File: binary_tree.pxi

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (2617 lines) | stat: -rwxr-xr-x 107,057 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
#!python

# KD Tree and Ball Tree
# =====================
#
#    Author: Jake Vanderplas <jakevdp@cs.washington.edu>, 2012-2013
#    License: BSD
#
# This file is meant to be a literal include in a pyx file.
# See ball_tree.pyx and kd_tree.pyx
#
# The routines here are the core algorithms of the KDTree and BallTree
# structures.  If Cython supported polymorphism, we would be able to
# create a subclass and derive KDTree and BallTree from it.  Because
# polymorphism is not an option, we use this single BinaryTree class
# as a literal include to avoid duplicating the entire file.
#
# A series of functions are implemented in kd_tree.pyx and ball_tree.pyx
# which use the information here to calculate the lower and upper bounds
# between a node and a point, and between two nodes.  These functions are
# used here, and are all that are needed to differentiate between the two
# tree types.
#
# Description of Binary Tree Algorithms
# -------------------------------------
# A binary tree can be thought of as a collection of nodes.  The top node
# contains all the points.  The next level consists of two nodes with half
# the points in each, and this continues recursively.  Each node contains
# metadata which allow fast computation of distance bounds: in the case of
# a ball tree, the metadata is a center and a radius.  In the case of a
# KD tree, the metadata is the minimum and maximum bound along each dimension.
#
# In a typical KD Tree or Ball Tree implementation, the nodes are implemented
# as dynamically allocated structures with pointers linking them.  Here we
# take a different approach, storing all relevant data in a set of arrays
# so that the entire tree object can be saved in a pickle file. For efficiency,
# the data can be stored in such a way that explicit pointers are not
# necessary: for node data stored at index i, the two child nodes are at
# index (2 * i + 1) and (2 * i + 2); the parent node is (i - 1) // 2
# (where // indicates integer division).
#
# The data arrays used here are as follows:
#   data : the [n_samples x n_features] array of data from which the tree
#          is built
#   idx_array : the length n_samples array used to keep track of the indices
#          of data within each node.  Each node has values idx_start and
#          idx_end: the points within the node are given by (using numpy
#          syntax) data[idx_array[idx_start:idx_end]].
#   node_data : the length n_nodes array of structures which store the node
#          indices, node radii, and leaf information for each node.
#   node_bounds : the [* x n_nodes x n_features] array containing the node
#          bound information.  For ball tree, the first dimension is 1, and
#          each row contains the centroid of the node.  For kd tree, the first
#          dimension is 2 and the rows for each point contain the arrays of
#          lower bounds and upper bounds in each direction.
#
# The lack of dynamic allocation means the number of nodes must be computed
# before the building of the tree. This can be done assuming the points are
# divided equally between child nodes at each step; although this removes
# some flexibility in tree creation, it ensures a balanced tree and ensures
# that the number of nodes required can be computed beforehand.  Given a
# specified leaf_size (the minimum number of points in any node), it is
# possible to show that a balanced tree will have
#
#     n_levels = 1 + max(0, floor(log2((n_samples - 1) / leaf_size)))
#
# in order to satisfy
#
#     leaf_size <= min(n_points) <= 2 * leaf_size
#
# with the exception of the special case where n_samples < leaf_size.
# for a given number of levels, the number of nodes in the tree is given by
#
#     n_nodes = 2 ** n_levels - 1
#
# both these results can be straightforwardly shown by induction.  The
# following code uses these values in the construction of the tree.
#
# Distance Metrics
# ----------------
# For flexibility, the trees can be built using a variety of distance metrics.
# The metrics are described in the DistanceMetric class: the standard
# Euclidean distance is the default, and is inlined to be faster than other
# metrics.  In addition, each metric defines both a distance and a
# "reduced distance", which is often faster to compute, and is therefore
# used in the query architecture whenever possible. (For example, in the
# case of the standard Euclidean distance, the reduced distance is the
# squared-distance).
#
# Implementation Notes
# --------------------
# This implementation uses the common object-oriented approach of having an
# abstract base class which is extended by the KDTree and BallTree
# specializations.
#
# The BinaryTree "base class" is defined here and then subclassed in the BallTree
# and KDTree pyx files. These files include implementations of the
# "abstract" methods.

# Necessary Helper Functions
# --------------------------
# These are the names and descriptions of the "abstract" functions which are
# defined in kd_tree.pyx and ball_tree.pyx:

# cdef int allocate_data(BinaryTree tree, ITYPE_t n_nodes, ITYPE_t n_features):
#     """Allocate arrays needed for the KD Tree"""

# cdef int init_node(BinaryTree tree, ITYPE_t i_node,
#                    ITYPE_t idx_start, ITYPE_t idx_end):
#    """Initialize the node for the dataset stored in tree.data"""

# cdef DTYPE_t min_rdist(BinaryTree tree, ITYPE_t i_node, DTYPE_t* pt):
#     """Compute the minimum reduced-distance between a point and a node"""

# cdef DTYPE_t min_dist(BinaryTree tree, ITYPE_t i_node, DTYPE_t* pt):
#     """Compute the minimum distance between a point and a node"""

# cdef DTYPE_t max_rdist(BinaryTree tree, ITYPE_t i_node, DTYPE_t* pt):
#     """Compute the maximum reduced-distance between a point and a node"""

# cdef DTYPE_t max_dist(BinaryTree tree, ITYPE_t i_node, DTYPE_t* pt):
#     """Compute the maximum distance between a point and a node"""

# cdef inline int min_max_dist(BinaryTree tree, ITYPE_t i_node, DTYPE_t* pt,
#                              DTYPE_t* min_dist, DTYPE_t* max_dist):
#     """Compute the minimum and maximum distance between a point and a node"""

# cdef inline DTYPE_t min_rdist_dual(BinaryTree tree1, ITYPE_t i_node1,
#                                    BinaryTree tree2, ITYPE_t i_node2):
#     """Compute the minimum reduced distance between two nodes"""

# cdef inline DTYPE_t min_dist_dual(BinaryTree tree1, ITYPE_t i_node1,
#                                   BinaryTree tree2, ITYPE_t i_node2):
#     """Compute the minimum distance between two nodes"""

# cdef inline DTYPE_t max_rdist_dual(BinaryTree tree1, ITYPE_t i_node1,
#                                    BinaryTree tree2, ITYPE_t i_node2):
#     """Compute the maximum reduced distance between two nodes"""

# cdef inline DTYPE_t max_dist_dual(BinaryTree tree1, ITYPE_t i_node1,
#                                   BinaryTree tree2, ITYPE_t i_node2):
#     """Compute the maximum distance between two nodes"""

cimport cython
cimport numpy as np
from libc.math cimport fabs, sqrt, exp, cos, pow, log
from libc.stdlib cimport calloc, malloc, free
from libc.string cimport memcpy
from sklearn.utils.lgamma cimport lgamma

import numpy as np
import warnings
from ..utils import check_array

from typedefs cimport DTYPE_t, ITYPE_t, DITYPE_t
from typedefs import DTYPE, ITYPE

from dist_metrics cimport (DistanceMetric, euclidean_dist, euclidean_rdist,
                           euclidean_dist_to_rdist, euclidean_rdist_to_dist)

cdef extern from "numpy/arrayobject.h":
    void PyArray_ENABLEFLAGS(np.ndarray arr, int flags)

np.import_array()

# some handy constants
cdef DTYPE_t INF = np.inf
cdef DTYPE_t NEG_INF = -np.inf
cdef DTYPE_t PI = np.pi
cdef DTYPE_t ROOT_2PI = sqrt(2 * PI)
cdef DTYPE_t LOG_PI = log(PI)
cdef DTYPE_t LOG_2PI = log(2 * PI)


# Some compound datatypes used below:
cdef struct NodeHeapData_t:
    DTYPE_t val
    ITYPE_t i1
    ITYPE_t i2

# build the corresponding numpy dtype for NodeHeapData
# There is no offsetof() function in cython, so we hack it.
# If we can ensure numpy 1.5 or greater, a cleaner way is to do
#     cdef NodeHeapData_t nhd_tmp
#     NodeHeapData = np.asarray(<NodeHeapData_t[:1]>(&nhd_tmp)).dtype
cdef NodeHeapData_t nhd_tmp
offsets = [<np.intp_t>&(nhd_tmp.val) - <np.intp_t>&nhd_tmp,
           <np.intp_t>&(nhd_tmp.i1) - <np.intp_t>&nhd_tmp,
           <np.intp_t>&(nhd_tmp.i2) - <np.intp_t>&nhd_tmp]
NodeHeapData = np.dtype({'names': ['val', 'i1', 'i2'],
                         'formats': [DTYPE, ITYPE, ITYPE],
                         'offsets': offsets,
                         'itemsize': sizeof(NodeHeapData_t)})

cdef struct NodeData_t:
    ITYPE_t idx_start
    ITYPE_t idx_end
    ITYPE_t is_leaf
    DTYPE_t radius

