File: test_search.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1719 lines) | stat: -rw-r--r-- 70,888 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
"""Test the search module"""

from sklearn.externals.six.moves import cStringIO as StringIO
from sklearn.externals.six.moves import xrange
from itertools import chain, product
import pickle
import sys
from types import GeneratorType
import re
import warnings

import numpy as np
import scipy.sparse as sp
import pytest

from sklearn.utils.fixes import sp_version
from sklearn.utils.fixes import PY3_OR_LATER
from sklearn.utils.fixes import _Iterable as Iterable, _Sized as Sized
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_no_warnings
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_false, assert_true
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.mocking import CheckingClassifier, MockDataFrame

from scipy.stats import bernoulli, expon, uniform

from sklearn.base import BaseEstimator
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.exceptions import ConvergenceWarning
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification

from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV

from sklearn.model_selection._validation import FitFailedWarning

from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier

from sklearn.model_selection.tests.common import OneTimeSplitter


# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier(object):
    """Dummy classifier to test the parameter search algorithms"""
    def __init__(self, foo_param=0):
        self.foo_param = foo_param

    def fit(self, X, Y):
        assert len(X) == len(Y)
        self.classes_ = np.unique(Y)
        return self

    def predict(self, T):
        return T.shape[0]

    def transform(self, X):
        return X + self.foo_param

    def inverse_transform(self, X):
        return X - self.foo_param

    predict_proba = predict
    predict_log_proba = predict
    decision_function = predict

    def score(self, X=None, Y=None):
        if self.foo_param > 1:
            score = 1.
        else:
            score = 0.
        return score

    def get_params(self, deep=False):
        return {'foo_param': self.foo_param}

    def set_params(self, **params):
        self.foo_param = params['foo_param']
        return self


class LinearSVCNoScore(LinearSVC):
    """An LinearSVC classifier that has no score method."""
    @property
    def score(self):
        raise AttributeError


X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])


def assert_grid_iter_equals_getitem(grid):
    assert_equal(list(grid), [grid[i] for i in range(len(grid))])


@pytest.mark.parametrize(
    "input, error_type, error_message",
    [(0, TypeError, r'Parameter grid is not a dict or a list \(0\)'),
     ([{'foo': [0]}, 0], TypeError, r'Parameter grid is not a dict \(0\)'),
     ({'foo': 0}, TypeError, "Parameter grid value is not iterable "
      r"\(key='foo', value=0\)")]
)
def test_validate_parameter_grid_input(input, error_type, error_message):
    with pytest.raises(error_type, match=error_message):
        ParameterGrid(input)


def test_parameter_grid():

    # Test basic properties of ParameterGrid.
    params1 = {"foo": [1, 2, 3]}
    grid1 = ParameterGrid(params1)
    assert isinstance(grid1, Iterable)
    assert isinstance(grid1, Sized)
    assert_equal(len(grid1), 3)
    assert_grid_iter_equals_getitem(grid1)

    params2 = {"foo": [4, 2],
               "bar": ["ham", "spam", "eggs"]}
    grid2 = ParameterGrid(params2)
    assert_equal(len(grid2), 6)

    # loop to assert we can iterate over the grid multiple times
    for i in xrange(2):
        # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
        points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
        assert_equal(points,
                     set(("bar", x, "foo", y)
                         for x, y in product(params2["bar"], params2["foo"])))
    assert_grid_iter_equals_getitem(grid2)

    # Special case: empty grid (useful to get default estimator settings)
    empty = ParameterGrid({})
    assert_equal(len(empty), 1)
    assert_equal(list(empty), [{}])
    assert_grid_iter_equals_getitem(empty)
    assert_raises(IndexError, lambda: empty[1])

    has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
    assert_equal(len(has_empty), 4)
    assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}])
    assert_grid_iter_equals_getitem(has_empty)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search():
    # Test that the best estimator contains the right value for foo_param
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3)
    # make sure it selects the smallest parameter in case of ties
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    grid_search.fit(X, y)
    sys.stdout = old_stdout
    assert_equal(grid_search.best_estimator_.foo_param, 2)

    assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
                       [1, 2, 3])

    # Smoke test the score etc:
    grid_search.score(X, y)
    grid_search.predict_proba(X)
    grid_search.decision_function(X)
    grid_search.transform(X)

    # Test exception handling on scoring
    grid_search.scoring = 'sklearn'
    assert_raises(ValueError, grid_search.fit, X, y)


def check_hyperparameter_searcher_with_fit_params(klass, **klass_kwargs):
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)
    clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
    searcher = klass(clf, {'foo_param': [1, 2, 3]}, cv=2, **klass_kwargs)

    # The CheckingClassifier generates an assertion error if
    # a parameter is missing or has length != len(X).
    assert_raise_message(AssertionError,
                         "Expected fit parameter(s) ['eggs'] not seen.",
                         searcher.fit, X, y, spam=np.ones(10))
    assert_raise_message(AssertionError,
                         "Fit parameter spam has length 1; expected 4.",
                         searcher.fit, X, y, spam=np.ones(1),
                         eggs=np.zeros(10))
    searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_grid_search_with_fit_params():
    check_hyperparameter_searcher_with_fit_params(GridSearchCV,
                                                  error_score='raise')


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_random_search_with_fit_params():
    check_hyperparameter_searcher_with_fit_params(RandomizedSearchCV, n_iter=1,
                                                  error_score='raise')


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_grid_search_fit_params_deprecation():
    # NOTE: Remove this test in v0.21

    # Use of `fit_params` in the class constructor is deprecated,
    # but will still work until v0.21.
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)
    clf = CheckingClassifier(expected_fit_params=['spam'])
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]},
                               fit_params={'spam': np.ones(10)})
    assert_warns(DeprecationWarning, grid_search.fit, X, y)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_fit_params_two_places():
    # NOTE: Remove this test in v0.21

    # If users try to input fit parameters in both
    # the constructor (deprecated use) and the `fit`
    # method, we'll ignore the values passed to the constructor.
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)
    clf = CheckingClassifier(expected_fit_params=['spam'])

    # The "spam" array is too short and will raise an
    # error in the CheckingClassifier if used.
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]},
                               fit_params={'spam': np.ones(1)})

    expected_warning = ('Ignoring fit_params passed as a constructor '
                        'argument in favor of keyword arguments to '
                        'the "fit" method.')
    assert_warns_message(RuntimeWarning, expected_warning,
                         grid_search.fit, X, y, spam=np.ones(10))

    # Verify that `fit` prefers its own kwargs by giving valid
    # kwargs in the constructor and invalid in the method call
    with warnings.catch_warnings():
        # JvR: As passing fit params to the constructor is deprecated, this
        # unit test raises a warning (unit test can be removed after version
        # 0.22)
        warnings.filterwarnings("ignore", category=DeprecationWarning)
        grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]},
                                   fit_params={'spam': np.ones(10)},
                                   error_score='raise')
        assert_raise_message(AssertionError, "Fit parameter spam has length 1",
                             grid_search.fit, X, y, spam=np.ones(1))


