertionError,
"Expected fit parameter(s) ['eggs'] not seen.",
searcher.fit, X, y, spam=np.ones(10))
assert_raise_message(AssertionError,
"Fit parameter spam has length 1; expected 4.",
searcher.fit, X, y, spam=np.ones(1),
eggs=np.zeros(10))
searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_grid_search_with_fit_params():
check_hyperparameter_searcher_with_fit_params(GridSearchCV,
error_score='raise')
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_random_search_with_fit_params():
check_hyperparameter_searcher_with_fit_params(RandomizedSearchCV, n_iter=1,
error_score='raise')
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_grid_search_fit_params_deprecation():
# NOTE: Remove this test in v0.21
# Use of `fit_params` in the class constructor is deprecated,
# but will still work until v0.21.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam'])
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]},
fit_params={'spam': np.ones(10)})
assert_warns(DeprecationWarning, grid_search.fit, X, y)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_fit_params_two_places():
# NOTE: Remove this test in v0.21
# If users try to input fit parameters in both
# the constructor (deprecated use) and the `fit`
# method, we'll ignore the values passed to the constructor.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam'])
# The "spam" array is too short and will raise an
# error in the CheckingClassifier if used.
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]},
fit_params={'spam': np.ones(1)})
expected_warning = ('Ignoring fit_params passed as a constructor '
'argument in favor of keyword arguments to '
'the "fit" method.')
assert_warns_message(RuntimeWarning, expected_warning,
grid_search.fit, X, y, spam=np.ones(10))
# Verify that `fit` prefers its own kwargs by giving valid
# kwargs in the constructor and invalid in the method call
with warnings.catch_warnings():
# JvR: As passing fit params to the constructor is deprecated, this
# unit test raises a warning (unit test can be removed after version
# 0.22)
warnings.filterwarnings("ignore", category=DeprecationWarning)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]},
fit_params={'spam': np.ones(10)},
error_score='raise')
assert_raise_message(AssertionError, "Fit parameter spam has length 1",
grid_search.fit, X, y, spam=np.ones(1))
@ignore_warnings
def test_grid_search_no_score():
# Test grid-search on classifier that has no score function.
clf = LinearSVC(random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [.1, 1, 10]
clf_no_score = LinearSVCNoScore(random_state=0)
grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy')
grid_search.fit(X, y)
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs},
scoring='accuracy')
# smoketest grid search
grid_search_no_score.fit(X, y)
# check that best params are equal
assert_equal(grid_search_no_score.best_params_, grid_search.best_params_)
# check that we can call score and that it gives the correct result
assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y))
# giving no scoring function raises an error
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs})
assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit,
[[1]])
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
random_state=0)
clf = LinearSVC(random_state=0)
grid = {'C': [.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
scoring='roc_auc'
).fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
# Check warning only occurs in situation where behavior changed:
# estimator requires score method to compete with scoring parameter
score_no_scoring = search_no_scoring.score(X, y)
score_accuracy = search_accuracy.score(X, y)
score_no_score_auc = search_no_score_method_auc.score(X, y)
score_auc = search_auc.score(X, y)
# ensure the test is sane
assert score_auc < 1.0
assert score_accuracy < 1.0
assert_not_equal(score_auc, score_accuracy)
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_groups():
# Check if ValueError (when groups is None) propagates to GridSearchCV
# And also check if groups is correctly passed to the cv object
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 3, 15)
clf = LinearSVC(random_state=0)
grid = {'C': [1]}
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(),
GroupShuffleSplit()]
for cv in group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
assert_raise_message(ValueError,
"The 'groups' parameter should not be None.",
gs.fit, X, y)
gs.fit(X, y, groups=groups)
non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
for cv in non_group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
# Should not raise an error
gs.fit(X, y)
def test_return_train_score_warn():
# Test that warnings are raised. Will be removed in 0.21
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
grid = {'C': [1, 2]}
estimators = [GridSearchCV(LinearSVC(random_state=0), grid,
iid=False, cv=3),
RandomizedSearchCV(LinearSVC(random_state=0), grid,
n_iter=2, iid=False, cv=3)]
result = {}
for estimator in estimators:
for val in [True, False, 'warn']:
estimator.set_params(return_train_score=val)
fit_func = ignore_warnings(estimator.fit,
category=ConvergenceWarning)
result[val] = assert_no_warnings(fit_func, X, y).cv_results_
train_keys = ['split0_train_score', 'split1_train_score',
'split2_train_score', 'mean_train_score', 'std_train_score']
for key in train_keys:
msg = (
'You are accessing a training score ({!r}), '
'which will not be available by default '
'any more in 0.21. If you need training scores, '
'please set return_train_score=True').format(key)
train_score = assert_warns_message(FutureWarning, msg,
result['warn'].get, key)
assert np.allclose(train_score, result[True][key])
assert key not in result[False]
for key in result['warn']:
if key not in train_keys:
assert_no_warnings(result['warn'].get, key)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_classes__property():
# Test that classes_ property matches best_estimator_.classes_
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
Cs = [.1, 1, 10]
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
grid_search.fit(X, y)
assert_array_equal(grid_search.best_estimator_.classes_,
grid_search.classes_)
# Test that regressors do not have a classes_ attribute
grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
grid_search.fit(X, y)
assert_false(hasattr(grid_search, 'classes_'))
# Test that the grid searcher has no classes_ attribute before it's fit
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
assert_false(hasattr(grid_search, 'classes_'))
# Test that the grid searcher has no classes_ attribute without a refit
grid_search = GridSearchCV(LinearSVC(random_state=0),
{'C': Cs}, refit=False)
grid_search.fit(X, y)
assert_false(hasattr(grid_search, 'classes_'))
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_trivial_cv_results_attr():