# build the corresponding numpy dtype for NodeData
# There is no offsetof() function in cython, so we hack it.
# If we can ensure numpy 1.5 or greater, a cleaner way is to do
#     cdef NodeData_t nd_tmp
#     NodeData = np.asarray(<NodeData_t[:1]>(&nd_tmp)).dtype
cdef NodeData_t nd_tmp
offsets = [<np.intp_t>&(nd_tmp.idx_start) - <np.intp_t>&nd_tmp,
           <np.intp_t>&(nd_tmp.idx_end) - <np.intp_t>&nd_tmp,
           <np.intp_t>&(nd_tmp.is_leaf) - <np.intp_t>&nd_tmp,
           <np.intp_t>&(nd_tmp.radius) - <np.intp_t>&nd_tmp]
NodeData = np.dtype({'names': ['idx_start', 'idx_end', 'is_leaf', 'radius'],
                     'formats': [ITYPE, ITYPE, ITYPE, DTYPE],
                     'offsets': offsets,
                     'itemsize': sizeof(NodeData_t)})


######################################################################
# Numpy 1.3-1.4 compatibility utilities
cdef DTYPE_t[::1] get_memview_DTYPE_1D(
                               np.ndarray[DTYPE_t, ndim=1, mode='c'] X):
    return <DTYPE_t[:X.shape[0]:1]> (<DTYPE_t*> X.data)


cdef DTYPE_t[:, ::1] get_memview_DTYPE_2D(
                               np.ndarray[DTYPE_t, ndim=2, mode='c'] X):
    return <DTYPE_t[:X.shape[0], :X.shape[1]:1]> (<DTYPE_t*> X.data)


cdef DTYPE_t[:, :, ::1] get_memview_DTYPE_3D(
                               np.ndarray[DTYPE_t, ndim=3, mode='c'] X):
    return <DTYPE_t[:X.shape[0], :X.shape[1], :X.shape[2]:1]>\
                                                       (<DTYPE_t*> X.data)


cdef ITYPE_t[::1] get_memview_ITYPE_1D(
                               np.ndarray[ITYPE_t, ndim=1, mode='c'] X):
    return <ITYPE_t[:X.shape[0]:1]> (<ITYPE_t*> X.data)


cdef ITYPE_t[:, ::1] get_memview_ITYPE_2D(
                               np.ndarray[ITYPE_t, ndim=2, mode='c'] X):
    return <ITYPE_t[:X.shape[0], :X.shape[1]:1]> (<ITYPE_t*> X.data)


cdef NodeHeapData_t[::1] get_memview_NodeHeapData_1D(
                    np.ndarray[NodeHeapData_t, ndim=1, mode='c'] X):
    return <NodeHeapData_t[:X.shape[0]:1]> (<NodeHeapData_t*> X.data)


cdef NodeData_t[::1] get_memview_NodeData_1D(
                    np.ndarray[NodeData_t, ndim=1, mode='c'] X):
    return <NodeData_t[:X.shape[0]:1]> (<NodeData_t*> X.data)

######################################################################



######################################################################
# Define doc strings, substituting the appropriate class name using
# the DOC_DICT variable defined in the pyx files.
CLASS_DOC = \
"""{BinaryTree} for fast generalized N-point problems

{BinaryTree}(X, leaf_size=40, metric='minkowski', \\**kwargs)

Parameters
----------
X : array-like, shape = [n_samples, n_features]
    n_samples is the number of points in the data set, and
    n_features is the dimension of the parameter space.
    Note: if X is a C-contiguous array of doubles then data will
    not be copied. Otherwise, an internal copy will be made.

leaf_size : positive integer (default = 40)
    Number of points at which to switch to brute-force. Changing
    leaf_size will not affect the results of a query, but can
    significantly impact the speed of a query and the memory required
    to store the constructed tree.  The amount of memory needed to
    store the tree scales as approximately n_samples / leaf_size.
    For a specified ``leaf_size``, a leaf node is guaranteed to
    satisfy ``leaf_size <= n_points <= 2 * leaf_size``, except in
    the case that ``n_samples < leaf_size``.

metric : string or DistanceMetric object
    the distance metric to use for the tree.  Default='minkowski'
    with p=2 (that is, a euclidean metric). See the documentation
    of the DistanceMetric class for a list of available metrics.
    {binary_tree}.valid_metrics gives a list of the metrics which
    are valid for {BinaryTree}.

Additional keywords are passed to the distance metric class.

Attributes
----------
data : memory view
    The training data

Examples
--------
Query for k-nearest neighbors

    >>> import numpy as np
    >>> np.random.seed(0)
    >>> X = np.random.random((10, 3))  # 10 points in 3 dimensions
    >>> tree = {BinaryTree}(X, leaf_size=2)              # doctest: +SKIP
    >>> dist, ind = tree.query(X[:1], k=3)                # doctest: +SKIP
    >>> print(ind)  # indices of 3 closest neighbors
    [0 3 1]
    >>> print(dist)  # distances to 3 closest neighbors
    [ 0.          0.19662693  0.29473397]

Pickle and Unpickle a tree.  Note that the state of the tree is saved in the
pickle operation: the tree needs not be rebuilt upon unpickling.

    >>> import numpy as np
    >>> import pickle
    >>> np.random.seed(0)
    >>> X = np.random.random((10, 3))  # 10 points in 3 dimensions
    >>> tree = {BinaryTree}(X, leaf_size=2)        # doctest: +SKIP
    >>> s = pickle.dumps(tree)                     # doctest: +SKIP
    >>> tree_copy = pickle.loads(s)                # doctest: +SKIP
    >>> dist, ind = tree_copy.query(X[:1], k=3)     # doctest: +SKIP
    >>> print(ind)  # indices of 3 closest neighbors
    [0 3 1]
    >>> print(dist)  # distances to 3 closest neighbors
    [ 0.          0.19662693  0.29473397]

Query for neighbors within a given radius

    >>> import numpy as np
    >>> np.random.seed(0)
    >>> X = np.random.random((10, 3))  # 10 points in 3 dimensions
    >>> tree = {BinaryTree}(X, leaf_size=2)     # doctest: +SKIP
    >>> print(tree.query_radius(X[:1], r=0.3, count_only=True))
    3
    >>> ind = tree.query_radius(X[:1], r=0.3)  # doctest: +SKIP
    >>> print(ind)  # indices of neighbors within distance 0.3
    [3 0 1]


Compute a gaussian kernel density estimate:

    >>> import numpy as np
    >>> np.random.seed(1)
    >>> X = np.random.random((100, 3))
    >>> tree = {BinaryTree}(X)                # doctest: +SKIP
    >>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
    array([ 6.94114649,  7.83281226,  7.2071716 ])

Compute a two-point auto-correlation function

    >>> import numpy as np
    >>> np.random.seed(0)
    >>> X = np.random.random((30, 3))
    >>> r = np.linspace(0, 1, 5)
    >>> tree = {BinaryTree}(X)                # doctest: +SKIP
    >>> tree.two_point_correlation(X, r)
    array([ 30,  62, 278, 580, 820])

"""


######################################################################
# Utility functions
cdef DTYPE_t logaddexp(DTYPE_t x1, DTYPE_t x2):
    """logaddexp(x1, x2) -> log(exp(x1) + exp(x2))"""
    cdef DTYPE_t a = fmax(x1, x2)
    if a == NEG_INF:
        return NEG_INF
    else:
        return a + log(exp(x1 - a) + exp(x2 - a))

cdef DTYPE_t logsubexp(DTYPE_t x1, DTYPE_t x2):
    """logsubexp(x1, x2) -> log(exp(x1) - exp(x2))"""
    if x1 <= x2:
        return NEG_INF
    else:
        return x1 + log(1 - exp(x2 - x1))


######################################################################
# Kernel functions
#
# Note: Kernels assume dist is non-negative and h is positive
#       All kernel functions are normalized such that K(0, h) = 1.
#       The fully normalized kernel is:
#         K = exp[kernel_norm(h, d, kernel) + compute_kernel(dist, h, kernel)]
#       The code only works with non-negative kernels: i.e. K(d, h) >= 0
#       for all valid d and h.  Note that for precision, the log of both
#       the kernel and kernel norm is returned.
cdef enum KernelType:
    GAUSSIAN_KERNEL = 1
    TOPHAT_KERNEL = 2
    EPANECHNIKOV_KERNEL = 3
    EXPONENTIAL_KERNEL = 4
    LINEAR_KERNEL = 5
    COSINE_KERNEL = 6


cdef inline DTYPE_t log_gaussian_kernel(DTYPE_t dist, DTYPE_t h):
    """log of the gaussian kernel for bandwidth h (unnormalized)"""
    return -0.5 * (dist * dist) / (h * h)


cdef inline DTYPE_t log_tophat_kernel(DTYPE_t dist, DTYPE_t h):
    """log of the tophat kernel for bandwidth h (unnormalized)"""
    if dist < h:
        return 0.0
    else:
        return NEG_INF


cdef inline DTYPE_t log_epanechnikov_kernel(DTYPE_t dist, DTYPE_t h):
    """log of the epanechnikov kernel for bandwidth h (unnormalized)"""
    if dist < h:
        return log(1.0 - (dist * dist) / (h * h))
    else:
        return NEG_INF


cdef inline DTYPE_t log_exponential_kernel(DTYPE_t dist, DTYPE_t h):
    """log of the exponential kernel for bandwidth h (unnormalized)"""
    return -dist / h


cdef inline DTYPE_t log_linear_kernel(DTYPE_t dist, DTYPE_t h):
    """log of the linear kernel for bandwidth h (unnormalized)"""
    if dist < h:
        return log(1 - dist / h)
    else:
        return NEG_INF


cdef inline DTYPE_t log_cosine_kernel(DTYPE_t dist, DTYPE_t h):
    """log of the cosine kernel for bandwidth h (unnormalized)"""
    if dist < h:
        return log(cos(0.5 * PI * dist / h))
    else:
        return NEG_INF


cdef inline DTYPE_t compute_log_kernel(DTYPE_t dist, DTYPE_t h,
                                       KernelType kernel):
    """Given a KernelType enumeration, compute the appropriate log-kernel"""
    if kernel == GAUSSIAN_KERNEL:
        return log_gaussian_kernel(dist, h)
    elif kernel == TOPHAT_KERNEL:
        return log_tophat_kernel(dist, h)
    elif kernel == EPANECHNIKOV_KERNEL:
        return log_epanechnikov_kernel(dist, h)
    elif kernel == EXPONENTIAL_KERNEL:
        return log_exponential_kernel(dist, h)
    elif kernel == LINEAR_KERNEL:
        return log_linear_kernel(dist, h)
    elif kernel == COSINE_KERNEL:
        return log_cosine_kernel(dist, h)