@ignore_warnings
def test_grid_search_no_score():
    # Test grid-search on classifier that has no score function.
    clf = LinearSVC(random_state=0)
    X, y = make_blobs(random_state=0, centers=2)
    Cs = [.1, 1, 10]
    clf_no_score = LinearSVCNoScore(random_state=0)
    grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy')
    grid_search.fit(X, y)

    grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs},
                                        scoring='accuracy')
    # smoketest grid search
    grid_search_no_score.fit(X, y)

    # check that best params are equal
    assert_equal(grid_search_no_score.best_params_, grid_search.best_params_)
    # check that we can call score and that it gives the correct result
    assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y))

    # giving no scoring function raises an error
    grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs})
    assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit,
                         [[1]])


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_score_method():
    X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
                               random_state=0)
    clf = LinearSVC(random_state=0)
    grid = {'C': [.1]}

    search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
    search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
    search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
                                              scoring='roc_auc'
                                              ).fit(X, y)
    search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)

    # Check warning only occurs in situation where behavior changed:
    # estimator requires score method to compete with scoring parameter
    score_no_scoring = search_no_scoring.score(X, y)
    score_accuracy = search_accuracy.score(X, y)
    score_no_score_auc = search_no_score_method_auc.score(X, y)
    score_auc = search_auc.score(X, y)

    # ensure the test is sane
    assert score_auc < 1.0
    assert score_accuracy < 1.0
    assert_not_equal(score_auc, score_accuracy)

    assert_almost_equal(score_accuracy, score_no_scoring)
    assert_almost_equal(score_auc, score_no_score_auc)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_groups():
    # Check if ValueError (when groups is None) propagates to GridSearchCV
    # And also check if groups is correctly passed to the cv object
    rng = np.random.RandomState(0)

    X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
    groups = rng.randint(0, 3, 15)

    clf = LinearSVC(random_state=0)
    grid = {'C': [1]}

    group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(),
                 GroupShuffleSplit()]
    for cv in group_cvs:
        gs = GridSearchCV(clf, grid, cv=cv)
        assert_raise_message(ValueError,
                             "The 'groups' parameter should not be None.",
                             gs.fit, X, y)
        gs.fit(X, y, groups=groups)

    non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
    for cv in non_group_cvs:
        gs = GridSearchCV(clf, grid, cv=cv)
        # Should not raise an error
        gs.fit(X, y)


def test_return_train_score_warn():
    # Test that warnings are raised. Will be removed in 0.21

    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)
    grid = {'C': [1, 2]}

    estimators = [GridSearchCV(LinearSVC(random_state=0), grid,
                               iid=False, cv=3),
                  RandomizedSearchCV(LinearSVC(random_state=0), grid,
                                     n_iter=2, iid=False, cv=3)]

    result = {}
    for estimator in estimators:
        for val in [True, False, 'warn']:
            estimator.set_params(return_train_score=val)
            fit_func = ignore_warnings(estimator.fit,
                                       category=ConvergenceWarning)
            result[val] = assert_no_warnings(fit_func, X, y).cv_results_

    train_keys = ['split0_train_score', 'split1_train_score',
                  'split2_train_score', 'mean_train_score', 'std_train_score']
    for key in train_keys:
        msg = (
            'You are accessing a training score ({!r}), '
            'which will not be available by default '
            'any more in 0.21. If you need training scores, '
            'please set return_train_score=True').format(key)
        train_score = assert_warns_message(FutureWarning, msg,
                                           result['warn'].get, key)
        assert np.allclose(train_score, result[True][key])
        assert key not in result[False]

    for key in result['warn']:
        if key not in train_keys:
            assert_no_warnings(result['warn'].get, key)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_classes__property():
    # Test that classes_ property matches best_estimator_.classes_
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)
    Cs = [.1, 1, 10]

    grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
    grid_search.fit(X, y)
    assert_array_equal(grid_search.best_estimator_.classes_,
                       grid_search.classes_)

    # Test that regressors do not have a classes_ attribute
    grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
    grid_search.fit(X, y)
    assert_false(hasattr(grid_search, 'classes_'))

    # Test that the grid searcher has no classes_ attribute before it's fit
    grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
    assert_false(hasattr(grid_search, 'classes_'))

    # Test that the grid searcher has no classes_ attribute without a refit
    grid_search = GridSearchCV(LinearSVC(random_state=0),
                               {'C': Cs}, refit=False)
    grid_search.fit(X, y)
    assert_false(hasattr(grid_search, 'classes_'))


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_trivial_cv_results_attr():
    # Test search over a "grid" with only one point.
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {'foo_param': [1]})
    grid_search.fit(X, y)
    assert hasattr(grid_search, "cv_results_")

    random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1)
    random_search.fit(X, y)
    assert hasattr(grid_search, "cv_results_")


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_no_refit():
    # Test that GSCV can be used for model selection alone without refitting
    clf = MockClassifier()
    for scoring in [None, ['accuracy', 'precision']]:
        grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False)
        grid_search.fit(X, y)
        assert_true(not hasattr(grid_search, "best_estimator_") and
                    hasattr(grid_search, "best_index_") and
                    hasattr(grid_search, "best_params_"))

        # Make sure the functions predict/transform etc raise meaningful
        # error messages
        for fn_name in ('predict', 'predict_proba', 'predict_log_proba',
                        'transform', 'inverse_transform'):
            assert_raise_message(NotFittedError,
                                 ('refit=False. %s is available only after '
                                  'refitting on the best parameters'
                                  % fn_name), getattr(grid_search, fn_name), X)

    # Test that an invalid refit param raises appropriate error messages
    for refit in ["", 5, True, 'recall', 'accuracy']:
        assert_raise_message(ValueError, "For multi-metric scoring, the "
                             "parameter refit must be set to a scorer key",
                             GridSearchCV(clf, {}, refit=refit,
                                          scoring={'acc': 'accuracy',
                                                   'prec': 'precision'}
                                          ).fit,
                             X, y)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_error():
    # Test that grid search will capture errors on data with different length
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    assert_raises(ValueError, cv.fit, X_[:180], y_)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_one_grid_point():
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
    param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}

    clf = SVC(gamma='auto')
    cv = GridSearchCV(clf, param_dict)
    cv.fit(X_, y_)

    clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
    clf.fit(X_, y_)

    assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_when_param_grid_includes_range():
    # Test that the best estimator contains the right value for foo_param
    clf = MockClassifier()
    grid_search = None
    if PY3_OR_LATER:
        grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)})
    else:
        grid_search = GridSearchCV(clf, {'foo_param': xrange(1, 4)})
    grid_search.fit(X, y)
    assert_equal(grid_search.best_estimator_.foo_param, 2)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_bad_param_grid():
    param_dict = {"C": 1.0}
    clf = SVC(gamma='auto')
    assert_raise_message(
        ValueError,
        "Parameter values for parameter (C) need to be a sequence"
        "(but not a string) or np.ndarray.",
        GridSearchCV, clf, param_dict)

    param_dict = {"C": []}
    clf = SVC(gamma="scale")
    assert_raise_message(
        ValueError,
        "Parameter values for parameter (C) need to be a non-empty sequence.",
        GridSearchCV, clf, param_dict)

    param_dict = {"C": "1,2,3"}
    clf = SVC(gamma='auto')
    assert_raise_message(
        ValueError,
        "Parameter values for parameter (C) need to be a sequence"
        "(but not a string) or np.ndarray.",
        GridSearchCV, clf, param_dict)

    param_dict = {"C": np.ones((3, 2))}
    clf = SVC(gamma="scale")
    assert_raises(ValueError, GridSearchCV, clf, param_dict)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_sparse():
    # Test that grid search works with both dense and sparse matrices
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    cv.fit(X_[:180], y_[:180])
    y_pred = cv.predict(X_[180:])
    C = cv.best_estimator_.C

