1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
"""Approximate nearest neighbor search"""
# Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk>
# Joel Nothman <joel.nothman@gmail.com>
import numpy as np
import warnings
from scipy import sparse
from .base import KNeighborsMixin, RadiusNeighborsMixin
from ..base import BaseEstimator
from ..utils.validation import check_array
from ..utils import check_random_state
from ..metrics.pairwise import pairwise_distances
from ..random_projection import GaussianRandomProjection
__all__ = ["LSHForest"]
HASH_DTYPE = '>u4'
MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8
def _find_matching_indices(tree, bin_X, left_mask, right_mask):
"""Finds indices in sorted array of integers.
Most significant h bits in the binary representations of the
integers are matched with the items' most significant h bits.
"""
left_index = np.searchsorted(tree, bin_X & left_mask)
right_index = np.searchsorted(tree, bin_X | right_mask,
side='right')
return left_index, right_index
def _find_longest_prefix_match(tree, bin_X, hash_size,
left_masks, right_masks):
"""Find the longest prefix match in tree for each query in bin_X
Most significant bits are considered as the prefix.
"""
hi = np.empty_like(bin_X, dtype=np.intp)
hi.fill(hash_size)
lo = np.zeros_like(bin_X, dtype=np.intp)
res = np.empty_like(bin_X, dtype=np.intp)
left_idx, right_idx = _find_matching_indices(tree, bin_X,
left_masks[hi],
right_masks[hi])
found = right_idx > left_idx
res[found] = lo[found] = hash_size
r = np.arange(bin_X.shape[0])
kept = r[lo < hi] # indices remaining in bin_X mask
while kept.shape[0]:
mid = (lo.take(kept) + hi.take(kept)) // 2
left_idx, right_idx = _find_matching_indices(tree,
bin_X.take(kept),
left_masks[mid],
right_masks[mid])
found = right_idx > left_idx
mid_found = mid[found]
lo[kept[found]] = mid_found + 1
res[kept[found]] = mid_found
hi[kept[~found]] = mid[~found]
kept = r[lo < hi]
return res
class ProjectionToHashMixin(object):
"""Turn a transformed real-valued array into a hash"""
@staticmethod
def _to_hash(projected):
if projected.shape[1] % 8 != 0:
raise ValueError('Require reduced dimensionality to be a multiple '
'of 8 for hashing')
# XXX: perhaps non-copying operation better
out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE)
return out.reshape(projected.shape[0], -1)
def fit_transform(self, X, y=None):
"""
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of predictors.
"""
self.fit(X)
return self.transform(X)
def transform(self, X):
"""
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of predictors.
"""
return self._to_hash(super(ProjectionToHashMixin, self).transform(X))
class GaussianRandomProjectionHash(ProjectionToHashMixin,
GaussianRandomProjection):
"""Use GaussianRandomProjection to produce a cosine LSH fingerprint
Parameters
----------
n_components : int or 'auto', optional (default = 32)
Dimensionality of the target projection space.
n_components can be automatically adjusted according to the
number of samples in the dataset and the bound given by the
Johnson-Lindenstrauss lemma. In that case the quality of the
embedding is controlled by the ``eps`` parameter.
It should be noted that Johnson-Lindenstrauss lemma can yield
very conservative estimated of the required number of components
as it makes no assumption on the structure of the dataset.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
"""
def __init__(self,
n_components=32,
random_state=None):
super(GaussianRandomProjectionHash, self).__init__(
n_components=n_components,
random_state=random_state)
def _array_of_arrays(list_of_arrays):
"""Creates an array of array from list of arrays."""
out = np.empty(len(list_of_arrays), dtype=object)
out[:] = list_of_arrays
return out
class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin):
"""Performs approximate nearest neighbor search using LSH forest.
LSH Forest: Locality Sensitive Hashing forest [1] is an alternative
method for vanilla approximate nearest neighbor search methods.
LSH forest data structure has been implemented using sorted
arrays and binary search and 32 bit fixed-length hashes.
Random projection is used as the hash family which approximates
cosine distance.
The cosine distance is defined as ``1 - cosine_similarity``: the lowest
value is 0 (identical point) but it is bounded above by 2 for the farthest
points. Its value does not depend on the norm of the vector points but
only on their relative angles.