# Test search over a "grid" with only one point.
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1]})
grid_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1)
random_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_no_refit():
# Test that GSCV can be used for model selection alone without refitting
clf = MockClassifier()
for scoring in [None, ['accuracy', 'precision']]:
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False)
grid_search.fit(X, y)
assert_true(not hasattr(grid_search, "best_estimator_") and
hasattr(grid_search, "best_index_") and
hasattr(grid_search, "best_params_"))
# Make sure the functions predict/transform etc raise meaningful
# error messages
for fn_name in ('predict', 'predict_proba', 'predict_log_proba',
'transform', 'inverse_transform'):
assert_raise_message(NotFittedError,
('refit=False. %s is available only after '
'refitting on the best parameters'
% fn_name), getattr(grid_search, fn_name), X)
# Test that an invalid refit param raises appropriate error messages
for refit in ["", 5, True, 'recall', 'accuracy']:
assert_raise_message(ValueError, "For multi-metric scoring, the "
"parameter refit must be set to a scorer key",
GridSearchCV(clf, {}, refit=refit,
scoring={'acc': 'accuracy',
'prec': 'precision'}
).fit,
X, y)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_error():
# Test that grid search will capture errors on data with different length
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, X_[:180], y_)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_one_grid_point():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}
clf = SVC(gamma='auto')
cv = GridSearchCV(clf, param_dict)
cv.fit(X_, y_)
clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
clf.fit(X_, y_)
assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_when_param_grid_includes_range():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = None
if PY3_OR_LATER:
grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)})
else:
grid_search = GridSearchCV(clf, {'foo_param': xrange(1, 4)})
grid_search.fit(X, y)
assert_equal(grid_search.best_estimator_.foo_param, 2)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_bad_param_grid():
param_dict = {"C": 1.0}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter values for parameter (C) need to be a sequence"
"(but not a string) or np.ndarray.",
GridSearchCV, clf, param_dict)
param_dict = {"C": []}
clf = SVC(gamma="scale")
assert_raise_message(
ValueError,
"Parameter values for parameter (C) need to be a non-empty sequence.",
GridSearchCV, clf, param_dict)
param_dict = {"C": "1,2,3"}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter values for parameter (C) need to be a sequence"
"(but not a string) or np.ndarray.",
GridSearchCV, clf, param_dict)
param_dict = {"C": np.ones((3, 2))}
clf = SVC(gamma="scale")
assert_raises(ValueError, GridSearchCV, clf, param_dict)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_sparse():
# Test that grid search works with both dense and sparse matrices
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180].tocoo(), y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert np.mean(y_pred == y_pred2) >= .9
assert_equal(C, C2)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_sparse_scoring():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred2)
assert_equal(C, C2)
# Smoke test the score
# np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
# cv.score(X_[:180], y[:180]))
# test loss where greater is worse
def f1_loss(y_true_, y_pred_):
return -f1_score(y_true_, y_pred_)
F1Loss = make_scorer(f1_loss, greater_is_better=False)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
cv.fit(X_[:180], y_[:180])
y_pred3 = cv.predict(X_[180:])
C3 = cv.best_estimator_.C
assert_equal(C, C3)
assert_array_equal(y_pred, y_pred3)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_precomputed_kernel():
# Test that grid search works when the input features are given in the
# form of a precomputed kernel matrix
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
# compute the training kernel matrix corresponding to the linear kernel
K_train = np.dot(X_[:180], X_[:180].T)
y_train = y_[:180]
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(K_train, y_train)
assert cv.best_score_ >= 0
# compute the test kernel matrix
K_test = np.dot(X_[180:], X_[:180].T)
y_test = y_[180:]
y_pred = cv.predict(K_test)
assert np.mean(y_pred == y_test) >= 0
# test error is raised when the precomputed kernel is not array-like
# or sparse
assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_precomputed_kernel_error_nonsquare():
# Test that grid search returns an error with a non-square precomputed
# training kernel matrix
K_train = np.zeros((10, 20))
y_train = np.ones((10, ))
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, K_train, y_train)
class BrokenClassifier(BaseEstimator):
"""Broken classifier that cannot be fit twice"""
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y):
assert not hasattr(self, 'has_been_fit_')
self.has_been_fit_ = True
def predict(self, X):
return np.zeros(X.shape[0])
@ignore_warnings
def test_refit():
# Regression test for bug in refitting
# Simulates re-fitting a broken estimator; this used to break with
# sparse SVMs.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}],
scoring="precision", refit=True)
clf.fit(X, y)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_gridsearch_nd():
# Pass X as list in GridSearchCV
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
check_X = lambda x: x.shape[1:] == (5, 3, 2)
check_y = lambda x: x.shape[1:] == (7, 11)
clf = CheckingClassifier(check_X=check_X, check_y=check_y)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_4d, y_3d).score(X, y)
assert hasattr(grid_search, "cv_results_")
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_X_as_list():