    X_ = sp.csr_matrix(X_)
    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    cv.fit(X_[:180].tocoo(), y_[:180])
    y_pred2 = cv.predict(X_[180:])
    C2 = cv.best_estimator_.C

    assert np.mean(y_pred == y_pred2) >= .9
    assert_equal(C, C2)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_sparse_scoring():
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
    cv.fit(X_[:180], y_[:180])
    y_pred = cv.predict(X_[180:])
    C = cv.best_estimator_.C

    X_ = sp.csr_matrix(X_)
    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
    cv.fit(X_[:180], y_[:180])
    y_pred2 = cv.predict(X_[180:])
    C2 = cv.best_estimator_.C

    assert_array_equal(y_pred, y_pred2)
    assert_equal(C, C2)
    # Smoke test the score
    # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
    #                            cv.score(X_[:180], y[:180]))

    # test loss where greater is worse
    def f1_loss(y_true_, y_pred_):
        return -f1_score(y_true_, y_pred_)
    F1Loss = make_scorer(f1_loss, greater_is_better=False)
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
    cv.fit(X_[:180], y_[:180])
    y_pred3 = cv.predict(X_[180:])
    C3 = cv.best_estimator_.C

    assert_equal(C, C3)
    assert_array_equal(y_pred, y_pred3)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_precomputed_kernel():
    # Test that grid search works when the input features are given in the
    # form of a precomputed kernel matrix
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    # compute the training kernel matrix corresponding to the linear kernel
    K_train = np.dot(X_[:180], X_[:180].T)
    y_train = y_[:180]

    clf = SVC(kernel='precomputed')
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    cv.fit(K_train, y_train)

    assert cv.best_score_ >= 0

    # compute the test kernel matrix
    K_test = np.dot(X_[180:], X_[:180].T)
    y_test = y_[180:]

    y_pred = cv.predict(K_test)

    assert np.mean(y_pred == y_test) >= 0

    # test error is raised when the precomputed kernel is not array-like
    # or sparse
    assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_precomputed_kernel_error_nonsquare():
    # Test that grid search returns an error with a non-square precomputed
    # training kernel matrix
    K_train = np.zeros((10, 20))
    y_train = np.ones((10, ))
    clf = SVC(kernel='precomputed')
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    assert_raises(ValueError, cv.fit, K_train, y_train)


class BrokenClassifier(BaseEstimator):
    """Broken classifier that cannot be fit twice"""

    def __init__(self, parameter=None):
        self.parameter = parameter

    def fit(self, X, y):
        assert not hasattr(self, 'has_been_fit_')
        self.has_been_fit_ = True

    def predict(self, X):
        return np.zeros(X.shape[0])


@ignore_warnings
def test_refit():
    # Regression test for bug in refitting
    # Simulates re-fitting a broken estimator; this used to break with
    # sparse SVMs.
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)

    clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}],
                       scoring="precision", refit=True)
    clf.fit(X, y)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_gridsearch_nd():
    # Pass X as list in GridSearchCV
    X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
    y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
    check_X = lambda x: x.shape[1:] == (5, 3, 2)
    check_y = lambda x: x.shape[1:] == (7, 11)
    clf = CheckingClassifier(check_X=check_X, check_y=check_y)
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
    grid_search.fit(X_4d, y_3d).score(X, y)
    assert hasattr(grid_search, "cv_results_")


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_X_as_list():
    # Pass X as list in GridSearchCV
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)

    clf = CheckingClassifier(check_X=lambda x: isinstance(x, list))
    cv = KFold(n_splits=3)
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
    grid_search.fit(X.tolist(), y).score(X, y)
    assert hasattr(grid_search, "cv_results_")


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_y_as_list():
    # Pass y as list in GridSearchCV
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)

    clf = CheckingClassifier(check_y=lambda x: isinstance(x, list))
    cv = KFold(n_splits=3)
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
    grid_search.fit(X, y.tolist()).score(X, y)
    assert hasattr(grid_search, "cv_results_")


@ignore_warnings
def test_pandas_input():
    # check cross_val_score doesn't destroy pandas dataframe
    types = [(MockDataFrame, MockDataFrame)]
    try:
        from pandas import Series, DataFrame
        types.append((DataFrame, Series))
    except ImportError:
        pass

    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)

    for InputFeatureType, TargetType in types:
        # X dataframe, y series
        X_df, y_ser = InputFeatureType(X), TargetType(y)

        def check_df(x):
            return isinstance(x, InputFeatureType)

        def check_series(x):
            return isinstance(x, TargetType)

        clf = CheckingClassifier(check_X=check_df, check_y=check_series)

        grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
        grid_search.fit(X_df, y_ser).score(X_df, y_ser)
        grid_search.predict(X_df)
        assert hasattr(grid_search, "cv_results_")


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_unsupervised_grid_search():
    # test grid-search with unsupervised estimator
    X, y = make_blobs(random_state=0)
    km = KMeans(random_state=0)

    # Multi-metric evaluation unsupervised
    scoring = ['adjusted_rand_score', 'fowlkes_mallows_score']
    for refit in ['adjusted_rand_score', 'fowlkes_mallows_score']:
        grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
                                   scoring=scoring, refit=refit)
        grid_search.fit(X, y)
        # Both ARI and FMS can find the right number :)
        assert_equal(grid_search.best_params_["n_clusters"], 3)

    # Single metric evaluation unsupervised
    grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
                               scoring='fowlkes_mallows_score')
    grid_search.fit(X, y)
    assert_equal(grid_search.best_params_["n_clusters"], 3)

