1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: cdivision=True
# Author: Jake Vanderplas <vanderplas@astro.washington.edu>
# License: BSD 3 clause
__all__ = ['BallTree']
DOC_DICT = {'BinaryTree': 'BallTree', 'binary_tree': 'ball_tree'}
VALID_METRICS = ['EuclideanDistance', 'SEuclideanDistance',
'ManhattanDistance', 'ChebyshevDistance',
'MinkowskiDistance', 'WMinkowskiDistance',
'MahalanobisDistance', 'HammingDistance',
'CanberraDistance', 'BrayCurtisDistance',
'JaccardDistance', 'MatchingDistance',
'DiceDistance', 'KulsinskiDistance',
'RogersTanimotoDistance', 'RussellRaoDistance',
'SokalMichenerDistance', 'SokalSneathDistance',
'PyFuncDistance', 'HaversineDistance']
include "binary_tree.pxi"
# Inherit BallTree from BinaryTree
cdef class BallTree(BinaryTree):
__doc__ = CLASS_DOC.format(**DOC_DICT)
pass
#----------------------------------------------------------------------
# The functions below specialized the Binary Tree as a Ball Tree
#
# Note that these functions use the concept of "reduced distance".
# The reduced distance, defined for some metrics, is a quantity which
# is more efficient to compute than the distance, but preserves the
# relative rankings of the true distance. For example, the reduced
# distance for the Euclidean metric is the squared-euclidean distance.
# For some metrics, the reduced distance is simply the distance.
cdef int allocate_data(BinaryTree tree, ITYPE_t n_nodes,
ITYPE_t n_features) except -1:
"""Allocate arrays needed for the KD Tree"""
tree.node_bounds_arr = np.zeros((1, n_nodes, n_features), dtype=DTYPE)
tree.node_bounds = get_memview_DTYPE_3D(tree.node_bounds_arr)
return 0
cdef int init_node(BinaryTree tree, ITYPE_t i_node,
ITYPE_t idx_start, ITYPE_t idx_end) except -1:
"""Initialize the node for the dataset stored in tree.data"""
cdef ITYPE_t n_features = tree.data.shape[1]
cdef ITYPE_t n_points = idx_end - idx_start
cdef ITYPE_t i, j
cdef DTYPE_t radius
cdef DTYPE_t *this_pt
cdef ITYPE_t* idx_array = &tree.idx_array[0]
cdef DTYPE_t* data = &tree.data[0, 0]
cdef DTYPE_t* centroid = &tree.node_bounds[0, i_node, 0]
cdef bint with_sample_weight = tree.sample_weight is not None
cdef DTYPE_t* sample_weight
cdef DTYPE_t sum_weight_node
if with_sample_weight:
sample_weight = &tree.sample_weight[0]
# determine Node centroid
for j in range(n_features):
centroid[j] = 0
if with_sample_weight:
sum_weight_node = 0
for i in range(idx_start, idx_end):
sum_weight_node += sample_weight[idx_array[i]]
this_pt = data + n_features * idx_array[i]
for j from 0 <= j < n_features:
centroid[j] += this_pt[j] * sample_weight[idx_array[i]]
for j in range(n_features):
centroid[j] /= sum_weight_node
else:
for i in range(idx_start, idx_end):
this_pt = data + n_features * idx_array[i]
for j from 0 <= j < n_features:
centroid[j] += this_pt[j]
for j in range(n_features):
centroid[j] /= n_points
# determine Node radius
radius = 0
for i in range(idx_start, idx_end):
radius = fmax(radius,
tree.rdist(centroid,
data + n_features * idx_array[i],
n_features))
tree.node_data[i_node].radius = tree.dist_metric._rdist_to_dist(radius)
tree.node_data[i_node].idx_start = idx_start
tree.node_data[i_node].idx_end = idx_end