# Pass X as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(check_X=lambda x: isinstance(x, list))
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X.tolist(), y).score(X, y)
assert hasattr(grid_search, "cv_results_")
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_y_as_list():
# Pass y as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(check_y=lambda x: isinstance(x, list))
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X, y.tolist()).score(X, y)
assert hasattr(grid_search, "cv_results_")
@ignore_warnings
def test_pandas_input():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((DataFrame, Series))
except ImportError:
pass
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
for InputFeatureType, TargetType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y)
def check_df(x):
return isinstance(x, InputFeatureType)
def check_series(x):
return isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_df, y_ser).score(X_df, y_ser)
grid_search.predict(X_df)
assert hasattr(grid_search, "cv_results_")
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_unsupervised_grid_search():
# test grid-search with unsupervised estimator
X, y = make_blobs(random_state=0)
km = KMeans(random_state=0)
# Multi-metric evaluation unsupervised
scoring = ['adjusted_rand_score', 'fowlkes_mallows_score']
for refit in ['adjusted_rand_score', 'fowlkes_mallows_score']:
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring=scoring, refit=refit)
grid_search.fit(X, y)
# Both ARI and FMS can find the right number :)
assert_equal(grid_search.best_params_["n_clusters"], 3)
# Single metric evaluation unsupervised
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring='fowlkes_mallows_score')
grid_search.fit(X, y)
assert_equal(grid_search.best_params_["n_clusters"], 3)
# Now without a score, and without y
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
grid_search.fit(X)
assert_equal(grid_search.best_params_["n_clusters"], 4)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_gridsearch_no_predict():
# test grid-search with an estimator without predict.
# slight duplication of a test from KDE
def custom_scoring(estimator, X):
return 42 if estimator.bandwidth == .1 else 0
X, _ = make_blobs(cluster_std=.1, random_state=1,
centers=[[0, 1], [1, 0], [0, 0]])
search = GridSearchCV(KernelDensity(),
param_grid=dict(bandwidth=[.01, .1, 1]),
scoring=custom_scoring)
search.fit(X)
assert_equal(search.best_params_['bandwidth'], .1)
assert_equal(search.best_score_, 42)
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"],
"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
samples = [x for x in sampler]
assert_equal(len(samples), 10)
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=3, random_state=0)
assert_equal([x for x in sampler], [x for x in sampler])
if sp_version >= (0, 16):
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
assert_equal([x for x in sampler], [x for x in sampler])
def check_cv_results_array_types(search, param_keys, score_keys):
# Check if the search `cv_results`'s array are of correct types
cv_results = search.cv_results_
assert all(isinstance(cv_results[param], np.ma.MaskedArray)
for param in param_keys)
assert all(cv_results[key].dtype == object for key in param_keys)
assert_false(any(isinstance(cv_results[key], np.ma.MaskedArray)
for key in score_keys))
assert_true(all(cv_results[key].dtype == np.float64
for key in score_keys if not key.startswith('rank')))
scorer_keys = search.scorer_.keys() if search.multimetric_ else ['score']
for key in scorer_keys:
assert cv_results['rank_test_%s' % key].dtype == np.int32
def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand):
# Test the search.cv_results_ contains all the required results
assert_array_equal(sorted(cv_results.keys()),
sorted(param_keys + score_keys + ('params',)))
assert all(cv_results[key].shape == (n_cand,)
for key in param_keys + score_keys)
def test_grid_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4,
random_state=42)
n_splits = 3
n_grid_points = 6
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_candidates = n_grid_points
for iid in (False, True):
search = GridSearchCV(SVC(gamma='scale'), cv=n_splits, iid=iid,
param_grid=params, return_train_score=True)
search.fit(X, y)
assert_equal(iid, search.iid)
cv_results = search.cv_results_
# Check if score and timing are reasonable
assert all(cv_results['rank_test_score'] >= 1)
assert_true(all(cv_results[k] >= 0) for k in score_keys
if k is not 'rank_test_score')
assert_true(all(cv_results[k] <= 1) for k in score_keys
if 'time' not in k and
k is not 'rank_test_score')
# Check cv_results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
# Check masking
cv_results = search.cv_results_
n_candidates = len(search.cv_results_['params'])
assert_true(all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear'))
assert_true(all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf'))
def test_random_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
params = dict(C=expon(scale=10), gamma=expon(scale=0.1))
param_keys = ('param_C', 'param_gamma')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_cand = n_search_iter
for iid in (False, True):
search = RandomizedSearchCV(SVC(gamma='scale'), n_iter=n_search_iter,
cv=n_splits, iid=iid,
param_distributions=params,
return_train_score=True)
search.fit(X, y)
assert_equal(iid, search.iid)
cv_results = search.cv_results_
# Check results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
# For random_search, all the param array vals should be unmasked
assert_false(any(np.ma.getmaskarray(cv_results['param_C'])) or
any(np.ma.getmaskarray(cv_results['param_gamma'])))
@ignore_warnings(category=DeprecationWarning)
def test_search_iid_param():
# Test the IID parameter
# noise-free simple 2d-data
X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
cluster_std=0.1, shuffle=False, n_samples=80)