#------------------------------------------------------------
# Kernel norms are defined via the volume element V_n
# and surface element S_(n-1) of an n-sphere.
cdef DTYPE_t logVn(ITYPE_t n):
    """V_n = pi^(n/2) / gamma(n/2 - 1)"""
    return 0.5 * n * LOG_PI - lgamma(0.5 * n + 1)


cdef DTYPE_t logSn(ITYPE_t n):
    """V_(n+1) = int_0^1 S_n r^n dr"""
    return LOG_2PI + logVn(n - 1)


cdef DTYPE_t _log_kernel_norm(DTYPE_t h, ITYPE_t d,
                              KernelType kernel) except -1:
    """Given a KernelType enumeration, compute the kernel normalization.

    h is the bandwidth, d is the dimension.
    """
    cdef DTYPE_t tmp, factor = 0
    cdef ITYPE_t k
    if kernel == GAUSSIAN_KERNEL:
        factor = 0.5 * d * LOG_2PI
    elif kernel == TOPHAT_KERNEL:
        factor = logVn(d)
    elif kernel == EPANECHNIKOV_KERNEL:
        factor = logVn(d) + log(2. / (d + 2.))
    elif kernel == EXPONENTIAL_KERNEL:
        factor = logSn(d - 1) + lgamma(d)
    elif kernel == LINEAR_KERNEL:
        factor = logVn(d) - log(d + 1.)
    elif kernel == COSINE_KERNEL:
        # this is derived from a chain rule integration
        factor = 0
        tmp = 2. / PI
        for k in range(1, d + 1, 2):
            factor += tmp
            tmp *= -(d - k) * (d - k - 1) * (2. / PI) ** 2
        factor = log(factor) + logSn(d - 1)
    else:
        raise ValueError("Kernel code not recognized")
    return -factor - d * log(h)


def kernel_norm(h, d, kernel, return_log=False):
    """Given a string specification of a kernel, compute the normalization.

    Parameters
    ----------
    h : float
        the bandwidth of the kernel
    d : int
        the dimension of the space in which the kernel norm is computed
    kernel : string
        The kernel identifier.  Must be one of
        ['gaussian'|'tophat'|'epanechnikov'|
         'exponential'|'linear'|'cosine']
    return_log : boolean
        if True, return the log of the kernel norm.  Otherwise, return the
        kernel norm.
    Returns
    -------
    knorm or log_knorm : float
        the kernel norm or logarithm of the kernel norm.
    """
    if kernel == 'gaussian':
        result = _log_kernel_norm(h, d, GAUSSIAN_KERNEL)
    elif kernel == 'tophat':
        result = _log_kernel_norm(h, d, TOPHAT_KERNEL)
    elif kernel == 'epanechnikov':
        result = _log_kernel_norm(h, d, EPANECHNIKOV_KERNEL)
    elif kernel == 'exponential':
        result = _log_kernel_norm(h, d, EXPONENTIAL_KERNEL)
    elif kernel == 'linear':
        result = _log_kernel_norm(h, d, LINEAR_KERNEL)
    elif kernel == 'cosine':
        result = _log_kernel_norm(h, d, COSINE_KERNEL)
    else:
        raise ValueError('kernel not recognized')

    if return_log:
        return result
    else:
        return np.exp(result)


######################################################################
# Tree Utility Routines
cdef inline void swap(DITYPE_t* arr, ITYPE_t i1, ITYPE_t i2):
    """swap the values at index i1 and i2 of arr"""
    cdef DITYPE_t tmp = arr[i1]
    arr[i1] = arr[i2]
    arr[i2] = tmp


cdef inline void dual_swap(DTYPE_t* darr, ITYPE_t* iarr,
                           ITYPE_t i1, ITYPE_t i2) nogil:
    """swap the values at inex i1 and i2 of both darr and iarr"""
    cdef DTYPE_t dtmp = darr[i1]
    darr[i1] = darr[i2]
    darr[i2] = dtmp

    cdef ITYPE_t itmp = iarr[i1]
    iarr[i1] = iarr[i2]
    iarr[i2] = itmp


cdef class NeighborsHeap:
    """A max-heap structure to keep track of distances/indices of neighbors

    This implements an efficient pre-allocated set of fixed-size heaps
    for chasing neighbors, holding both an index and a distance.
    When any row of the heap is full, adding an additional point will push
    the furthest point off the heap.

    Parameters
    ----------
    n_pts : int
        the number of heaps to use
    n_nbrs : int
        the size of each heap.
    """
    cdef np.ndarray distances_arr
    cdef np.ndarray indices_arr

    cdef DTYPE_t[:, ::1] distances
    cdef ITYPE_t[:, ::1] indices

    def __cinit__(self):
        self.distances_arr = np.zeros((1, 1), dtype=DTYPE, order='C')
        self.indices_arr = np.zeros((1, 1), dtype=ITYPE, order='C')
        self.distances = get_memview_DTYPE_2D(self.distances_arr)
        self.indices = get_memview_ITYPE_2D(self.indices_arr)

    def __init__(self, n_pts, n_nbrs):
        self.distances_arr = np.full((n_pts, n_nbrs), np.inf, dtype=DTYPE,
                                     order='C')
        self.indices_arr = np.zeros((n_pts, n_nbrs), dtype=ITYPE, order='C')
        self.distances = get_memview_DTYPE_2D(self.distances_arr)
        self.indices = get_memview_ITYPE_2D(self.indices_arr)

    def get_arrays(self, sort=True):
        """Get the arrays of distances and indices within the heap.

        If sort=True, then simultaneously sort the indices and distances,
        so the closer points are listed first.
        """
        if sort:
            self._sort()
        return self.distances_arr, self.indices_arr

    cdef inline DTYPE_t largest(self, ITYPE_t row) nogil except -1:
        """Return the largest distance in the given row"""
        return self.distances[row, 0]

    def push(self, ITYPE_t row, DTYPE_t val, ITYPE_t i_val):
        return self._push(row, val, i_val)

    cdef int _push(self, ITYPE_t row, DTYPE_t val,
                   ITYPE_t i_val) nogil except -1:
        """push (val, i_val) into the given row"""
        cdef ITYPE_t i, ic1, ic2, i_swap
        cdef ITYPE_t size = self.distances.shape[1]
        cdef DTYPE_t* dist_arr = &self.distances[row, 0]
        cdef ITYPE_t* ind_arr = &self.indices[row, 0]

        # check if val should be in heap
        if val > dist_arr[0]:
            return 0

        # insert val at position zero
        dist_arr[0] = val
        ind_arr[0] = i_val

        # descend the heap, swapping values until the max heap criterion is met
        i = 0
        while True:
            ic1 = 2 * i + 1
            ic2 = ic1 + 1

            if ic1 >= size:
                break
            elif ic2 >= size:
                if dist_arr[ic1] > val:
                    i_swap = ic1
                else:
                    break
            elif dist_arr[ic1] >= dist_arr[ic2]:
                if val < dist_arr[ic1]:
                    i_swap = ic1
                else:
                    break
            else:
                if val < dist_arr[ic2]:
                    i_swap = ic2
                else:
                    break

            dist_arr[i] = dist_arr[i_swap]
            ind_arr[i] = ind_arr[i_swap]

            i = i_swap

        dist_arr[i] = val
        ind_arr[i] = i_val

        return 0

    cdef int _sort(self) except -1:
        """simultaneously sort the distances and indices"""
        cdef DTYPE_t[:, ::1] distances = self.distances
        cdef ITYPE_t[:, ::1] indices = self.indices
        cdef ITYPE_t row
        for row in range(distances.shape[0]):
            _simultaneous_sort(&distances[row, 0],
                               &indices[row, 0],
                               distances.shape[1])
        return 0


cdef int _simultaneous_sort(DTYPE_t* dist, ITYPE_t* idx,
                            ITYPE_t size) nogil except -1:
    """
    Perform a recursive quicksort on the dist array, simultaneously
    performing the same swaps on the idx array.  The equivalent in
    numpy (though quite a bit slower) is

    def simultaneous_sort(dist, idx):
        i = np.argsort(dist)
        return dist[i], idx[i]
    """
    cdef ITYPE_t pivot_idx, i, store_idx
    cdef DTYPE_t pivot_val