    # Now without a score, and without y
    grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
    grid_search.fit(X)
    assert_equal(grid_search.best_params_["n_clusters"], 4)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_gridsearch_no_predict():
    # test grid-search with an estimator without predict.
    # slight duplication of a test from KDE
    def custom_scoring(estimator, X):
        return 42 if estimator.bandwidth == .1 else 0
    X, _ = make_blobs(cluster_std=.1, random_state=1,
                      centers=[[0, 1], [1, 0], [0, 0]])
    search = GridSearchCV(KernelDensity(),
                          param_grid=dict(bandwidth=[.01, .1, 1]),
                          scoring=custom_scoring)
    search.fit(X)
    assert_equal(search.best_params_['bandwidth'], .1)
    assert_equal(search.best_score_, 42)


def test_param_sampler():
    # test basic properties of param sampler
    param_distributions = {"kernel": ["rbf", "linear"],
                           "C": uniform(0, 1)}
    sampler = ParameterSampler(param_distributions=param_distributions,
                               n_iter=10, random_state=0)
    samples = [x for x in sampler]
    assert_equal(len(samples), 10)
    for sample in samples:
        assert sample["kernel"] in ["rbf", "linear"]
        assert 0 <= sample["C"] <= 1

    # test that repeated calls yield identical parameters
    param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
    sampler = ParameterSampler(param_distributions=param_distributions,
                               n_iter=3, random_state=0)
    assert_equal([x for x in sampler], [x for x in sampler])

    if sp_version >= (0, 16):
        param_distributions = {"C": uniform(0, 1)}
        sampler = ParameterSampler(param_distributions=param_distributions,
                                   n_iter=10, random_state=0)
        assert_equal([x for x in sampler], [x for x in sampler])


def check_cv_results_array_types(search, param_keys, score_keys):
    # Check if the search `cv_results`'s array are of correct types
    cv_results = search.cv_results_
    assert all(isinstance(cv_results[param], np.ma.MaskedArray)
               for param in param_keys)
    assert all(cv_results[key].dtype == object for key in param_keys)
    assert_false(any(isinstance(cv_results[key], np.ma.MaskedArray)
                     for key in score_keys))
    assert_true(all(cv_results[key].dtype == np.float64
                    for key in score_keys if not key.startswith('rank')))

    scorer_keys = search.scorer_.keys() if search.multimetric_ else ['score']

    for key in scorer_keys:
        assert cv_results['rank_test_%s' % key].dtype == np.int32


def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand):
    # Test the search.cv_results_ contains all the required results
    assert_array_equal(sorted(cv_results.keys()),
                       sorted(param_keys + score_keys + ('params',)))
    assert all(cv_results[key].shape == (n_cand,)
               for key in param_keys + score_keys)


def test_grid_search_cv_results():
    X, y = make_classification(n_samples=50, n_features=4,
                               random_state=42)

    n_splits = 3
    n_grid_points = 6
    params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
              dict(kernel=['poly', ], degree=[1, 2])]

    param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
    score_keys = ('mean_test_score', 'mean_train_score',
                  'rank_test_score',
                  'split0_test_score', 'split1_test_score',
                  'split2_test_score',
                  'split0_train_score', 'split1_train_score',
                  'split2_train_score',
                  'std_test_score', 'std_train_score',
                  'mean_fit_time', 'std_fit_time',
                  'mean_score_time', 'std_score_time')
    n_candidates = n_grid_points

    for iid in (False, True):
        search = GridSearchCV(SVC(gamma='scale'), cv=n_splits, iid=iid,
                              param_grid=params, return_train_score=True)
        search.fit(X, y)
        assert_equal(iid, search.iid)
        cv_results = search.cv_results_
        # Check if score and timing are reasonable
        assert all(cv_results['rank_test_score'] >= 1)
        assert_true(all(cv_results[k] >= 0) for k in score_keys
                    if k is not 'rank_test_score')
        assert_true(all(cv_results[k] <= 1) for k in score_keys
                    if 'time' not in k and
                    k is not 'rank_test_score')
        # Check cv_results structure
        check_cv_results_array_types(search, param_keys, score_keys)
        check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
        # Check masking
        cv_results = search.cv_results_
        n_candidates = len(search.cv_results_['params'])
        assert_true(all((cv_results['param_C'].mask[i] and
                         cv_results['param_gamma'].mask[i] and
                         not cv_results['param_degree'].mask[i])
                        for i in range(n_candidates)
                        if cv_results['param_kernel'][i] == 'linear'))
        assert_true(all((not cv_results['param_C'].mask[i] and
                         not cv_results['param_gamma'].mask[i] and
                         cv_results['param_degree'].mask[i])
                        for i in range(n_candidates)
                        if cv_results['param_kernel'][i] == 'rbf'))


def test_random_search_cv_results():
    X, y = make_classification(n_samples=50, n_features=4, random_state=42)

    n_splits = 3
    n_search_iter = 30

    params = dict(C=expon(scale=10), gamma=expon(scale=0.1))
    param_keys = ('param_C', 'param_gamma')
    score_keys = ('mean_test_score', 'mean_train_score',
                  'rank_test_score',
                  'split0_test_score', 'split1_test_score',
                  'split2_test_score',
                  'split0_train_score', 'split1_train_score',
                  'split2_train_score',
                  'std_test_score', 'std_train_score',
                  'mean_fit_time', 'std_fit_time',
                  'mean_score_time', 'std_score_time')
    n_cand = n_search_iter

    for iid in (False, True):
        search = RandomizedSearchCV(SVC(gamma='scale'), n_iter=n_search_iter,
                                    cv=n_splits, iid=iid,
                                    param_distributions=params,
                                    return_train_score=True)
        search.fit(X, y)
        assert_equal(iid, search.iid)
        cv_results = search.cv_results_
        # Check results structure
        check_cv_results_array_types(search, param_keys, score_keys)
        check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
        # For random_search, all the param array vals should be unmasked
        assert_false(any(np.ma.getmaskarray(cv_results['param_C'])) or
                     any(np.ma.getmaskarray(cv_results['param_gamma'])))


@ignore_warnings(category=DeprecationWarning)
def test_search_iid_param():
    # Test the IID parameter
    # noise-free simple 2d-data
    X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
                      cluster_std=0.1, shuffle=False, n_samples=80)
    # split dataset into two folds that are not iid
    # first one contains data of all 4 blobs, second only from two.
    mask = np.ones(X.shape[0], dtype=np.bool)
    mask[np.where(y == 1)[0][::2]] = 0
    mask[np.where(y == 2)[0][::2]] = 0
    # this leads to perfect classification on one fold and a score of 1/3 on
    # the other
    # create "cv" for splits
    cv = [[mask, ~mask], [~mask, mask]]
    # once with iid=True (default)
    grid_search = GridSearchCV(SVC(gamma='auto'), param_grid={'C': [1, 10]},
                               cv=cv, return_train_score=True)
    random_search = RandomizedSearchCV(SVC(gamma='auto'), n_iter=2,
                                       param_distributions={'C': [1, 10]},
                                       cv=cv, iid=True,
                                       return_train_score=True)
    for search in (grid_search, random_search):
        search.fit(X, y)
        assert search.iid or search.iid is None

        test_cv_scores = np.array(list(search.cv_results_['split%d_test_score'
                                                          % s_i][0]
                                       for s_i in range(search.n_splits_)))
        test_mean = search.cv_results_['mean_test_score'][0]
        test_std = search.cv_results_['std_test_score'][0]

        train_cv_scores = np.array(list(search.cv_results_['split%d_train_'
                                                           'score' % s_i][0]
                                        for s_i in range(search.n_splits_)))
        train_mean = search.cv_results_['mean_train_score'][0]
        train_std = search.cv_results_['std_train_score'][0]