Parameters
----------
n_estimators : int (default = 10)
Number of trees in the LSH Forest.
radius : float, optinal (default = 1.0)
Radius from the data point to its neighbors. This is the parameter
space to use by default for the :meth:`radius_neighbors` queries.
n_candidates : int (default = 50)
Minimum number of candidates evaluated per estimator, assuming enough
items meet the `min_hash_match` constraint.
n_neighbors : int (default = 5)
Number of neighbors to be returned from query function when
it is not provided to the :meth:`kneighbors` method.
min_hash_match : int (default = 4)
lowest hash length to be searched when candidate selection is
performed for nearest neighbors.
radius_cutoff_ratio : float, optional (default = 0.9)
A value ranges from 0 to 1. Radius neighbors will be searched until
the ratio between total neighbors within the radius and the total
candidates becomes less than this value unless it is terminated by
hash length reaching `min_hash_match`.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
Attributes
----------
hash_functions_ : list of GaussianRandomProjectionHash objects
Hash function g(p,x) for a tree is an array of 32 randomly generated
float arrays with the same dimension as the data set. This array is
stored in GaussianRandomProjectionHash object and can be obtained
from ``components_`` attribute.
trees_ : array, shape (n_estimators, n_samples)
Each tree (corresponding to a hash function) contains an array of
sorted hashed values. The array representation may change in future
versions.
original_indices_ : array, shape (n_estimators, n_samples)
Original indices of sorted hashed values in the fitted index.
References
----------
.. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning
Indexes for Similarity Search", WWW '05 Proceedings of the
14th international conference on World Wide Web, 651-660,
2005.
Examples
--------
>>> from sklearn.neighbors import LSHForest
>>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]]
>>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]]
>>> lshf = LSHForest(random_state=42) # doctest: +SKIP
>>> lshf.fit(X_train) # doctest: +SKIP
LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10,
n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9,
random_state=42)
>>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2)
... # doctest: +SKIP
>>> distances # doctest: +SKIP
array([[0.069..., 0.149...],
[0.229..., 0.481...],
[0.004..., 0.014...]])
>>> indices # doctest: +SKIP
array([[1, 2],
[2, 0],
[4, 0]])
"""
def __init__(self, n_estimators=10, radius=1.0, n_candidates=50,
n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9,
random_state=None):
self.n_estimators = n_estimators
self.radius = radius
self.random_state = random_state
self.n_candidates = n_candidates
self.n_neighbors = n_neighbors
self.min_hash_match = min_hash_match
self.radius_cutoff_ratio = radius_cutoff_ratio
warnings.warn("LSHForest has poor performance and has been deprecated "
"in 0.19. It will be removed in version 0.21.",
DeprecationWarning)
def _compute_distances(self, query, candidates):
"""Computes the cosine distance.
Distance is from the query to points in the candidates array.
Returns argsort of distances in the candidates
array and sorted distances.
"""
if candidates.shape == (0,):
# needed since _fit_X[np.array([])] doesn't work if _fit_X sparse
return np.empty(0, dtype=np.int), np.empty(0, dtype=float)
if sparse.issparse(self._fit_X):
candidate_X = self._fit_X[candidates]
else:
candidate_X = self._fit_X.take(candidates, axis=0, mode='clip')
distances = pairwise_distances(query, candidate_X,
metric='cosine')[0]
distance_positions = np.argsort(distances)
distances = distances.take(distance_positions, mode='clip', axis=0)
return distance_positions, distances
def _generate_masks(self):
"""Creates left and right masks for all hash lengths."""
tri_size = MAX_HASH_SIZE + 1
# Called once on fitting, output is independent of hashes
left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:]
right_mask = left_mask[::-1, ::-1]
self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE)
self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE)
def _get_candidates(self, query, max_depth, bin_queries, n_neighbors):
"""Performs the Synchronous ascending phase.
Returns an array of candidates, their distance ranks and
distances.