# split dataset into two folds that are not iid
# first one contains data of all 4 blobs, second only from two.
mask = np.ones(X.shape[0], dtype=np.bool)
mask[np.where(y == 1)[0][::2]] = 0
mask[np.where(y == 2)[0][::2]] = 0
# this leads to perfect classification on one fold and a score of 1/3 on
# the other
# create "cv" for splits
cv = [[mask, ~mask], [~mask, mask]]
# once with iid=True (default)
grid_search = GridSearchCV(SVC(gamma='auto'), param_grid={'C': [1, 10]},
cv=cv, return_train_score=True)
random_search = RandomizedSearchCV(SVC(gamma='auto'), n_iter=2,
param_distributions={'C': [1, 10]},
cv=cv, iid=True,
return_train_score=True)
for search in (grid_search, random_search):
search.fit(X, y)
assert search.iid or search.iid is None
test_cv_scores = np.array(list(search.cv_results_['split%d_test_score'
% s_i][0]
for s_i in range(search.n_splits_)))
test_mean = search.cv_results_['mean_test_score'][0]
test_std = search.cv_results_['std_test_score'][0]
train_cv_scores = np.array(list(search.cv_results_['split%d_train_'
'score' % s_i][0]
for s_i in range(search.n_splits_)))
train_mean = search.cv_results_['mean_train_score'][0]
train_std = search.cv_results_['std_train_score'][0]
# Test the first candidate
assert_equal(search.cv_results_['param_C'][0], 1)
assert_array_almost_equal(test_cv_scores, [1, 1. / 3.])
assert_array_almost_equal(train_cv_scores, [1, 1])
# for first split, 1/4 of dataset is in test, for second 3/4.
# take weighted average and weighted std
expected_test_mean = 1 * 1. / 4. + 1. / 3. * 3. / 4.
expected_test_std = np.sqrt(1. / 4 * (expected_test_mean - 1) ** 2 +
3. / 4 * (expected_test_mean - 1. / 3.) **
2)
assert_almost_equal(test_mean, expected_test_mean)
assert_almost_equal(test_std, expected_test_std)
assert_array_almost_equal(test_cv_scores,
cross_val_score(SVC(C=1, gamma='auto'), X,
y, cv=cv))
# For the train scores, we do not take a weighted mean irrespective of
# i.i.d. or not
assert_almost_equal(train_mean, 1)
assert_almost_equal(train_std, 0)
# once with iid=False
grid_search = GridSearchCV(SVC(gamma='auto'),
param_grid={'C': [1, 10]},
cv=cv, iid=False, return_train_score=True)
random_search = RandomizedSearchCV(SVC(gamma='auto'), n_iter=2,
param_distributions={'C': [1, 10]},
cv=cv, iid=False,
return_train_score=True)
for search in (grid_search, random_search):
search.fit(X, y)
assert_false(search.iid)
test_cv_scores = np.array(list(search.cv_results_['split%d_test_score'
% s][0]
for s in range(search.n_splits_)))
test_mean = search.cv_results_['mean_test_score'][0]
test_std = search.cv_results_['std_test_score'][0]
train_cv_scores = np.array(list(search.cv_results_['split%d_train_'
'score' % s][0]
for s in range(search.n_splits_)))
train_mean = search.cv_results_['mean_train_score'][0]
train_std = search.cv_results_['std_train_score'][0]
assert_equal(search.cv_results_['param_C'][0], 1)
# scores are the same as above
assert_array_almost_equal(test_cv_scores, [1, 1. / 3.])
# Unweighted mean/std is used
assert_almost_equal(test_mean, np.mean(test_cv_scores))
assert_almost_equal(test_std, np.std(test_cv_scores))
# For the train scores, we do not take a weighted mean irrespective of
# i.i.d. or not
assert_almost_equal(train_mean, 1)
assert_almost_equal(train_std, 0)
def test_grid_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
for iid in (False, True):
grid_searches = []
for scoring in ({'accuracy': make_scorer(accuracy_score),
'recall': make_scorer(recall_score)},
'accuracy', 'recall'):
grid_search = GridSearchCV(SVC(gamma='scale'), cv=n_splits,
iid=iid, param_grid=params,
scoring=scoring, refit=False)
grid_search.fit(X, y)
assert_equal(grid_search.iid, iid)
grid_searches.append(grid_search)
compare_cv_results_multimetric_with_single(*grid_searches, iid=iid)
def test_random_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
scoring = ('accuracy', 'recall')
# Scipy 0.12's stats dists do not accept seed, hence we use param grid
params = dict(C=np.logspace(-10, 1), gamma=np.logspace(-5, 0, base=0.1))
for iid in (True, False):
for refit in (True, False):
random_searches = []
for scoring in (('accuracy', 'recall'), 'accuracy', 'recall'):
# If True, for multi-metric pass refit='accuracy'
if refit:
refit = 'accuracy' if isinstance(scoring, tuple) else refit
clf = SVC(probability=True, random_state=42)
random_search = RandomizedSearchCV(clf, n_iter=n_search_iter,
cv=n_splits, iid=iid,
param_distributions=params,
scoring=scoring,
refit=refit, random_state=0)
random_search.fit(X, y)
random_searches.append(random_search)
compare_cv_results_multimetric_with_single(*random_searches,
iid=iid)
if refit:
compare_refit_methods_when_refit_with_acc(
random_searches[0], random_searches[1], refit)
def compare_cv_results_multimetric_with_single(
search_multi, search_acc, search_rec, iid):
"""Compare multi-metric cv_results with the ensemble of multiple
single metric cv_results from single metric grid/random search"""
assert_equal(search_multi.iid, iid)
assert search_multi.multimetric_