        # Test the first candidate
        assert_equal(search.cv_results_['param_C'][0], 1)
        assert_array_almost_equal(test_cv_scores, [1, 1. / 3.])
        assert_array_almost_equal(train_cv_scores, [1, 1])

        # for first split, 1/4 of dataset is in test, for second 3/4.
        # take weighted average and weighted std
        expected_test_mean = 1 * 1. / 4. + 1. / 3. * 3. / 4.
        expected_test_std = np.sqrt(1. / 4 * (expected_test_mean - 1) ** 2 +
                                    3. / 4 * (expected_test_mean - 1. / 3.) **
                                    2)
        assert_almost_equal(test_mean, expected_test_mean)
        assert_almost_equal(test_std, expected_test_std)
        assert_array_almost_equal(test_cv_scores,
                                  cross_val_score(SVC(C=1, gamma='auto'), X,
                                                  y, cv=cv))

        # For the train scores, we do not take a weighted mean irrespective of
        # i.i.d. or not
        assert_almost_equal(train_mean, 1)
        assert_almost_equal(train_std, 0)

    # once with iid=False
    grid_search = GridSearchCV(SVC(gamma='auto'),
                               param_grid={'C': [1, 10]},
                               cv=cv, iid=False, return_train_score=True)
    random_search = RandomizedSearchCV(SVC(gamma='auto'), n_iter=2,
                                       param_distributions={'C': [1, 10]},
                                       cv=cv, iid=False,
                                       return_train_score=True)

    for search in (grid_search, random_search):
        search.fit(X, y)
        assert_false(search.iid)

        test_cv_scores = np.array(list(search.cv_results_['split%d_test_score'
                                                          % s][0]
                                       for s in range(search.n_splits_)))
        test_mean = search.cv_results_['mean_test_score'][0]
        test_std = search.cv_results_['std_test_score'][0]

        train_cv_scores = np.array(list(search.cv_results_['split%d_train_'
                                                           'score' % s][0]
                                        for s in range(search.n_splits_)))
        train_mean = search.cv_results_['mean_train_score'][0]
        train_std = search.cv_results_['std_train_score'][0]

        assert_equal(search.cv_results_['param_C'][0], 1)
        # scores are the same as above
        assert_array_almost_equal(test_cv_scores, [1, 1. / 3.])
        # Unweighted mean/std is used
        assert_almost_equal(test_mean, np.mean(test_cv_scores))
        assert_almost_equal(test_std, np.std(test_cv_scores))

        # For the train scores, we do not take a weighted mean irrespective of
        # i.i.d. or not
        assert_almost_equal(train_mean, 1)
        assert_almost_equal(train_std, 0)


def test_grid_search_cv_results_multimetric():
    X, y = make_classification(n_samples=50, n_features=4, random_state=42)

    n_splits = 3
    params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
              dict(kernel=['poly', ], degree=[1, 2])]

    for iid in (False, True):
        grid_searches = []
        for scoring in ({'accuracy': make_scorer(accuracy_score),
                         'recall': make_scorer(recall_score)},
                        'accuracy', 'recall'):
            grid_search = GridSearchCV(SVC(gamma='scale'), cv=n_splits,
                                       iid=iid, param_grid=params,
                                       scoring=scoring, refit=False)
            grid_search.fit(X, y)
            assert_equal(grid_search.iid, iid)
            grid_searches.append(grid_search)

        compare_cv_results_multimetric_with_single(*grid_searches, iid=iid)


def test_random_search_cv_results_multimetric():
    X, y = make_classification(n_samples=50, n_features=4, random_state=42)

    n_splits = 3
    n_search_iter = 30
    scoring = ('accuracy', 'recall')

    # Scipy 0.12's stats dists do not accept seed, hence we use param grid
    params = dict(C=np.logspace(-10, 1), gamma=np.logspace(-5, 0, base=0.1))
    for iid in (True, False):
        for refit in (True, False):
            random_searches = []
            for scoring in (('accuracy', 'recall'), 'accuracy', 'recall'):
                # If True, for multi-metric pass refit='accuracy'
                if refit:
                    refit = 'accuracy' if isinstance(scoring, tuple) else refit
                clf = SVC(probability=True, random_state=42)
                random_search = RandomizedSearchCV(clf, n_iter=n_search_iter,
                                                   cv=n_splits, iid=iid,
                                                   param_distributions=params,
                                                   scoring=scoring,
                                                   refit=refit, random_state=0)
                random_search.fit(X, y)
                random_searches.append(random_search)

            compare_cv_results_multimetric_with_single(*random_searches,
                                                       iid=iid)
            if refit:
                compare_refit_methods_when_refit_with_acc(
                    random_searches[0], random_searches[1], refit)


def compare_cv_results_multimetric_with_single(
        search_multi, search_acc, search_rec, iid):
    """Compare multi-metric cv_results with the ensemble of multiple
    single metric cv_results from single metric grid/random search"""

    assert_equal(search_multi.iid, iid)
    assert search_multi.multimetric_
    assert_array_equal(sorted(search_multi.scorer_),
                       ('accuracy', 'recall'))

    cv_results_multi = search_multi.cv_results_
    cv_results_acc_rec = {re.sub('_score$', '_accuracy', k): v
                          for k, v in search_acc.cv_results_.items()}
    cv_results_acc_rec.update({re.sub('_score$', '_recall', k): v
                               for k, v in search_rec.cv_results_.items()})

    # Check if score and timing are reasonable, also checks if the keys
    # are present
    assert_true(all((np.all(cv_results_multi[k] <= 1) for k in (
                    'mean_score_time', 'std_score_time', 'mean_fit_time',
                    'std_fit_time'))))

    # Compare the keys, other than time keys, among multi-metric and
    # single metric grid search results. np.testing.assert_equal performs a
    # deep nested comparison of the two cv_results dicts
    np.testing.assert_equal({k: v for k, v in cv_results_multi.items()
                             if not k.endswith('_time')},
                            {k: v for k, v in cv_results_acc_rec.items()
                             if not k.endswith('_time')})


def compare_refit_methods_when_refit_with_acc(search_multi, search_acc, refit):
    """Compare refit multi-metric search methods with single metric methods"""
    if refit:
        assert_equal(search_multi.refit, 'accuracy')
    else:
        assert_false(search_multi.refit)
    assert_equal(search_acc.refit, refit)

    X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
    for method in ('predict', 'predict_proba', 'predict_log_proba'):
        assert_almost_equal(getattr(search_multi, method)(X),
                            getattr(search_acc, method)(X))
    assert_almost_equal(search_multi.score(X, y), search_acc.score(X, y))
    for key in ('best_index_', 'best_score_', 'best_params_'):
        assert_equal(getattr(search_multi, key), getattr(search_acc, key))


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_search_cv_results_rank_tie_breaking():
    X, y = make_blobs(n_samples=50, random_state=42)