return 0
cdef inline DTYPE_t min_dist(BinaryTree tree, ITYPE_t i_node,
DTYPE_t* pt) nogil except -1:
"""Compute the minimum distance between a point and a node"""
cdef DTYPE_t dist_pt = tree.dist(pt, &tree.node_bounds[0, i_node, 0],
tree.data.shape[1])
return fmax(0, dist_pt - tree.node_data[i_node].radius)
cdef inline DTYPE_t max_dist(BinaryTree tree, ITYPE_t i_node,
DTYPE_t* pt) except -1:
"""Compute the maximum distance between a point and a node"""
cdef DTYPE_t dist_pt = tree.dist(pt, &tree.node_bounds[0, i_node, 0],
tree.data.shape[1])
return dist_pt + tree.node_data[i_node].radius
cdef inline int min_max_dist(BinaryTree tree, ITYPE_t i_node, DTYPE_t* pt,
DTYPE_t* min_dist, DTYPE_t* max_dist) nogil except -1:
"""Compute the minimum and maximum distance between a point and a node"""
cdef DTYPE_t dist_pt = tree.dist(pt, &tree.node_bounds[0, i_node, 0],
tree.data.shape[1])
cdef DTYPE_t rad = tree.node_data[i_node].radius
min_dist[0] = fmax(0, dist_pt - rad)
max_dist[0] = dist_pt + rad
return 0
cdef inline DTYPE_t min_rdist(BinaryTree tree, ITYPE_t i_node,
DTYPE_t* pt) nogil except -1:
"""Compute the minimum reduced-distance between a point and a node"""
if tree.euclidean:
return euclidean_dist_to_rdist(min_dist(tree, i_node, pt))
else:
return tree.dist_metric._dist_to_rdist(min_dist(tree, i_node, pt))
cdef inline DTYPE_t max_rdist(BinaryTree tree, ITYPE_t i_node,
DTYPE_t* pt) except -1:
"""Compute the maximum reduced-distance between a point and a node"""
if tree.euclidean:
return euclidean_dist_to_rdist(max_dist(tree, i_node, pt))
else:
return tree.dist_metric._dist_to_rdist(max_dist(tree, i_node, pt))
cdef inline DTYPE_t min_dist_dual(BinaryTree tree1, ITYPE_t i_node1,
BinaryTree tree2, ITYPE_t i_node2) except -1:
"""compute the minimum distance between two nodes"""
cdef DTYPE_t dist_pt = tree1.dist(&tree2.node_bounds[0, i_node2, 0],
&tree1.node_bounds[0, i_node1, 0],
tree1.data.shape[1])
return fmax(0, (dist_pt - tree1.node_data[i_node1].radius
- tree2.node_data[i_node2].radius))
cdef inline DTYPE_t max_dist_dual(BinaryTree tree1, ITYPE_t i_node1,
BinaryTree tree2, ITYPE_t i_node2) except -1:
"""compute the maximum distance between two nodes"""
cdef DTYPE_t dist_pt = tree1.dist(&tree2.node_bounds[0, i_node2, 0],
&tree1.node_bounds[0, i_node1, 0],
tree1.data.shape[1])
return (dist_pt + tree1.node_data[i_node1].radius
+ tree2.node_data[i_node2].radius)
cdef inline DTYPE_t min_rdist_dual(BinaryTree tree1, ITYPE_t i_node1,
BinaryTree tree2, ITYPE_t i_node2) except -1:
"""compute the minimum reduced distance between two nodes"""
if tree1.euclidean:
return euclidean_dist_to_rdist(min_dist_dual(tree1, i_node1,
tree2, i_node2))
else:
return tree1.dist_metric._dist_to_rdist(min_dist_dual(tree1, i_node1,
tree2, i_node2))
cdef inline DTYPE_t max_rdist_dual(BinaryTree tree1, ITYPE_t i_node1,
BinaryTree tree2, ITYPE_t i_node2) except -1:
"""compute the maximum reduced distance between two nodes"""
if tree1.euclidean:
return euclidean_dist_to_rdist(max_dist_dual(tree1, i_node1,
tree2, i_node2))
else:
return tree1.dist_metric._dist_to_rdist(max_dist_dual(tree1, i_node1,
tree2, i_node2))
|