assert_array_equal(sorted(search_multi.scorer_),
('accuracy', 'recall'))
cv_results_multi = search_multi.cv_results_
cv_results_acc_rec = {re.sub('_score$', '_accuracy', k): v
for k, v in search_acc.cv_results_.items()}
cv_results_acc_rec.update({re.sub('_score$', '_recall', k): v
for k, v in search_rec.cv_results_.items()})
# Check if score and timing are reasonable, also checks if the keys
# are present
assert_true(all((np.all(cv_results_multi[k] <= 1) for k in (
'mean_score_time', 'std_score_time', 'mean_fit_time',
'std_fit_time'))))
# Compare the keys, other than time keys, among multi-metric and
# single metric grid search results. np.testing.assert_equal performs a
# deep nested comparison of the two cv_results dicts
np.testing.assert_equal({k: v for k, v in cv_results_multi.items()
if not k.endswith('_time')},
{k: v for k, v in cv_results_acc_rec.items()
if not k.endswith('_time')})
def compare_refit_methods_when_refit_with_acc(search_multi, search_acc, refit):
"""Compare refit multi-metric search methods with single metric methods"""
if refit:
assert_equal(search_multi.refit, 'accuracy')
else:
assert_false(search_multi.refit)
assert_equal(search_acc.refit, refit)
X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
for method in ('predict', 'predict_proba', 'predict_log_proba'):
assert_almost_equal(getattr(search_multi, method)(X),
getattr(search_acc, method)(X))
assert_almost_equal(search_multi.score(X, y), search_acc.score(X, y))
for key in ('best_index_', 'best_score_', 'best_params_'):
assert_equal(getattr(search_multi, key), getattr(search_acc, key))
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_search_cv_results_rank_tie_breaking():
X, y = make_blobs(n_samples=50, random_state=42)
# The two C values are close enough to give similar models
# which would result in a tie of their mean cv-scores
param_grid = {'C': [1, 1.001, 0.001]}
grid_search = GridSearchCV(SVC(gamma="scale"), param_grid=param_grid,
return_train_score=True)
random_search = RandomizedSearchCV(SVC(gamma="scale"), n_iter=3,
param_distributions=param_grid,
return_train_score=True)
for search in (grid_search, random_search):
search.fit(X, y)
cv_results = search.cv_results_
# Check tie breaking strategy -
# Check that there is a tie in the mean scores between
# candidates 1 and 2 alone
assert_almost_equal(cv_results['mean_test_score'][0],
cv_results['mean_test_score'][1])
assert_almost_equal(cv_results['mean_train_score'][0],
cv_results['mean_train_score'][1])
assert_false(np.allclose(cv_results['mean_test_score'][1],
cv_results['mean_test_score'][2]))
assert_false(np.allclose(cv_results['mean_train_score'][1],
cv_results['mean_train_score'][2]))
# 'min' rank should be assigned to the tied candidates
assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3])
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_search_cv_results_none_param():
X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1]
estimators = (DecisionTreeRegressor(), DecisionTreeClassifier())
est_parameters = {"random_state": [0, None]}
cv = KFold(random_state=0)
for est in estimators:
grid_search = GridSearchCV(est, est_parameters, cv=cv,
).fit(X, y)
assert_array_equal(grid_search.cv_results_['param_random_state'],
[0, None])
@ignore_warnings()
def test_search_cv_timing():
svc = LinearSVC(random_state=0)
X = [[1, ], [2, ], [3, ], [4, ]]
y = [0, 1, 1, 0]
gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0)
rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2)
for search in (gs, rs):
search.fit(X, y)
for key in ['mean_fit_time', 'std_fit_time']:
# NOTE The precision of time.time in windows is not high
# enough for the fit/score times to be non-zero for trivial X and y
assert np.all(search.cv_results_[key] >= 0)
assert np.all(search.cv_results_[key] < 1)
for key in ['mean_score_time', 'std_score_time']:
assert search.cv_results_[key][1] >= 0
assert search.cv_results_[key][0] == 0.0
assert np.all(search.cv_results_[key] < 1)
assert hasattr(search, "refit_time_")
assert isinstance(search.refit_time_, float)
assert_greater_equal(search.refit_time_, 0)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_grid_search_correct_score_results():
# test that correct scores are used
n_splits = 3
clf = LinearSVC(random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [.1, 1, 10]
for score in ['f1', 'roc_auc']:
grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits)
cv_results = grid_search.fit(X, y).cv_results_
# Test scorer names
result_keys = list(cv_results.keys())
expected_keys = (("mean_test_score", "rank_test_score") +
tuple("split%d_test_score" % cv_i
for cv_i in range(n_splits)))
assert all(np.in1d(expected_keys, result_keys))
cv = StratifiedKFold(n_splits=n_splits)
n_splits = grid_search.n_splits_
for candidate_i, C in enumerate(Cs):
clf.set_params(C=C)
cv_scores = np.array(
list(grid_search.cv_results_['split%d_test_score'
% s][candidate_i]
for s in range(n_splits)))
for i, (train, test) in enumerate(cv.split(X, y)):