    # The two C values are close enough to give similar models
    # which would result in a tie of their mean cv-scores
    param_grid = {'C': [1, 1.001, 0.001]}

    grid_search = GridSearchCV(SVC(gamma="scale"), param_grid=param_grid,
                               return_train_score=True)
    random_search = RandomizedSearchCV(SVC(gamma="scale"), n_iter=3,
                                       param_distributions=param_grid,
                                       return_train_score=True)

    for search in (grid_search, random_search):
        search.fit(X, y)
        cv_results = search.cv_results_
        # Check tie breaking strategy -
        # Check that there is a tie in the mean scores between
        # candidates 1 and 2 alone
        assert_almost_equal(cv_results['mean_test_score'][0],
                            cv_results['mean_test_score'][1])
        assert_almost_equal(cv_results['mean_train_score'][0],
                            cv_results['mean_train_score'][1])
        assert_false(np.allclose(cv_results['mean_test_score'][1],
                                 cv_results['mean_test_score'][2]))
        assert_false(np.allclose(cv_results['mean_train_score'][1],
                                 cv_results['mean_train_score'][2]))
        # 'min' rank should be assigned to the tied candidates
        assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3])


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_search_cv_results_none_param():
    X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1]
    estimators = (DecisionTreeRegressor(), DecisionTreeClassifier())
    est_parameters = {"random_state": [0, None]}
    cv = KFold(random_state=0)

    for est in estimators:
        grid_search = GridSearchCV(est, est_parameters, cv=cv,
                                   ).fit(X, y)
        assert_array_equal(grid_search.cv_results_['param_random_state'],
                           [0, None])


@ignore_warnings()
def test_search_cv_timing():
    svc = LinearSVC(random_state=0)

    X = [[1, ], [2, ], [3, ], [4, ]]
    y = [0, 1, 1, 0]

    gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0)
    rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2)

    for search in (gs, rs):
        search.fit(X, y)
        for key in ['mean_fit_time', 'std_fit_time']:
            # NOTE The precision of time.time in windows is not high
            # enough for the fit/score times to be non-zero for trivial X and y
            assert np.all(search.cv_results_[key] >= 0)
            assert np.all(search.cv_results_[key] < 1)

        for key in ['mean_score_time', 'std_score_time']:
            assert search.cv_results_[key][1] >= 0
            assert search.cv_results_[key][0] == 0.0
            assert np.all(search.cv_results_[key] < 1)

        assert hasattr(search, "refit_time_")
        assert isinstance(search.refit_time_, float)
        assert_greater_equal(search.refit_time_, 0)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_grid_search_correct_score_results():
    # test that correct scores are used
    n_splits = 3
    clf = LinearSVC(random_state=0)
    X, y = make_blobs(random_state=0, centers=2)
    Cs = [.1, 1, 10]
    for score in ['f1', 'roc_auc']:
        grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits)
        cv_results = grid_search.fit(X, y).cv_results_

        # Test scorer names
        result_keys = list(cv_results.keys())
        expected_keys = (("mean_test_score", "rank_test_score") +
                         tuple("split%d_test_score" % cv_i
                               for cv_i in range(n_splits)))
        assert all(np.in1d(expected_keys, result_keys))

        cv = StratifiedKFold(n_splits=n_splits)
        n_splits = grid_search.n_splits_
        for candidate_i, C in enumerate(Cs):
            clf.set_params(C=C)
            cv_scores = np.array(
                list(grid_search.cv_results_['split%d_test_score'
                                             % s][candidate_i]
                     for s in range(n_splits)))
            for i, (train, test) in enumerate(cv.split(X, y)):
                clf.fit(X[train], y[train])
                if score == "f1":
                    correct_score = f1_score(y[test], clf.predict(X[test]))
                elif score == "roc_auc":
                    dec = clf.decision_function(X[test])
                    correct_score = roc_auc_score(y[test], dec)
                assert_almost_equal(correct_score, cv_scores[i])


@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_fit_grid_point():
    X, y = make_classification(random_state=0)
    cv = StratifiedKFold(random_state=0)
    svc = LinearSVC(random_state=0)
    scorer = make_scorer(accuracy_score)

    for params in ({'C': 0.1}, {'C': 0.01}, {'C': 0.001}):
        for train, test in cv.split(X, y):
            this_scores, this_params, n_test_samples = fit_grid_point(
                X, y, clone(svc), params, train, test,
                scorer, verbose=False)

            est = clone(svc).set_params(**params)
            est.fit(X[train], y[train])
            expected_score = scorer(est, X[test], y[test])

            # Test the return values of fit_grid_point
            assert_almost_equal(this_scores, expected_score)
            assert_equal(params, this_params)
            assert_equal(n_test_samples, test.size)

    # Should raise an error upon multimetric scorer
    assert_raise_message(ValueError, "For evaluating multiple scores, use "
                         "sklearn.model_selection.cross_validate instead.",
                         fit_grid_point, X, y, svc, params, train, test,
                         {'score': scorer}, verbose=True)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_pickle():
    # Test that a fit search can be pickled
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True)
    grid_search.fit(X, y)
    grid_search_pickled = pickle.loads(pickle.dumps(grid_search))
    assert_array_almost_equal(grid_search.predict(X),
                              grid_search_pickled.predict(X))

    random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]},
                                       refit=True, n_iter=3)
    random_search.fit(X, y)
    random_search_pickled = pickle.loads(pickle.dumps(random_search))
    assert_array_almost_equal(random_search.predict(X),
                              random_search_pickled.predict(X))


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_with_multioutput_data():
    # Test search with multi-output estimator

    X, y = make_multilabel_classification(return_indicator=True,
                                          random_state=0)

    est_parameters = {"max_depth": [1, 2, 3, 4]}
    cv = KFold(random_state=0)

    estimators = [DecisionTreeRegressor(random_state=0),
                  DecisionTreeClassifier(random_state=0)]

    # Test with grid search cv
    for est in estimators:
        grid_search = GridSearchCV(est, est_parameters, cv=cv)
        grid_search.fit(X, y)
        res_params = grid_search.cv_results_['params']
        for cand_i in range(len(res_params)):
            est.set_params(**res_params[cand_i])

            for i, (train, test) in enumerate(cv.split(X, y)):
                est.fit(X[train], y[train])
                correct_score = est.score(X[test], y[test])
                assert_almost_equal(
                    correct_score,
                    grid_search.cv_results_['split%d_test_score' % i][cand_i])

    # Test with a randomized search
    for est in estimators:
        random_search = RandomizedSearchCV(est, est_parameters,
                                           cv=cv, n_iter=3)
        random_search.fit(X, y)
        res_params = random_search.cv_results_['params']
        for cand_i in range(len(res_params)):
            est.set_params(**res_params[cand_i])

            for i, (train, test) in enumerate(cv.split(X, y)):
                est.fit(X[train], y[train])
                correct_score = est.score(X[test], y[test])
                assert_almost_equal(
                    correct_score,
                    random_search.cv_results_['split%d_test_score'
                                              % i][cand_i])