    # in the small-array case, do things efficiently
    if size <= 1:
        pass
    elif size == 2:
        if dist[0] > dist[1]:
            dual_swap(dist, idx, 0, 1)
    elif size == 3:
        if dist[0] > dist[1]:
            dual_swap(dist, idx, 0, 1)
        if dist[1] > dist[2]:
            dual_swap(dist, idx, 1, 2)
            if dist[0] > dist[1]:
                dual_swap(dist, idx, 0, 1)
    else:
        # Determine the pivot using the median-of-three rule.
        # The smallest of the three is moved to the beginning of the array,
        # the middle (the pivot value) is moved to the end, and the largest
        # is moved to the pivot index.
        pivot_idx = size / 2
        if dist[0] > dist[size - 1]:
            dual_swap(dist, idx, 0, size - 1)
        if dist[size - 1] > dist[pivot_idx]:
            dual_swap(dist, idx, size - 1, pivot_idx)
            if dist[0] > dist[size - 1]:
                dual_swap(dist, idx, 0, size - 1)
        pivot_val = dist[size - 1]

        # partition indices about pivot.  At the end of this operation,
        # pivot_idx will contain the pivot value, everything to the left
        # will be smaller, and everything to the right will be larger.
        store_idx = 0
        for i in range(size - 1):
            if dist[i] < pivot_val:
                dual_swap(dist, idx, i, store_idx)
                store_idx += 1
        dual_swap(dist, idx, store_idx, size - 1)
        pivot_idx = store_idx

        # recursively sort each side of the pivot
        if pivot_idx > 1:
            _simultaneous_sort(dist, idx, pivot_idx)
        if pivot_idx + 2 < size:
            _simultaneous_sort(dist + pivot_idx + 1,
                               idx + pivot_idx + 1,
                               size - pivot_idx - 1)
    return 0

#------------------------------------------------------------
# find_node_split_dim:
#  this computes the equivalent of
#  j_max = np.argmax(np.max(data, 0) - np.min(data, 0))
cdef ITYPE_t find_node_split_dim(DTYPE_t* data,
                                 ITYPE_t* node_indices,
                                 ITYPE_t n_features,
                                 ITYPE_t n_points) except -1:
    """Find the dimension with the largest spread.

    Parameters
    ----------
    data : double pointer
        Pointer to a 2D array of the training data, of shape [N, n_features].
        N must be greater than any of the values in node_indices.
    node_indices : int pointer
        Pointer to a 1D array of length n_points.  This lists the indices of
        each of the points within the current node.

    Returns
    -------
    i_max : int
        The index of the feature (dimension) within the node that has the
        largest spread.

    Notes
    -----
    In numpy, this operation is equivalent to

    def find_node_split_dim(data, node_indices):
        return np.argmax(data[node_indices].max(0) - data[node_indices].min(0))

    The cython version is much more efficient in both computation and memory.
    """
    cdef DTYPE_t min_val, max_val, val, spread, max_spread
    cdef ITYPE_t i, j, j_max

    j_max = 0
    max_spread = 0

    for j in range(n_features):
        max_val = data[node_indices[0] * n_features + j]
        min_val = max_val
        for i in range(1, n_points):
            val = data[node_indices[i] * n_features + j]
            max_val = fmax(max_val, val)
            min_val = fmin(min_val, val)
        spread = max_val - min_val
        if spread > max_spread:
            max_spread = spread
            j_max = j
    return j_max


cdef int partition_node_indices(DTYPE_t* data,
                                ITYPE_t* node_indices,
                                ITYPE_t split_dim,
                                ITYPE_t split_index,
                                ITYPE_t n_features,
                                ITYPE_t n_points) except -1:
    """Partition points in the node into two equal-sized groups.

    Upon return, the values in node_indices will be rearranged such that
    (assuming numpy-style indexing):

        data[node_indices[0:split_index], split_dim]
          <= data[node_indices[split_index], split_dim]

    and

        data[node_indices[split_index], split_dim]
          <= data[node_indices[split_index:n_points], split_dim]

    The algorithm is essentially a partial in-place quicksort around a
    set pivot.

    Parameters
    ----------
    data : double pointer
        Pointer to a 2D array of the training data, of shape [N, n_features].
        N must be greater than any of the values in node_indices.
    node_indices : int pointer
        Pointer to a 1D array of length n_points.  This lists the indices of
        each of the points within the current node.  This will be modified
        in-place.
    split_dim : int
        the dimension on which to split.  This will usually be computed via
        the routine ``find_node_split_dim``
    split_index : int
        the index within node_indices around which to split the points.

    Returns
    -------
    status : int
        integer exit status.  On return, the contents of node_indices are
        modified as noted above.
    """
    cdef ITYPE_t left, right, midindex, i
    cdef DTYPE_t d1, d2
    left = 0
    right = n_points - 1

    while True:
        midindex = left
        for i in range(left, right):
            d1 = data[node_indices[i] * n_features + split_dim]
            d2 = data[node_indices[right] * n_features + split_dim]
            if d1 < d2:
                swap(node_indices, i, midindex)
                midindex += 1
        swap(node_indices, midindex, right)
        if midindex == split_index:
            break
        elif midindex < split_index:
            left = midindex + 1
        else:
            right = midindex - 1

    return 0


######################################################################
# NodeHeap : min-heap used to keep track of nodes during
#            breadth-first query
cdef inline void swap_nodes(NodeHeapData_t* arr, ITYPE_t i1, ITYPE_t i2):
    cdef NodeHeapData_t tmp = arr[i1]
    arr[i1] = arr[i2]
    arr[i2] = tmp


cdef class NodeHeap:
    """NodeHeap

    This is a min-heap implementation for keeping track of nodes
    during a breadth-first search.  Unlike the NeighborsHeap above,
    the NodeHeap does not have a fixed size and must be able to grow
    as elements are added.

    Internally, the data is stored in a simple binary heap which meets
    the min heap condition:

        heap[i].val < min(heap[2 * i + 1].val, heap[2 * i + 2].val)
    """
    cdef np.ndarray data_arr
    cdef NodeHeapData_t[::1] data
    cdef ITYPE_t n

    def __cinit__(self):
        self.data_arr = np.zeros(1, dtype=NodeHeapData, order='C')
        self.data = get_memview_NodeHeapData_1D(self.data_arr)

    def __init__(self, size_guess=100):
        size_guess = max(size_guess, 1)  # need space for at least one item
        self.data_arr = np.zeros(size_guess, dtype=NodeHeapData, order='C')
        self.data = get_memview_NodeHeapData_1D(self.data_arr)
        self.n = size_guess
        self.clear()

    cdef int resize(self, ITYPE_t new_size) except -1:
        """Resize the heap to be either larger or smaller"""
        cdef NodeHeapData_t *data_ptr
        cdef NodeHeapData_t *new_data_ptr
        cdef ITYPE_t i
        cdef ITYPE_t size = self.data.shape[0]
        cdef np.ndarray new_data_arr = np.zeros(new_size,
                                                dtype=NodeHeapData)
        cdef NodeHeapData_t[::1] new_data =\
                                    get_memview_NodeHeapData_1D(new_data_arr)

        if size > 0 and new_size > 0:
            data_ptr = &self.data[0]
            new_data_ptr = &new_data[0]
            for i in range(min(size, new_size)):
                new_data_ptr[i] = data_ptr[i]

        if new_size < size:
            self.n = new_size

        self.data = new_data
        self.data_arr = new_data_arr
        return 0

    cdef int push(self, NodeHeapData_t data) except -1:
        """Push a new item onto the heap"""
        cdef ITYPE_t i, i_parent
        cdef NodeHeapData_t* data_arr
        self.n += 1
        if self.n > self.data.shape[0]:
            self.resize(2 * self.n)

        # put the new element at the end,
        # and then perform swaps until the heap is in order
        data_arr = &self.data[0]
        i = self.n - 1
        data_arr[i] = data

        while i > 0:
            i_parent = (i - 1) // 2
            if data_arr[i_parent].val <= data_arr[i].val:
                break
            else:
                swap_nodes(data_arr, i, i_parent)
                i = i_parent
        return 0

    cdef NodeHeapData_t peek(self):
        """Peek at the root of the heap, without removing it"""
        return self.data[0]

    cdef NodeHeapData_t pop(self):
        """Remove the root of the heap, and update the remaining nodes"""
        if self.n == 0:
            raise ValueError('cannot pop on empty heap')

        cdef ITYPE_t i, i_child1, i_child2, i_swap
        cdef NodeHeapData_t* data_arr = &self.data[0]
        cdef NodeHeapData_t popped_element = data_arr[0]