clf.fit(X[train], y[train])
if score == "f1":
correct_score = f1_score(y[test], clf.predict(X[test]))
elif score == "roc_auc":
dec = clf.decision_function(X[test])
correct_score = roc_auc_score(y[test], dec)
assert_almost_equal(correct_score, cv_scores[i])
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_fit_grid_point():
X, y = make_classification(random_state=0)
cv = StratifiedKFold(random_state=0)
svc = LinearSVC(random_state=0)
scorer = make_scorer(accuracy_score)
for params in ({'C': 0.1}, {'C': 0.01}, {'C': 0.001}):
for train, test in cv.split(X, y):
this_scores, this_params, n_test_samples = fit_grid_point(
X, y, clone(svc), params, train, test,
scorer, verbose=False)
est = clone(svc).set_params(**params)
est.fit(X[train], y[train])
expected_score = scorer(est, X[test], y[test])
# Test the return values of fit_grid_point
assert_almost_equal(this_scores, expected_score)
assert_equal(params, this_params)
assert_equal(n_test_samples, test.size)
# Should raise an error upon multimetric scorer
assert_raise_message(ValueError, "For evaluating multiple scores, use "
"sklearn.model_selection.cross_validate instead.",
fit_grid_point, X, y, svc, params, train, test,
{'score': scorer}, verbose=True)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_pickle():
# Test that a fit search can be pickled
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True)
grid_search.fit(X, y)
grid_search_pickled = pickle.loads(pickle.dumps(grid_search))
assert_array_almost_equal(grid_search.predict(X),
grid_search_pickled.predict(X))
random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]},
refit=True, n_iter=3)
random_search.fit(X, y)
random_search_pickled = pickle.loads(pickle.dumps(random_search))
assert_array_almost_equal(random_search.predict(X),
random_search_pickled.predict(X))
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_with_multioutput_data():
# Test search with multi-output estimator
X, y = make_multilabel_classification(return_indicator=True,
random_state=0)
est_parameters = {"max_depth": [1, 2, 3, 4]}
cv = KFold(random_state=0)
estimators = [DecisionTreeRegressor(random_state=0),
DecisionTreeClassifier(random_state=0)]
# Test with grid search cv
for est in estimators:
grid_search = GridSearchCV(est, est_parameters, cv=cv)
grid_search.fit(X, y)
res_params = grid_search.cv_results_['params']
for cand_i in range(len(res_params)):
est.set_params(**res_params[cand_i])
for i, (train, test) in enumerate(cv.split(X, y)):
est.fit(X[train], y[train])
correct_score = est.score(X[test], y[test])
assert_almost_equal(
correct_score,
grid_search.cv_results_['split%d_test_score' % i][cand_i])
# Test with a randomized search
for est in estimators:
random_search = RandomizedSearchCV(est, est_parameters,
cv=cv, n_iter=3)
random_search.fit(X, y)
res_params = random_search.cv_results_['params']
for cand_i in range(len(res_params)):
est.set_params(**res_params[cand_i])
for i, (train, test) in enumerate(cv.split(X, y)):
est.fit(X[train], y[train])
correct_score = est.score(X[test], y[test])
assert_almost_equal(
correct_score,
random_search.cv_results_['split%d_test_score'
% i][cand_i])
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_predict_proba_disabled():
# Test predict_proba when disabled on estimator.
X = np.arange(20).reshape(5, -1)
y = [0, 0, 1, 1, 1]
clf = SVC(gamma='scale', probability=False)
gs = GridSearchCV(clf, {}, cv=2).fit(X, y)
assert_false(hasattr(gs, "predict_proba"))
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_grid_search_allows_nans():
# Test GridSearchCV with SimpleImputer
X = np.arange(20, dtype=np.float64).reshape(5, -1)
X[2, :] = np.nan
y = [0, 0, 1, 1, 1]
p = Pipeline([
('imputer', SimpleImputer(strategy='mean', missing_values=np.nan)),
('classifier', MockClassifier()),
])
GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y)
class FailingClassifier(BaseEstimator):
"""Classifier that raises a ValueError on fit()"""
FAILING_PARAMETER = 2
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y=None):
if self.parameter == FailingClassifier.FAILING_PARAMETER:
raise ValueError("Failing classifier failed as required")
def predict(self, X):
return np.zeros(X.shape[0])
def score(self, X=None, Y=None):
return 0.
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_grid_search_failing_classifier():
# GridSearchCV with on_error != 'raise'
# Ensures that a warning is raised and score reset where appropriate.
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
clf = FailingClassifier()
# refit=False because we only want to check that errors caused by fits
# to individual folds will be caught and warnings raised instead. If
# refit was done, then an exception would be raised on refit and not
# caught by grid_search (expected behavior), and this would cause an
# error in this test.
gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
refit=False, error_score=0.0)
assert_warns(FitFailedWarning, gs.fit, X, y)
n_candidates = len(gs.cv_results_['params'])