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_predict_proba_disabled():
    # Test predict_proba when disabled on estimator.
    X = np.arange(20).reshape(5, -1)
    y = [0, 0, 1, 1, 1]
    clf = SVC(gamma='scale', probability=False)
    gs = GridSearchCV(clf, {}, cv=2).fit(X, y)
    assert_false(hasattr(gs, "predict_proba"))


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_grid_search_allows_nans():
    # Test GridSearchCV with SimpleImputer
    X = np.arange(20, dtype=np.float64).reshape(5, -1)
    X[2, :] = np.nan
    y = [0, 0, 1, 1, 1]
    p = Pipeline([
        ('imputer', SimpleImputer(strategy='mean', missing_values=np.nan)),
        ('classifier', MockClassifier()),
    ])
    GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y)


class FailingClassifier(BaseEstimator):
    """Classifier that raises a ValueError on fit()"""

    FAILING_PARAMETER = 2

    def __init__(self, parameter=None):
        self.parameter = parameter

    def fit(self, X, y=None):
        if self.parameter == FailingClassifier.FAILING_PARAMETER:
            raise ValueError("Failing classifier failed as required")

    def predict(self, X):
        return np.zeros(X.shape[0])

    def score(self, X=None, Y=None):
        return 0.


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_grid_search_failing_classifier():
    # GridSearchCV with on_error != 'raise'
    # Ensures that a warning is raised and score reset where appropriate.

    X, y = make_classification(n_samples=20, n_features=10, random_state=0)

    clf = FailingClassifier()

    # refit=False because we only want to check that errors caused by fits
    # to individual folds will be caught and warnings raised instead. If
    # refit was done, then an exception would be raised on refit and not
    # caught by grid_search (expected behavior), and this would cause an
    # error in this test.
    gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
                      refit=False, error_score=0.0)
    assert_warns(FitFailedWarning, gs.fit, X, y)
    n_candidates = len(gs.cv_results_['params'])

    # Ensure that grid scores were set to zero as required for those fits
    # that are expected to fail.
    def get_cand_scores(i):
        return np.array(list(gs.cv_results_['split%d_test_score' % s][i]
                             for s in range(gs.n_splits_)))

    assert all((np.all(get_cand_scores(cand_i) == 0.0)
                for cand_i in range(n_candidates)
                if gs.cv_results_['param_parameter'][cand_i] ==
                FailingClassifier.FAILING_PARAMETER))

    gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
                      refit=False, error_score=float('nan'))
    assert_warns(FitFailedWarning, gs.fit, X, y)
    n_candidates = len(gs.cv_results_['params'])
    assert all(np.all(np.isnan(get_cand_scores(cand_i)))
               for cand_i in range(n_candidates)
               if gs.cv_results_['param_parameter'][cand_i] ==
               FailingClassifier.FAILING_PARAMETER)

    ranks = gs.cv_results_['rank_test_score']

    # Check that succeeded estimators have lower ranks
    assert ranks[0] <= 2 and ranks[1] <= 2
    # Check that failed estimator has the highest rank
    assert ranks[clf.FAILING_PARAMETER] == 3
    assert gs.best_index_ != clf.FAILING_PARAMETER


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_grid_search_failing_classifier_raise():
    # GridSearchCV with on_error == 'raise' raises the error

    X, y = make_classification(n_samples=20, n_features=10, random_state=0)

    clf = FailingClassifier()

    # refit=False because we want to test the behaviour of the grid search part
    gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
                      refit=False, error_score='raise')

    # FailingClassifier issues a ValueError so this is what we look for.
    assert_raises(ValueError, gs.fit, X, y)


def test_parameters_sampler_replacement():
    # raise warning if n_iter is bigger than total parameter space
    params = {'first': [0, 1], 'second': ['a', 'b', 'c']}
    sampler = ParameterSampler(params, n_iter=7)
    n_iter = 7
    grid_size = 6
    expected_warning = ('The total space of parameters %d is smaller '
                        'than n_iter=%d. Running %d iterations. For '
                        'exhaustive searches, use GridSearchCV.'
                        % (grid_size, n_iter, grid_size))
    assert_warns_message(UserWarning, expected_warning,
                         list, sampler)

    # degenerates to GridSearchCV if n_iter the same as grid_size
    sampler = ParameterSampler(params, n_iter=6)
    samples = list(sampler)
    assert_equal(len(samples), 6)
    for values in ParameterGrid(params):
        assert values in samples

    # test sampling without replacement in a large grid
    params = {'a': range(10), 'b': range(10), 'c': range(10)}
    sampler = ParameterSampler(params, n_iter=99, random_state=42)
    samples = list(sampler)
    assert_equal(len(samples), 99)
    hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c'])
                        for p in samples]
    assert_equal(len(set(hashable_samples)), 99)

    # doesn't go into infinite loops
    params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']}
    sampler = ParameterSampler(params_distribution, n_iter=7)
    samples = list(sampler)
    assert_equal(len(samples), 7)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_stochastic_gradient_loss_param():
    # Make sure the predict_proba works when loss is specified
    # as one of the parameters in the param_grid.
    param_grid = {
        'loss': ['log'],
    }
    X = np.arange(24).reshape(6, -1)
    y = [0, 0, 0, 1, 1, 1]
    clf = GridSearchCV(estimator=SGDClassifier(tol=1e-3, loss='hinge'),
                       param_grid=param_grid)

    # When the estimator is not fitted, `predict_proba` is not available as the
    # loss is 'hinge'.
    assert_false(hasattr(clf, "predict_proba"))
    clf.fit(X, y)
    clf.predict_proba(X)
    clf.predict_log_proba(X)

    # Make sure `predict_proba` is not available when setting loss=['hinge']
    # in param_grid
    param_grid = {
        'loss': ['hinge'],
    }
    clf = GridSearchCV(estimator=SGDClassifier(tol=1e-3, loss='hinge'),
                       param_grid=param_grid)
    assert_false(hasattr(clf, "predict_proba"))
    clf.fit(X, y)
    assert_false(hasattr(clf, "predict_proba"))


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_search_train_scores_set_to_false():
    X = np.arange(6).reshape(6, -1)
    y = [0, 0, 0, 1, 1, 1]
    clf = LinearSVC(random_state=0)

    gs = GridSearchCV(clf, param_grid={'C': [0.1, 0.2]},
                      return_train_score=False)
    gs.fit(X, y)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
def test_grid_search_cv_splits_consistency():
    # Check if a one time iterable is accepted as a cv parameter.
    n_samples = 100
    n_splits = 5
    X, y = make_classification(n_samples=n_samples, random_state=0)

    gs = GridSearchCV(LinearSVC(random_state=0),
                      param_grid={'C': [0.1, 0.2, 0.3]},
                      cv=OneTimeSplitter(n_splits=n_splits,
                                         n_samples=n_samples),
                      return_train_score=True)
    gs.fit(X, y)

    gs2 = GridSearchCV(LinearSVC(random_state=0),
                       param_grid={'C': [0.1, 0.2, 0.3]},
                       cv=KFold(n_splits=n_splits), return_train_score=True)
    gs2.fit(X, y)