"""
index_size = self._fit_X.shape[0]
# Number of candidates considered including duplicates
# XXX: not sure whether this is being calculated correctly wrt
# duplicates from different iterations through a single tree
n_candidates = 0
candidate_set = set()
min_candidates = self.n_candidates * self.n_estimators
while (max_depth > self.min_hash_match and
(n_candidates < min_candidates or
len(candidate_set) < n_neighbors)):
left_mask = self._left_mask[max_depth]
right_mask = self._right_mask[max_depth]
for i in range(self.n_estimators):
start, stop = _find_matching_indices(self.trees_[i],
bin_queries[i],
left_mask, right_mask)
n_candidates += stop - start
candidate_set.update(
self.original_indices_[i][start:stop].tolist())
max_depth -= 1
candidates = np.fromiter(candidate_set, count=len(candidate_set),
dtype=np.intp)
# For insufficient candidates, candidates are filled.
# Candidates are filled from unselected indices uniformly.
if candidates.shape[0] < n_neighbors:
warnings.warn(
"Number of candidates is not sufficient to retrieve"
" %i neighbors with"
" min_hash_match = %i. Candidates are filled up"
" uniformly from unselected"
" indices." % (n_neighbors, self.min_hash_match))
remaining = np.setdiff1d(np.arange(0, index_size), candidates)
to_fill = n_neighbors - candidates.shape[0]
candidates = np.concatenate((candidates, remaining[:to_fill]))
ranks, distances = self._compute_distances(query,
candidates.astype(int))
return (candidates[ranks[:n_neighbors]],
distances[:n_neighbors])
def _get_radius_neighbors(self, query, max_depth, bin_queries, radius):
"""Finds radius neighbors from the candidates obtained.
Their distances from query are smaller than radius.
Returns radius neighbors and distances.
"""
ratio_within_radius = 1
threshold = 1 - self.radius_cutoff_ratio
total_candidates = np.array([], dtype=int)
total_neighbors = np.array([], dtype=int)
total_distances = np.array([], dtype=float)
while (max_depth > self.min_hash_match and
ratio_within_radius > threshold):
left_mask = self._left_mask[max_depth]
right_mask = self._right_mask[max_depth]
candidates = []
for i in range(self.n_estimators):
start, stop = _find_matching_indices(self.trees_[i],
bin_queries[i],
left_mask, right_mask)
candidates.extend(
self.original_indices_[i][start:stop].tolist())
candidates = np.setdiff1d(candidates, total_candidates)
total_candidates = np.append(total_candidates, candidates)
ranks, distances = self._compute_distances(query, candidates)
m = np.searchsorted(distances, radius, side='right')
positions = np.searchsorted(total_distances, distances[:m])
total_neighbors = np.insert(total_neighbors, positions,
candidates[ranks[:m]])
total_distances = np.insert(total_distances, positions,
distances[:m])
ratio_within_radius = (total_neighbors.shape[0] /
float(total_candidates.shape[0]))
max_depth = max_depth - 1
return total_neighbors, total_distances
def fit(self, X, y=None):
"""Fit the LSH forest on the data.
This creates binary hashes of input data points by getting the
dot product of input points and hash_function then
transforming the projection into a binary string array based
on the sign (positive/negative) of the projection.
A sorted array of binary hashes is created.
Parameters
----------
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
self : object
"""
self._fit_X = check_array(X, accept_sparse='csr')
# Creates a g(p,x) for each tree
self.hash_functions_ = []
self.trees_ = []
self.original_indices_ = []
rng = check_random_state(self.random_state)
int_max = np.iinfo(np.int32).max
for i in range(self.n_estimators):
# This is g(p,x) for a particular tree.
# Builds a single tree. Hashing is done on an array of data points.
# `GaussianRandomProjection` is used for hashing.
# `n_components=hash size and n_features=n_dim.
hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE,
rng.randint(0, int_max))
hashes = hasher.fit_transform(self._fit_X)[:, 0]
original_index = np.argsort(hashes)
bin_hashes = hashes[original_index]
self.original_indices_.append(original_index)
self.trees_.append(bin_hashes)
self.hash_functions_.append(hasher)
self._generate_masks()
return self
def _query(self, X):
"""Performs descending phase to find maximum depth."""