        # pop off the first element, move the last element to the front,
        # and then perform swaps until the heap is back in order
        data_arr[0] = data_arr[self.n - 1]
        self.n -= 1

        i = 0

        while (i < self.n):
            i_child1 = 2 * i + 1
            i_child2 = 2 * i + 2
            i_swap = 0

            if i_child2 < self.n:
                if data_arr[i_child1].val <= data_arr[i_child2].val:
                    i_swap = i_child1
                else:
                    i_swap = i_child2
            elif i_child1 < self.n:
                i_swap = i_child1
            else:
                break

            if (i_swap > 0) and (data_arr[i_swap].val <= data_arr[i].val):
                swap_nodes(data_arr, i, i_swap)
                i = i_swap
            else:
                break

        return popped_element

    cdef void clear(self):
        """Clear the heap"""
        self.n = 0


######################################################################
# newObj function
#  this is a helper function for pickling
def newObj(obj):
    return obj.__new__(obj)


######################################################################
# define the reverse mapping of VALID_METRICS
from dist_metrics import get_valid_metric_ids
VALID_METRIC_IDS = get_valid_metric_ids(VALID_METRICS)


######################################################################
# Binary Tree class
cdef class BinaryTree:

    cdef np.ndarray data_arr
    cdef np.ndarray sample_weight_arr
    cdef np.ndarray idx_array_arr
    cdef np.ndarray node_data_arr
    cdef np.ndarray node_bounds_arr

    cdef readonly DTYPE_t[:, ::1] data
    cdef readonly DTYPE_t[::1] sample_weight
    cdef public DTYPE_t sum_weight
    cdef public ITYPE_t[::1] idx_array
    cdef public NodeData_t[::1] node_data
    cdef public DTYPE_t[:, :, ::1] node_bounds

    cdef ITYPE_t leaf_size
    cdef ITYPE_t n_levels
    cdef ITYPE_t n_nodes

    cdef DistanceMetric dist_metric
    cdef int euclidean

    # variables to keep track of building & querying stats
    cdef int n_trims
    cdef int n_leaves
    cdef int n_splits
    cdef int n_calls

    valid_metrics = VALID_METRIC_IDS

    # Use cinit to initialize all arrays to empty: this will prevent memory
    # errors and seg-faults in rare cases where __init__ is not called
    def __cinit__(self):
        self.data_arr = np.empty((1, 1), dtype=DTYPE, order='C')
        self.sample_weight_arr = np.empty(1, dtype=DTYPE, order='C')
        self.idx_array_arr = np.empty(1, dtype=ITYPE, order='C')
        self.node_data_arr = np.empty(1, dtype=NodeData, order='C')
        self.node_bounds_arr = np.empty((1, 1, 1), dtype=DTYPE)

        self.data = get_memview_DTYPE_2D(self.data_arr)
        self.sample_weight = get_memview_DTYPE_1D(self.sample_weight_arr)
        self.idx_array = get_memview_ITYPE_1D(self.idx_array_arr)
        self.node_data = get_memview_NodeData_1D(self.node_data_arr)
        self.node_bounds = get_memview_DTYPE_3D(self.node_bounds_arr)

        self.leaf_size = 0
        self.n_levels = 0
        self.n_nodes = 0

        self.euclidean = False

        self.n_trims = 0
        self.n_leaves = 0
        self.n_splits = 0
        self.n_calls = 0

    def __init__(self, data,
                 leaf_size=40, metric='minkowski', sample_weight=None, **kwargs):
        self.data_arr = np.asarray(data, dtype=DTYPE, order='C')
        self.data = get_memview_DTYPE_2D(self.data_arr)


        self.leaf_size = leaf_size
        self.dist_metric = DistanceMetric.get_metric(metric, **kwargs)
        self.euclidean = (self.dist_metric.__class__.__name__
                          == 'EuclideanDistance')

        metric = self.dist_metric.__class__.__name__
        if metric not in VALID_METRICS:
            raise ValueError('metric {metric} is not valid for '
                             '{BinaryTree}'.format(metric=metric,
                                                   **DOC_DICT))

        # validate data
        if self.data.size == 0:
            raise ValueError("X is an empty array")

        if leaf_size < 1:
            raise ValueError("leaf_size must be greater than or equal to 1")

        n_samples = self.data.shape[0]
        n_features = self.data.shape[1]


        if sample_weight is not None:
            self.sample_weight_arr = np.asarray(sample_weight, dtype=DTYPE, order='C')
            self.sample_weight = get_memview_DTYPE_1D(self.sample_weight_arr)
            self.sum_weight = np.sum(self.sample_weight)
        else:
            self.sample_weight = None
            self.sum_weight = <DTYPE_t> n_samples


        # determine number of levels in the tree, and from this
        # the number of nodes in the tree.  This results in leaf nodes
        # with numbers of points between leaf_size and 2 * leaf_size
        self.n_levels = np.log2(fmax(1, (n_samples - 1) / self.leaf_size)) + 1
        self.n_nodes = (2 ** self.n_levels) - 1

        # allocate arrays for storage
        self.idx_array_arr = np.arange(n_samples, dtype=ITYPE)
        self.idx_array = get_memview_ITYPE_1D(self.idx_array_arr)

        self.node_data_arr = np.zeros(self.n_nodes, dtype=NodeData)
        self.node_data = get_memview_NodeData_1D(self.node_data_arr)

        # Allocate tree-specific data
        allocate_data(self, self.n_nodes, n_features)
        self._recursive_build(0, 0, n_samples)

    def __reduce__(self):
        """
        reduce method used for pickling
        """
        return (newObj, (type(self),), self.__getstate__())

    def __getstate__(self):
        """
        get state for pickling
        """
        return (self.data_arr,
                self.idx_array_arr,
                self.node_data_arr,
                self.node_bounds_arr,
                int(self.leaf_size),
                int(self.n_levels),
                int(self.n_nodes),
                int(self.n_trims),
                int(self.n_leaves),
                int(self.n_splits),
                int(self.n_calls),
                self.dist_metric,
                self.sample_weight)

    def __setstate__(self, state):
        """
        set state for pickling
        """
        self.data_arr = state[0]
        self.idx_array_arr = state[1]
        self.node_data_arr = state[2]
        self.node_bounds_arr = state[3]

        self.data = get_memview_DTYPE_2D(self.data_arr)
        self.idx_array = get_memview_ITYPE_1D(self.idx_array_arr)
        self.node_data = get_memview_NodeData_1D(self.node_data_arr)
        self.node_bounds = get_memview_DTYPE_3D(self.node_bounds_arr)

        self.leaf_size = state[4]
        self.n_levels = state[5]
        self.n_nodes = state[6]
        self.n_trims = state[7]
        self.n_leaves = state[8]
        self.n_splits = state[9]
        self.n_calls = state[10]
        self.dist_metric = state[11]
        self.euclidean = (self.dist_metric.__class__.__name__
                          == 'EuclideanDistance')
        self.sample_weight = state[12]

    def get_tree_stats(self):
        return (self.n_trims, self.n_leaves, self.n_splits)

    def reset_n_calls(self):
        self.n_calls = 0

    def get_n_calls(self):
        return self.n_calls

    def get_arrays(self):
        return (self.data_arr, self.idx_array_arr,
                self.node_data_arr, self.node_bounds_arr)

    cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
                             ITYPE_t size) nogil except -1:
        """Compute the distance between arrays x1 and x2"""
        self.n_calls += 1
        if self.euclidean:
            return euclidean_dist(x1, x2, size)
        else:
            return self.dist_metric.dist(x1, x2, size)

    cdef inline DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
                              ITYPE_t size) nogil except -1:
        """Compute the reduced distance between arrays x1 and x2.

        The reduced distance, defined for some metrics, is a quantity which
        is more efficient to compute than the distance, but preserves the
        relative rankings of the true distance.  For example, the reduced
        distance for the Euclidean metric is the squared-euclidean distance.
        """
        self.n_calls += 1
        if self.euclidean:
            return euclidean_rdist(x1, x2, size)
        else:
            return self.dist_metric.rdist(x1, x2, size)

    cdef int _recursive_build(self, ITYPE_t i_node, ITYPE_t idx_start,
                              ITYPE_t idx_end) except -1:
        """Recursively build the tree.