# Ensure that grid scores were set to zero as required for those fits
# that are expected to fail.
def get_cand_scores(i):
return np.array(list(gs.cv_results_['split%d_test_score' % s][i]
for s in range(gs.n_splits_)))
assert all((np.all(get_cand_scores(cand_i) == 0.0)
for cand_i in range(n_candidates)
if gs.cv_results_['param_parameter'][cand_i] ==
FailingClassifier.FAILING_PARAMETER))
gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
refit=False, error_score=float('nan'))
assert_warns(FitFailedWarning, gs.fit, X, y)
n_candidates = len(gs.cv_results_['params'])
assert all(np.all(np.isnan(get_cand_scores(cand_i)))
for cand_i in range(n_candidates)
if gs.cv_results_['param_parameter'][cand_i] ==
FailingClassifier.FAILING_PARAMETER)
ranks = gs.cv_results_['rank_test_score']
# Check that succeeded estimators have lower ranks
assert ranks[0] <= 2 and ranks[1] <= 2
# Check that failed estimator has the highest rank
assert ranks[clf.FAILING_PARAMETER] == 3
assert gs.best_index_ != clf.FAILING_PARAMETER
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_grid_search_failing_classifier_raise():
# GridSearchCV with on_error == 'raise' raises the error
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
clf = FailingClassifier()
# refit=False because we want to test the behaviour of the grid search part
gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
refit=False, error_score='raise')
# FailingClassifier issues a ValueError so this is what we look for.
assert_raises(ValueError, gs.fit, X, y)
def test_parameters_sampler_replacement():
# raise warning if n_iter is bigger than total parameter space
params = {'first': [0, 1], 'second': ['a', 'b', 'c']}
sampler = ParameterSampler(params, n_iter=7)
n_iter = 7
grid_size = 6
expected_warning = ('The total space of parameters %d is smaller '
'than n_iter=%d. Running %d iterations. For '
'exhaustive searches, use GridSearchCV.'
% (grid_size, n_iter, grid_size))
assert_warns_message(UserWarning, expected_warning,
list, sampler)
# degenerates to GridSearchCV if n_iter the same as grid_size
sampler = ParameterSampler(params, n_iter=6)
samples = list(sampler)
assert_equal(len(samples), 6)
for values in ParameterGrid(params):
assert values in samples
# test sampling without replacement in a large grid
params = {'a': range(10), 'b': range(10), 'c': range(10)}
sampler = ParameterSampler(params, n_iter=99, random_state=42)
samples = list(sampler)
assert_equal(len(samples), 99)
hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c'])
for p in samples]
assert_equal(len(set(hashable_samples)), 99)
# doesn't go into infinite loops
params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']}
sampler = ParameterSampler(params_distribution, n_iter=7)
samples = list(sampler)
assert_equal(len(samples), 7)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_stochastic_gradient_loss_param():
# Make sure the predict_proba works when loss is specified
# as one of the parameters in the param_grid.
param_grid = {
'loss': ['log'],
}
X = np.arange(24).reshape(6, -1)
y = [0, 0, 0, 1, 1, 1]
clf = GridSearchCV(estimator=SGDClassifier(tol=1e-3, loss='hinge'),
param_grid=param_grid)
# When the estimator is not fitted, `predict_proba` is not available as the
# loss is 'hinge'.
assert_false(hasattr(clf, "predict_proba"))
clf.fit(X, y)
clf.predict_proba(X)
clf.predict_log_proba(X)
# Make sure `predict_proba` is not available when setting loss=['hinge']
# in param_grid
param_grid = {
'loss': ['hinge'],
}
clf = GridSearchCV(estimator=SGDClassifier(tol=1e-3, loss='hinge'),
param_grid=param_grid)
assert_false(hasattr(clf, "predict_proba"))
clf.fit(X, y)
assert_false(hasattr(clf, "predict_proba"))
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_search_train_scores_set_to_false():
X = np.arange(6).reshape(6, -1)
y = [0, 0, 0, 1, 1, 1]
clf = LinearSVC(random_state=0)
gs = GridSearchCV(clf, param_grid={'C': [0.1, 0.2]},
return_train_score=False)
gs.fit(X, y)
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
def test_grid_search_cv_splits_consistency():
# Check if a one time iterable is accepted as a cv parameter.
n_samples = 100
n_splits = 5
X, y = make_classification(n_samples=n_samples, random_state=0)
gs = GridSearchCV(LinearSVC(random_state=0),
param_grid={'C': [0.1, 0.2, 0.3]},
cv=OneTimeSplitter(n_splits=n_splits,
n_samples=n_samples),
return_train_score=True)
gs.fit(X, y)
gs2 = GridSearchCV(LinearSVC(random_state=0),
param_grid={'C': [0.1, 0.2, 0.3]},
cv=KFold(n_splits=n_splits), return_train_score=True)
gs2.fit(X, y)
# Give generator as a cv parameter
assert_true(isinstance(KFold(n_splits=n_splits,
shuffle=True, random_state=0).split(X, y),
GeneratorType))
gs3 = GridSearchCV(LinearSVC(random_state=0),
param_grid={'C': [0.1, 0.2, 0.3]},
cv=KFold(n_splits=n_splits, shuffle=True,
random_state=0).split(X, y),
return_train_score=True)
gs3.fit(X, y)
gs4 = GridSearchCV(LinearSVC(random_state=0),
param_grid={'C': [0.1, 0.2, 0.3]},
cv=KFold(n_splits=n_splits, shuffle=True,
random_state=0), return_train_score=True)
gs4.fit(X, y)
def _pop_time_keys(cv_results):
for key in ('mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time'):
cv_results.pop(key)
return cv_results
# Check if generators are supported as cv and
# that the splits are consistent
np.testing.assert_equal(_pop_time_keys(gs3.cv_results_),
_pop_time_keys(gs4.cv_results_))