    # Give generator as a cv parameter
    assert_true(isinstance(KFold(n_splits=n_splits,
                                 shuffle=True, random_state=0).split(X, y),
                           GeneratorType))
    gs3 = GridSearchCV(LinearSVC(random_state=0),
                       param_grid={'C': [0.1, 0.2, 0.3]},
                       cv=KFold(n_splits=n_splits, shuffle=True,
                                random_state=0).split(X, y),
                       return_train_score=True)
    gs3.fit(X, y)

    gs4 = GridSearchCV(LinearSVC(random_state=0),
                       param_grid={'C': [0.1, 0.2, 0.3]},
                       cv=KFold(n_splits=n_splits, shuffle=True,
                                random_state=0), return_train_score=True)
    gs4.fit(X, y)

    def _pop_time_keys(cv_results):
        for key in ('mean_fit_time', 'std_fit_time',
                    'mean_score_time', 'std_score_time'):
            cv_results.pop(key)
        return cv_results

    # Check if generators are supported as cv and
    # that the splits are consistent
    np.testing.assert_equal(_pop_time_keys(gs3.cv_results_),
                            _pop_time_keys(gs4.cv_results_))

    # OneTimeSplitter is a non-re-entrant cv where split can be called only
    # once if ``cv.split`` is called once per param setting in GridSearchCV.fit
    # the 2nd and 3rd parameter will not be evaluated as no train/test indices
    # will be generated for the 2nd and subsequent cv.split calls.
    # This is a check to make sure cv.split is not called once per param
    # setting.
    np.testing.assert_equal({k: v for k, v in gs.cv_results_.items()
                             if not k.endswith('_time')},
                            {k: v for k, v in gs2.cv_results_.items()
                             if not k.endswith('_time')})

    # Check consistency of folds across the parameters
    gs = GridSearchCV(LinearSVC(random_state=0),
                      param_grid={'C': [0.1, 0.1, 0.2, 0.2]},
                      cv=KFold(n_splits=n_splits, shuffle=True),
                      return_train_score=True)
    gs.fit(X, y)

    # As the first two param settings (C=0.1) and the next two param
    # settings (C=0.2) are same, the test and train scores must also be
    # same as long as the same train/test indices are generated for all
    # the cv splits, for both param setting
    for score_type in ('train', 'test'):
        per_param_scores = {}
        for param_i in range(4):
            per_param_scores[param_i] = list(
                gs.cv_results_['split%d_%s_score' % (s, score_type)][param_i]
                for s in range(5))

        assert_array_almost_equal(per_param_scores[0],
                                  per_param_scores[1])
        assert_array_almost_equal(per_param_scores[2],
                                  per_param_scores[3])


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
@pytest.mark.filterwarnings('ignore: You should specify a value')  # 0.22
def test_transform_inverse_transform_round_trip():
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3)

    grid_search.fit(X, y)
    X_round_trip = grid_search.inverse_transform(grid_search.transform(X))
    assert_array_equal(X, X_round_trip)


def test_custom_run_search():
    def check_results(results, gscv):
        exp_results = gscv.cv_results_
        assert sorted(results.keys()) == sorted(exp_results)
        for k in results:
            if not k.endswith('_time'):
                # XXX: results['params'] is a list :|
                results[k] = np.asanyarray(results[k])
                if results[k].dtype.kind == 'O':
                    assert_array_equal(exp_results[k], results[k],
                                       err_msg='Checking ' + k)
                else:
                    assert_allclose(exp_results[k], results[k],
                                    err_msg='Checking ' + k)

    def fit_grid(param_grid):
        return GridSearchCV(clf, param_grid, cv=5,
                            return_train_score=True).fit(X, y)

    class CustomSearchCV(BaseSearchCV):
        def __init__(self, estimator, **kwargs):
            super(CustomSearchCV, self).__init__(estimator, **kwargs)

        def _run_search(self, evaluate):
            results = evaluate([{'max_depth': 1}, {'max_depth': 2}])
            check_results(results, fit_grid({'max_depth': [1, 2]}))
            results = evaluate([{'min_samples_split': 5},
                                {'min_samples_split': 10}])
            check_results(results, fit_grid([{'max_depth': [1, 2]},
                                             {'min_samples_split': [5, 10]}]))

    # Using regressor to make sure each score differs
    clf = DecisionTreeRegressor(random_state=0)
    X, y = make_classification(n_samples=100, n_informative=4,
                               random_state=0)
    mycv = CustomSearchCV(clf, cv=5, return_train_score=True).fit(X, y)
    gscv = fit_grid([{'max_depth': [1, 2]},
                     {'min_samples_split': [5, 10]}])

    results = mycv.cv_results_
    check_results(results, gscv)
    for attr in dir(gscv):
        if attr[0].islower() and attr[-1:] == '_' and \
           attr not in {'cv_results_', 'best_estimator_',
                        'refit_time_'}:
            assert getattr(gscv, attr) == getattr(mycv, attr), \
                   "Attribute %s not equal" % attr


def test__custom_fit_no_run_search():
    class NoRunSearchSearchCV(BaseSearchCV):
        def __init__(self, estimator, **kwargs):
            super(NoRunSearchSearchCV, self).__init__(estimator, **kwargs)

        def fit(self, X, y=None, groups=None, **fit_params):
            return self

    # this should not raise any exceptions
    NoRunSearchSearchCV(SVC(), cv=5).fit(X, y)

    class BadSearchCV(BaseSearchCV):
        def __init__(self, estimator, **kwargs):
            super(BadSearchCV, self).__init__(estimator, **kwargs)

    with pytest.raises(NotImplementedError,
                       match="_run_search not implemented."):
        # this should raise a NotImplementedError
        BadSearchCV(SVC(), cv=5).fit(X, y)


def test_deprecated_grid_search_iid():
    depr_message = ("The default of the `iid` parameter will change from True "
                    "to False in version 0.22")
    X, y = make_blobs(n_samples=54, random_state=0, centers=2)
    grid = GridSearchCV(SVC(gamma='scale'), param_grid={'C': [1]}, cv=3)
    # no warning with equally sized test sets
    assert_no_warnings(grid.fit, X, y)

    grid = GridSearchCV(SVC(gamma='scale'), param_grid={'C': [1]}, cv=5)
    # warning because 54 % 5 != 0
    assert_warns_message(DeprecationWarning, depr_message, grid.fit, X, y)

    grid = GridSearchCV(SVC(gamma='scale'), param_grid={'C': [1]}, cv=2)
    # warning because stratification into two classes and 27 % 2 != 0
    assert_warns_message(DeprecationWarning, depr_message, grid.fit, X, y)

    grid = GridSearchCV(SVC(gamma='scale'), param_grid={'C': [1]}, cv=KFold(2))
    # no warning because no stratification and 54 % 2 == 0
    assert_no_warnings(grid.fit, X, y)