        Parameters
        ----------
        i_node : int
            the node for the current step
        idx_start, idx_end : int
            the bounding indices in the idx_array which define the points that
            belong to this node.
        """
        cdef ITYPE_t imax
        cdef ITYPE_t n_features = self.data.shape[1]
        cdef ITYPE_t n_points = idx_end - idx_start
        cdef ITYPE_t n_mid = n_points / 2
        cdef ITYPE_t* idx_array = &self.idx_array[idx_start]
        cdef DTYPE_t* data = &self.data[0, 0]

        # initialize node data
        init_node(self, i_node, idx_start, idx_end)

        if 2 * i_node + 1 >= self.n_nodes:
            self.node_data[i_node].is_leaf = True
            if idx_end - idx_start > 2 * self.leaf_size:
                # this shouldn't happen if our memory allocation is correct
                # we'll proactively prevent memory errors, but raise a
                # warning saying we're doing so.
                import warnings
                warnings.warn("Internal: memory layout is flawed: "
                              "not enough nodes allocated")

        elif idx_end - idx_start < 2:
            # again, this shouldn't happen if our memory allocation
            # is correct.  Raise a warning.
            import warnings
            warnings.warn("Internal: memory layout is flawed: "
                          "too many nodes allocated")
            self.node_data[i_node].is_leaf = True

        else:
            # split node and recursively construct child nodes.
            self.node_data[i_node].is_leaf = False
            i_max = find_node_split_dim(data, idx_array,
                                        n_features, n_points)
            partition_node_indices(data, idx_array, i_max, n_mid,
                                   n_features, n_points)
            self._recursive_build(2 * i_node + 1,
                                  idx_start, idx_start + n_mid)
            self._recursive_build(2 * i_node + 2,
                                  idx_start + n_mid, idx_end)

    def query(self, X, k=1, return_distance=True,
              dualtree=False, breadth_first=False,
              sort_results=True):
        """
        query(X, k=1, return_distance=True,
              dualtree=False, breadth_first=False)

        query the tree for the k nearest neighbors

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            An array of points to query
        k : integer  (default = 1)
            The number of nearest neighbors to return
        return_distance : boolean (default = True)
            if True, return a tuple (d, i) of distances and indices
            if False, return array i
        dualtree : boolean (default = False)
            if True, use the dual tree formalism for the query: a tree is
            built for the query points, and the pair of trees is used to
            efficiently search this space.  This can lead to better
            performance as the number of points grows large.
        breadth_first : boolean (default = False)
            if True, then query the nodes in a breadth-first manner.
            Otherwise, query the nodes in a depth-first manner.
        sort_results : boolean (default = True)
            if True, then distances and indices of each point are sorted
            on return, so that the first column contains the closest points.
            Otherwise, neighbors are returned in an arbitrary order.

        Returns
        -------
        i    : if return_distance == False
        (d,i) : if return_distance == True

        d : array of doubles - shape: x.shape[:-1] + (k,)
            each entry gives the list of distances to the
            neighbors of the corresponding point

        i : array of integers - shape: x.shape[:-1] + (k,)
            each entry gives the list of indices of
            neighbors of the corresponding point
        """
        # XXX: we should allow X to be a pre-built tree.
        X = check_array(X, dtype=DTYPE, order='C')

        if X.shape[X.ndim - 1] != self.data.shape[1]:
            raise ValueError("query data dimension must "
                             "match training data dimension")

        if self.data.shape[0] < k:
            raise ValueError("k must be less than or equal "
                             "to the number of training points")

        # flatten X, and save original shape information
        np_Xarr = X.reshape((-1, self.data.shape[1]))
        cdef DTYPE_t[:, ::1] Xarr = get_memview_DTYPE_2D(np_Xarr)
        cdef DTYPE_t reduced_dist_LB
        cdef ITYPE_t i
        cdef DTYPE_t* pt

        # initialize heap for neighbors
        cdef NeighborsHeap heap = NeighborsHeap(Xarr.shape[0], k)

        # node heap for breadth-first queries
        cdef NodeHeap nodeheap
        if breadth_first:
            nodeheap = NodeHeap(self.data.shape[0] // self.leaf_size)

        # bounds is needed for the dual tree algorithm
        cdef DTYPE_t[::1] bounds

        self.n_trims = 0
        self.n_leaves = 0
        self.n_splits = 0

        if dualtree:
            other = self.__class__(np_Xarr, metric=self.dist_metric,
                                   leaf_size=self.leaf_size)
            if breadth_first:
                self._query_dual_breadthfirst(other, heap, nodeheap)
            else:
                reduced_dist_LB = min_rdist_dual(self, 0, other, 0)
                bounds = np.full(other.node_data.shape[0], np.inf)
                self._query_dual_depthfirst(0, other, 0, bounds,
                                            heap, reduced_dist_LB)

        else:
            pt = &Xarr[0, 0]
            if breadth_first:
                for i in range(Xarr.shape[0]):
                    self._query_single_breadthfirst(pt, i, heap, nodeheap)
                    pt += Xarr.shape[1]
            else:
                with nogil:
                    for i in range(Xarr.shape[0]):
                        reduced_dist_LB = min_rdist(self, 0, pt)
                        self._query_single_depthfirst(0, pt, i, heap,
                                                      reduced_dist_LB)
                        pt += Xarr.shape[1]

        distances, indices = heap.get_arrays(sort=sort_results)
        distances = self.dist_metric.rdist_to_dist(distances)

        # deflatten results
        if return_distance:
            return (distances.reshape(X.shape[:X.ndim - 1] + (k,)),
                    indices.reshape(X.shape[:X.ndim - 1] + (k,)))
        else:
            return indices.reshape(X.shape[:X.ndim - 1] + (k,))

    def query_radius(self, X, r, int return_distance=False,
                     int count_only=False, int sort_results=False):
        """
        query_radius(self, X, r, count_only = False):

        query the tree for neighbors within a radius r

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            An array of points to query
        r : distance within which neighbors are returned
            r can be a single value, or an array of values of shape
            x.shape[:-1] if different radii are desired for each point.
        return_distance : boolean (default = False)
            if True,  return distances to neighbors of each point
            if False, return only neighbors
            Note that unlike the query() method, setting return_distance=True
            here adds to the computation time.  Not all distances need to be
            calculated explicitly for return_distance=False.  Results are
            not sorted by default: see ``sort_results`` keyword.
        count_only : boolean (default = False)
            if True,  return only the count of points within distance r
            if False, return the indices of all points within distance r
            If return_distance==True, setting count_only=True will
            result in an error.
        sort_results : boolean (default = False)
            if True, the distances and indices will be sorted before being
            returned.  If False, the results will not be sorted.  If
            return_distance == False, setting sort_results = True will
            result in an error.

        Returns
        -------
        count       : if count_only == True
        ind         : if count_only == False and return_distance == False
        (ind, dist) : if count_only == False and return_distance == True

        count : array of integers, shape = X.shape[:-1]
            each entry gives the number of neighbors within
            a distance r of the corresponding point.

        ind : array of objects, shape = X.shape[:-1]
            each element is a numpy integer array listing the indices of
            neighbors of the corresponding point.  Note that unlike
            the results of a k-neighbors query, the returned neighbors
            are not sorted by distance by default.

        dist : array of objects, shape = X.shape[:-1]
            each element is a numpy double array
            listing the distances corresponding to indices in i.
        """
        if count_only and return_distance:
            raise ValueError("count_only and return_distance "
                             "cannot both be true")

        if sort_results and not return_distance:
            raise ValueError("return_distance must be True "
                             "if sort_results is True")

        cdef ITYPE_t i, count_i = 0
        cdef ITYPE_t n_features = self.data.shape[1]
        cdef DTYPE_t[::1] dist_arr_i
        cdef ITYPE_t[::1] idx_arr_i, counts
        cdef DTYPE_t* pt
        cdef ITYPE_t** indices = NULL
        cdef DTYPE_t** distances = NULL

        # validate X and prepare for query
        X = check_array(X, dtype=DTYPE, order='C')

        if X.shape[X.ndim - 1] != self.data.shape[1]:
            raise ValueError("query data dimension must "
                             "match training data dimension")

        cdef DTYPE_t[:, ::1] Xarr =\
                get_memview_DTYPE_2D(X.reshape((-1, self.data.shape[1])))

        # prepare r for query
        r = np.asarray(r, dtype=DTYPE, order='C')
        r = np.atleast_1d(r)
        if r.shape == (1,):
            r = np.full(X.shape[:X.ndim - 1], r[0], dtype=DTYPE)
        else:
            if r.shape != X.shape[:X.ndim - 1]:
                raise ValueError("r must be broadcastable to X.shape")

        rarr_np = r.reshape(-1)  # store explicitly to keep in scope
        cdef DTYPE_t[::1] rarr = get_memview_DTYPE_1D(rarr_np)

        if not count_only:
            indices = <ITYPE_t**>calloc(Xarr.shape[0], sizeof(ITYPE_t*))
            if indices == NULL:
                raise MemoryError()
            if return_distance:
                distances = <DTYPE_t**>calloc(Xarr.shape[0], sizeof(DTYPE_t*))
                if distances == NULL:
                    free(indices)
                    raise MemoryError()

        np_idx_arr = np.zeros(self.data.shape[0], dtype=ITYPE)
        idx_arr_i = get_memview_ITYPE_1D(np_idx_arr)

        np_dist_arr = np.zeros(self.data.shape[0], dtype=DTYPE)
        dist_arr_i = get_memview_DTYPE_1D(np_dist_arr)

        counts_arr = np.zeros(Xarr.shape[0], dtype=ITYPE)
        counts = get_memview_ITYPE_1D(counts_arr)

        pt = &Xarr[0, 0]
        memory_error = False
        with nogil:
            for i in range(Xarr.shape[0]):
                counts[i] = self._query_radius_single(0, pt, rarr[i],
                                                      &idx_arr_i[0],
                                                      &dist_arr_i[0],
                                                      0, count_only,
                                                      return_distance)
                pt += n_features

                if count_only:
                    continue

                if sort_results:
                    _simultaneous_sort(&dist_arr_i[0], &idx_arr_i[0],
                                       counts[i])