# OneTimeSplitter is a non-re-entrant cv where split can be called only
# once if ``cv.split`` is called once per param setting in GridSearchCV.fit
# the 2nd and 3rd parameter will not be evaluated as no train/test indices
# will be generated for the 2nd and subsequent cv.split calls.
# This is a check to make sure cv.split is not called once per param
# setting.
np.testing.assert_equal({k: v for k, v in gs.cv_results_.items()
if not k.endswith('_time')},
{k: v for k, v in gs2.cv_results_.items()
if not k.endswith('_time')})
# Check consistency of folds across the parameters
gs = GridSearchCV(LinearSVC(random_state=0),
param_grid={'C': [0.1, 0.1, 0.2, 0.2]},
cv=KFold(n_splits=n_splits, shuffle=True),
return_train_score=True)
gs.fit(X, y)
# As the first two param settings (C=0.1) and the next two param
# settings (C=0.2) are same, the test and train scores must also be
# same as long as the same train/test indices are generated for all
# the cv splits, for both param setting
for score_type in ('train', 'test'):
per_param_scores = {}
for param_i in range(4):
per_param_scores[param_i] = list(
gs.cv_results_['split%d_%s_score' % (s, score_type)][param_i]
for s in range(5))
assert_array_almost_equal(per_param_scores[0],
per_param_scores[1])
assert_array_almost_equal(per_param_scores[2],
per_param_scores[3])
@pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value') # 0.22
def test_transform_inverse_transform_round_trip():
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3)
grid_search.fit(X, y)
X_round_trip = grid_search.inverse_transform(grid_search.transform(X))
assert_array_equal(X, X_round_trip)
def test_custom_run_search():
def check_results(results, gscv):
exp_results = gscv.cv_results_
assert sorted(results.keys()) == sorted(exp_results)
for k in results:
if not k.endswith('_time'):
# XXX: results['params'] is a list :|
results[k] = np.asanyarray(results[k])
if results[k].dtype.kind == 'O':
assert_array_equal(exp_results[k], results[k],
err_msg='Checking ' + k)
else:
assert_allclose(exp_results[k], results[k],
err_msg='Checking ' + k)
def fit_grid(param_grid):
return GridSearchCV(clf, param_grid, cv=5,
return_train_score=True).fit(X, y)
class CustomSearchCV(BaseSearchCV):
def __init__(self, estimator, **kwargs):
super(CustomSearchCV, self).__init__(estimator, **kwargs)
def _run_search(self, evaluate):
results = evaluate([{'max_depth': 1}, {'max_depth': 2}])
check_results(results, fit_grid({'max_depth': [1, 2]}))
results = evaluate([{'min_samples_split': 5},
{'min_samples_split': 10}])
check_results(results, fit_grid([{'max_depth': [1, 2]},
{'min_samples_split': [5, 10]}]))
# Using regressor to make sure each score differs
clf = DecisionTreeRegressor(random_state=0)
X, y = make_classification(n_samples=100, n_informative=4,
random_state=0)
mycv = CustomSearchCV(clf, cv=5, return_train_score=True).fit(X, y)
gscv = fit_grid([{'max_depth': [1, 2]},
{'min_samples_split': [5, 10]}])
results = mycv.cv_results_
check_results(results, gscv)
for attr in dir(gscv):
if attr[0].islower() and attr[-1:] == '_' and \
attr not in {'cv_results_', 'best_estimator_',
'refit_time_'}:
assert getattr(gscv, attr) == getattr(mycv, attr), \
"Attribute %s not equal" % attr
def test__custom_fit_no_run_search():
class NoRunSearchSearchCV(BaseSearchCV):
def __init__(self, estimator, **kwargs):
super(NoRunSearchSearchCV, self).__init__(estimator, **kwargs)
def fit(self, X, y=None, groups=None, **fit_params):
return self
# this should not raise any exceptions
NoRunSearchSearchCV(SVC(), cv=5).fit(X, y)
class BadSearchCV(BaseSearchCV):
def __init__(self, estimator, **kwargs):
super(BadSearchCV, self).__init__(estimator, **kwargs)
with pytest.raises(NotImplementedError,
match="_run_search not implemented."):
# this should raise a NotImplementedError
BadSearchCV(SVC(), cv=5).fit(X, y)
def test_deprecated_grid_search_iid():
depr_message = ("The default of the `iid` parameter will change from True "
"to False in version 0.22")
X, y = make_blobs(n_samples=54, random_state=0, centers=2)
grid = GridSearchCV(SVC(gamma='scale'), param_grid={'C': [1]}, cv=3)
# no warning with equally sized test sets
assert_no_warnings(grid.fit, X, y)
grid = GridSearchCV(SVC(gamma='scale'), param_grid={'C': [1]}, cv=5)
# warning because 54 % 5 != 0
assert_warns_message(DeprecationWarning, depr_message, grid.fit, X, y)
grid = GridSearchCV(SVC(gamma='scale'), param_grid={'C': [1]}, cv=2)
# warning because stratification into two classes and 27 % 2 != 0
assert_warns_message(DeprecationWarning, depr_message, grid.fit, X, y)
grid = GridSearchCV(SVC(gamma='scale'), param_grid={'C': [1]}, cv=KFold(2))
# no warning because no stratification and 54 % 2 == 0
assert_no_warnings(grid.fit, X, y)
|