# Calculate hashes of shape (n_samples, n_estimators, [hash_size])
bin_queries = np.asarray([hasher.transform(X)[:, 0]
for hasher in self.hash_functions_])
bin_queries = np.rollaxis(bin_queries, 1)
# descend phase
depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE,
self._left_mask, self._right_mask)
for tree, tree_queries in zip(self.trees_,
np.rollaxis(bin_queries, 1))]
return bin_queries, np.max(depths, axis=0)
def kneighbors(self, X, n_neighbors=None, return_distance=True):
"""Returns n_neighbors of approximate nearest neighbors.
Parameters
----------
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single query.
n_neighbors : int, optional (default = None)
Number of neighbors required. If not provided, this will
return the number specified at the initialization.
return_distance : boolean, optional (default = True)
Returns the distances of neighbors if set to True.
Returns
-------
dist : array, shape (n_samples, n_neighbors)
Array representing the cosine distances to each point,
only present if return_distance=True.
ind : array, shape (n_samples, n_neighbors)
Indices of the approximate nearest points in the population
matrix.
"""
if not hasattr(self, 'hash_functions_'):
raise ValueError("estimator should be fitted.")
if n_neighbors is None:
n_neighbors = self.n_neighbors
X = check_array(X, accept_sparse='csr')
neighbors, distances = [], []
bin_queries, max_depth = self._query(X)
for i in range(X.shape[0]):
neighs, dists = self._get_candidates(X[[i]], max_depth[i],
bin_queries[i],
n_neighbors)
neighbors.append(neighs)
distances.append(dists)
if return_distance:
return np.array(distances), np.array(neighbors)
else:
return np.array(neighbors)
def radius_neighbors(self, X, radius=None, return_distance=True):
"""Finds the neighbors within a given radius of a point or points.
Return the indices and distances of some points from the dataset
lying in a ball with size ``radius`` around the points of the query
array. Points lying on the boundary are included in the results.
The result points are *not* necessarily sorted by distance to their
query point.
LSH Forest being an approximate method, some true neighbors from the
indexed dataset might be missing from the results.
Parameters
----------
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single query.
radius : float
Limiting distance of neighbors to return.
(default is the value passed to the constructor).
return_distance : boolean, optional (default = False)
Returns the distances of neighbors if set to True.
Returns
-------
dist : array, shape (n_samples,) of arrays
Each element is an array representing the cosine distances
to some points found within ``radius`` of the respective query.
Only present if ``return_distance=True``.
ind : array, shape (n_samples,) of arrays
Each element is an array of indices for neighbors within ``radius``
of the respective query.
"""
if not hasattr(self, 'hash_functions_'):
raise ValueError("estimator should be fitted.")
if radius is None:
radius = self.radius
X = check_array(X, accept_sparse='csr')
neighbors, distances = [], []
bin_queries, max_depth = self._query(X)
for i in range(X.shape[0]):
neighs, dists = self._get_radius_neighbors(X[[i]], max_depth[i],
bin_queries[i], radius)
neighbors.append(neighs)
distances.append(dists)
if return_distance:
return _array_of_arrays(distances), _array_of_arrays(neighbors)
else:
return _array_of_arrays(neighbors)
def partial_fit(self, X, y=None):
"""
Inserts new data into the already fitted LSH Forest.
Cost is proportional to new total size, so additions
should be batched.
Parameters
----------
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
New data point to be inserted into the LSH Forest.
"""
X = check_array(X, accept_sparse='csr')
if not hasattr(self, 'hash_functions_'):
return self.fit(X)
if X.shape[1] != self._fit_X.shape[1]:
raise ValueError("Number of features in X and"
" fitted array does not match.")
n_samples = X.shape[0]
n_indexed = self._fit_X.shape[0]
for i in range(self.n_estimators):
bin_X = self.hash_functions_[i].transform(X)[:, 0]
# gets the position to be added in the tree.
positions = self.trees_[i].searchsorted(bin_X)
# adds the hashed value into the tree.
self.trees_[i] = np.insert(self.trees_[i],
positions, bin_X)
# add the entry into the original_indices_.
self.original_indices_[i] = np.insert(self.original_indices_[i],
positions,
np.arange(n_indexed,
n_indexed +
n_samples))
# adds the entry into the input_array.
if sparse.issparse(X) or sparse.issparse(self._fit_X):
self._fit_X = sparse.vstack((self._fit_X, X))
else:
self._fit_X = np.row_stack((self._fit_X, X))
return self
|