                # equivalent to: indices[i] = np_idx_arr[:counts[i]].copy()
                indices[i] = <ITYPE_t*>malloc(counts[i] * sizeof(ITYPE_t))
                if indices[i] == NULL:
                    memory_error = True
                    break
                memcpy(indices[i], &idx_arr_i[0], counts[i] * sizeof(ITYPE_t))

                if return_distance:
                    # equivalent to: distances[i] = np_dist_arr[:counts[i]].copy()
                    distances[i] = <DTYPE_t*>malloc(counts[i] * sizeof(DTYPE_t))
                    if distances[i] == NULL:
                        memory_error = True
                        break
                    memcpy(distances[i], &dist_arr_i[0], counts[i] * sizeof(DTYPE_t))

        try:
            if memory_error:
                raise MemoryError()

            if count_only:
                # deflatten results
                return counts_arr.reshape(X.shape[:X.ndim - 1])
            elif return_distance:
                indices_npy = np.zeros(Xarr.shape[0], dtype='object')
                distances_npy = np.zeros(Xarr.shape[0], dtype='object')
                for i in range(Xarr.shape[0]):
                    # make a new numpy array that wraps the existing data
                    indices_npy[i] = np.PyArray_SimpleNewFromData(1, &counts[i], np.NPY_INTP, indices[i])
                    # make sure the data will be freed when the numpy array is garbage collected
                    PyArray_ENABLEFLAGS(indices_npy[i], np.NPY_OWNDATA)
                    # make sure the data is not freed twice
                    indices[i] = NULL

                    # make a new numpy array that wraps the existing data
                    distances_npy[i] = np.PyArray_SimpleNewFromData(1, &counts[i], np.NPY_DOUBLE, distances[i])
                    # make sure the data will be freed when the numpy array is garbage collected
                    PyArray_ENABLEFLAGS(distances_npy[i], np.NPY_OWNDATA)
                    # make sure the data is not freed twice
                    distances[i] = NULL

                # deflatten results
                return (indices_npy.reshape(X.shape[:X.ndim - 1]),
                        distances_npy.reshape(X.shape[:X.ndim - 1]))
            else:
                indices_npy = np.zeros(Xarr.shape[0], dtype='object')
                for i in range(Xarr.shape[0]):
                    # make a new numpy array that wraps the existing data
                    indices_npy[i] = np.PyArray_SimpleNewFromData(1, &counts[i], np.NPY_INTP, indices[i])
                    # make sure the data will be freed when the numpy array is garbage collected
                    PyArray_ENABLEFLAGS(indices_npy[i], np.NPY_OWNDATA)
                    # make sure the data is not freed twice
                    indices[i] = NULL

                # deflatten results
                return indices_npy.reshape(X.shape[:X.ndim - 1])
        except:
            # free any buffer that is not owned by a numpy array
            for i in range(Xarr.shape[0]):
                free(indices[i])
                if return_distance:
                    free(distances[i])
            raise
        finally:
            free(indices)
            free(distances)


    def kernel_density(self, X, h, kernel='gaussian',
                       atol=0, rtol=1E-8,
                       breadth_first=True, return_log=False):
        """
        kernel_density(self, X, h, kernel='gaussian', atol=0, rtol=1E-8,
                       breadth_first=True, return_log=False)

        Compute the kernel density estimate at points X with the given kernel,
        using the distance metric specified at tree creation.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            An array of points to query.  Last dimension should match dimension
            of training data.
        h : float
            the bandwidth of the kernel
        kernel : string
            specify the kernel to use.  Options are
            - 'gaussian'
            - 'tophat'
            - 'epanechnikov'
            - 'exponential'
            - 'linear'
            - 'cosine'
            Default is kernel = 'gaussian'
        atol, rtol : float (default = 0)
            Specify the desired relative and absolute tolerance of the result.
            If the true result is K_true, then the returned result K_ret
            satisfies ``abs(K_true - K_ret) < atol + rtol * K_ret``
            The default is zero (i.e. machine precision) for both.
        breadth_first : boolean (default = False)
            if True, use a breadth-first search.  If False (default) use a
            depth-first search.  Breadth-first is generally faster for
            compact kernels and/or high tolerances.
        return_log : boolean (default = False)
            return the logarithm of the result.  This can be more accurate
            than returning the result itself for narrow kernels.

        Returns
        -------
        density : ndarray
            The array of (log)-density evaluations, shape = X.shape[:-1]
        """
        cdef DTYPE_t h_c = h
        cdef DTYPE_t log_atol = log(atol)
        cdef DTYPE_t log_rtol = log(rtol)
        cdef DTYPE_t log_min_bound, log_max_bound, log_bound_spread
        cdef DTYPE_t dist_LB = 0, dist_UB = 0

        cdef ITYPE_t n_samples = self.data.shape[0]
        cdef ITYPE_t n_features = self.data.shape[1]
        cdef ITYPE_t i
        cdef KernelType kernel_c

        # validate kernel
        if kernel == 'gaussian':
            kernel_c = GAUSSIAN_KERNEL
        elif kernel == 'tophat':
            kernel_c = TOPHAT_KERNEL
        elif kernel == 'epanechnikov':
            kernel_c = EPANECHNIKOV_KERNEL
        elif kernel == 'exponential':
            kernel_c = EXPONENTIAL_KERNEL
        elif kernel == 'linear':
            kernel_c = LINEAR_KERNEL
        elif kernel == 'cosine':
            kernel_c = COSINE_KERNEL
        else:
            raise ValueError("kernel = '%s' not recognized" % kernel)

        cdef DTYPE_t log_knorm = _log_kernel_norm(h_c, n_features, kernel_c)

        # validate X and prepare for query
        X = check_array(X, dtype=DTYPE, order='C')

        if X.shape[X.ndim - 1] != n_features:
            raise ValueError("query data dimension must "
                             "match training data dimension")
        Xarr_np = X.reshape((-1, n_features))
        cdef DTYPE_t[:, ::1] Xarr = get_memview_DTYPE_2D(Xarr_np)

        log_density_arr = np.zeros(Xarr.shape[0], dtype=DTYPE)
        cdef DTYPE_t[::1] log_density = get_memview_DTYPE_1D(log_density_arr)

        cdef DTYPE_t* pt = &Xarr[0, 0]

        cdef NodeHeap nodeheap
        if breadth_first:
            nodeheap = NodeHeap(self.data.shape[0] // self.leaf_size)
        cdef DTYPE_t[::1] node_log_min_bounds
        cdef DTYPE_t[::1] node_bound_widths
        # TODO: implement dual tree approach.
        #       this is difficult because of the need to cache values
        #       computed between node pairs.
        if breadth_first:
            node_log_min_bounds_arr = np.full(self.n_nodes, -np.inf)
            node_log_min_bounds = get_memview_DTYPE_1D(node_log_min_bounds_arr)
            node_bound_widths_arr = np.zeros(self.n_nodes)
            node_bound_widths = get_memview_DTYPE_1D(node_bound_widths_arr)
            for i in range(Xarr.shape[0]):
                log_density[i] = self._kde_single_breadthfirst(
                                            pt, kernel_c, h_c,
                                            log_knorm, log_atol, log_rtol,
                                            nodeheap,
                                            &node_log_min_bounds[0],
                                            &node_bound_widths[0])
                pt += n_features
        else:
            for i in range(Xarr.shape[0]):
                min_max_dist(self, 0, pt, &dist_LB, &dist_UB)
                # compute max & min bounds on density within top node
                log_min_bound = (log(self.sum_weight) +
                                 compute_log_kernel(dist_UB,
                                                    h_c, kernel_c))
                log_max_bound = (log(self.sum_weight) +
                                 compute_log_kernel(dist_LB,
                                                    h_c, kernel_c))
                log_bound_spread = logsubexp(log_max_bound, log_min_bound)
                self._kde_single_depthfirst(0, pt, kernel_c, h_c,
                                            log_knorm, log_atol, log_rtol,
                                            log_min_bound,
                                            log_bound_spread,
                                            &log_min_bound,
                                            &log_bound_spread)
                log_density[i] = logaddexp(log_min_bound,
                                           log_bound_spread - log(2))
                pt += n_features

        # normalize the results
        for i in range(log_density.shape[0]):
            log_density[i] += log_knorm

        log_density_arr = log_density_arr.reshape(X.shape[:X.ndim - 1])

        if return_log:
            return log_density_arr
        else:
            return np.exp(log_density_arr)

    def two_point_correlation(self, X, r, dualtree=False):
        """Compute the two-point correlation function

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            An array of points to query.  Last dimension should match dimension
            of training data.
        r : array_like
            A one-dimensional array of distances
        dualtree : boolean (default = False)
            If true, use a dualtree algorithm.  Otherwise, use a single-tree
            algorithm.  Dual tree algorithms can have better scaling for
            large N.

        Returns
        -------
        counts : ndarray
            counts[i] contains the number of pairs of points with distance
            less than or equal to r[i]
        """
        cdef ITYPE_t n_features = self.data.shape[1]
        cdef ITYPE_t i

        # validate X and prepare for query
        X = check_array(X, dtype=DTYPE, order='C')

        if X.shape[X.ndim - 1] != self.data.shape[1]:
            raise ValueError("query data dimension must "
                             "match training data dimension")

        np_Xarr = X.reshape((-1, self.data.shape[1]))
        cdef DTYPE_t[:, ::1] Xarr = get_memview_DTYPE_2D(np_Xarr)

        # prepare r for query
        r = np.asarray(r, dtype=DTYPE, order='C')
        r = np.atleast_1d(r)
        if r.ndim != 1:
            raise ValueError("r must be a 1-dimensional array")
        i_rsort = np.argsort(r)
        rarr_np = r[i_rsort]  # needed to keep memory in scope
        cdef DTYPE_t[::1] rarr = get_memview_DTYPE_1D(rarr_np)

        # create array to hold counts
        count = np.zeros(r.shape[0], dtype=ITYPE)
        cdef ITYPE_t[::1] carr = get_memview_ITYPE_1D(count)

        cdef DTYPE_t* pt = &Xarr[0, 0]

        if dualtree:
            other = self.__class__(Xarr, metric=self.dist_metric,
                                   leaf_size=self.leaf_size)
            self._two_point_dual(0, other, 0, &rarr[0], &carr[0],
                                 0, rarr.shape[0])
        else:
            for i in range(Xarr.shape[0]):
                self._two_point_single(0, pt, &rarr[0], &carr[0],
                                       0, rarr.shape[0])
                pt += n_features

        return count

    cdef int _query_single_depthfirst(self, ITYPE_t i_node,
                                      DTYPE_t* pt, ITYPE_t i_pt,
                                      NeighborsHeap heap,
                                      DTYPE_t reduced_dist_LB) nogil except -1:
        """Recursive Single-tree k-neighbors query, depth-first approach"""
        cdef NodeData_t node_info = self.node_data[i_node]

        cdef DTYPE_t dist_pt, reduced_dist_LB_1, reduced_dist_LB_2
        cdef ITYPE_t i, i1, i2

        cdef DTYPE_t* data = &self.data[0, 0]

        #------------------------------------------------------------
        # Case 1: query point is outside node radius:
        #         trim it from the query
        if reduced_dist_LB > heap.largest(i_pt):
            self.n_trims += 1

        #------------------------------------------------------------
        # Case 2: this is a leaf node.  Update set of nearby points
        elif node_info.is_leaf:
            self.n_leaves += 1
            for i in range(node_info.idx_start, node_info.idx_end):
                dist_pt = self.rdist(pt,
                                     &self.data[self.idx_array[i], 0],
                                     self.data.shape[1])
                if dist_pt < heap.largest(i_pt):
                    heap._push(i_pt, dist_pt, self.idx_array[i])

        #------------------------------------------------------------
        # Case 3: Node is not a leaf.  Recursively query subnodes
        #         starting with the closest
        else:
            self.n_splits += 1
            i1 = 2 * i_node + 1
            i2 = i1 + 1
            reduced_dist_LB_1 = min_rdist(self, i1, pt)
            reduced_dist_LB_2 = min_rdist(self, i2, pt)

            # recursively query subnodes
            if reduced_dist_LB_1 <= reduced_dist_LB_2:
                self._query_single_depthfirst(i1, pt, i_pt, heap,
                                              reduced_dist_LB_1)
                self._query_single_depthfirst(i2, pt, i_pt, heap,
                                              reduced_dist_LB_2)
            else:
                self._query_single_depthfirst(i2, pt, i_pt, heap,
                                              reduced_dist_LB_2)
                self._query_single_depthfirst(i1, pt, i_pt, heap,
                                              reduced_dist_LB_1)
        return 0

    cdef int _query_single_breadthfirst(self, DTYPE_t* pt,
                                        ITYPE_t i_pt,
                                        NeighborsHeap heap,
                                        NodeHeap nodeheap) except -1:
        """Non-recursive single-tree k-neighbors query, breadth-first search"""
        cdef ITYPE_t i, i_node
        cdef DTYPE_t dist_pt, reduced_dist_LB
        cdef NodeData_t* node_data = &self.node_data[0]
        cdef DTYPE_t* data = &self.data[0, 0]

        # Set up the node heap and push the head node onto it
        cdef NodeHeapData_t nodeheap_item
        nodeheap_item.val = min_rdist(self, 0, pt)
        nodeheap_item.i1 = 0
        nodeheap.push(nodeheap_item)

        while nodeheap.n > 0:
            nodeheap_item = nodeheap.pop()
            reduced_dist_LB = nodeheap_item.val
            i_node = nodeheap_item.i1
            node_info = node_data[i_node]

            #------------------------------------------------------------
            # Case 1: query point is outside node radius:
            #         trim it from the query
            if reduced_dist_LB > heap.largest(i_pt):
                self.n_trims += 1

            #------------------------------------------------------------
            # Case 2: this is a leaf node.  Update set of nearby points
            elif node_data[i_node].is_leaf:
                self.n_leaves += 1
                for i in range(node_data[i_node].idx_start,
                               node_data[i_node].idx_end):
                    dist_pt = self.rdist(pt,
                                         &self.data[self.idx_array[i], 0],
                                         self.data.shape[1])
                    if dist_pt < heap.largest(i_pt):
                        heap._push(i_pt, dist_pt, self.idx_array[i])

            #------------------------------------------------------------
            # Case 3: Node is not a leaf.  Add subnodes to the node heap
            else:
                self.n_splits += 1
                for i in range(2 * i_node + 1, 2 * i_node + 3):
                    nodeheap_item.i1 = i
                    nodeheap_item.val = min_rdist(self, i, pt)
                    nodeheap.push(nodeheap_item)
        return 0

    cdef int _query_dual_depthfirst(self, ITYPE_t i_node1,
                                    BinaryTree other, ITYPE_t i_node2,
                                    DTYPE_t[::1] bounds,
                                    NeighborsHeap heap,
                                    DTYPE_t reduced_dist_LB) except -1:
        """Recursive dual-tree k-neighbors query, depth-first"""
        # note that the array `bounds` is maintained such that
        # bounds[i] is the largest distance among any of the
        # current neighbors in node i of the other tree.
        cdef NodeData_t node_info1 = self.node_data[i_node1]
        cdef NodeData_t node_info2 = other.node_data[i_node2]

        cdef DTYPE_t* data1 = &self.data[0, 0]
        cdef DTYPE_t* data2 = &other.data[0, 0]
        cdef ITYPE_t n_features = self.data.shape[1]

        cdef DTYPE_t bound_max, dist_pt, reduced_dist_LB1, reduced_dist_LB2
        cdef ITYPE_t i1, i2, i_pt, i_parent

        #------------------------------------------------------------
        # Case 1: nodes are further apart than the current bound:
        #         trim both from the query
        if reduced_dist_LB > bounds[i_node2]:
            pass

        #------------------------------------------------------------
        # Case 2: both nodes are leaves:
        #         do a brute-force search comparing all pairs
        elif node_info1.is_leaf and node_info2.is_leaf:
            bounds[i_node2] = 0

            for i2 in range(node_info2.idx_start, node_info2.idx_end):
                i_pt = other.idx_array[i2]

                if heap.largest(i_pt) <= reduced_dist_LB:
                    continue

                for i1 in range(node_info1.idx_start, node_info1.idx_end):
                    dist_pt = self.rdist(
                        data1 + n_features * self.idx_array[i1],
                        data2 + n_features * i_pt,
                        n_features)
                    if dist_pt < heap.largest(i_pt):
                        heap._push(i_pt, dist_pt, self.idx_array[i1])

                # keep track of node bound
                bounds[i_node2] = fmax(bounds[i_node2],
                                       heap.largest(i_pt))

            # update bounds up the tree
            while i_node2 > 0:
                i_parent = (i_node2 - 1) // 2
                bound_max = fmax(bounds[2 * i_parent + 1],
                                 bounds[2 * i_parent + 2])
                if bound_max < bounds[i_parent]:
                    bounds[i_parent] = bound_max
                    i_node2 = i_parent
                else:
                    break

        #------------------------------------------------------------
        # Case 3a: node 1 is a leaf or is smaller: split node 2 and
        #          recursively query, starting with the nearest subnode
        elif node_info1.is_leaf or (not node_info2.is_leaf
                                    and node_info2.radius > node_info1.radius):
            reduced_dist_LB1 = min_rdist_dual(self, i_node1,
                                              other, 2 * i_node2 + 1)
            reduced_dist_LB2 = min_rdist_dual(self, i_node1,
                                              other, 2 * i_node2 + 2)

            if reduced_dist_LB1 < reduced_dist_LB2:
                self._query_dual_depthfirst(i_node1, other, 2 * i_node2 + 1,
                                            bounds, heap, reduced_dist_LB1)
                self._query_dual_depthfirst(i_node1, other, 2 * i_node2 + 2,
                                            bounds, heap, reduced_dist_LB2)
            else:
                self._query_dual_depthfirst(i_node1, other, 2 * i_node2 + 2,
                                            bounds, heap, reduced_dist_LB2)
                self._query_dual_depthfirst(i_node1, other, 2 * i_node2 + 1,
                                            bounds, heap, reduced_dist_LB1)

        #------------------------------------------------------------
        # Case 3b: node 2 is a leaf or is smaller: split node 1 and
        #          recursively query, starting with the nearest subnode
        else:
            reduced_dist_LB1 = min_rdist_dual(self, 2 * i_node1 + 1,
                                              other, i_node2)
            reduced_dist_LB2 = min_rdist_dual(self, 2 * i_node1 + 2,
                                              other, i_node2)

            if reduced_dist_LB1 < reduced_dist_LB2:
                self._query_dual_depthfirst(2 * i_node1 + 1, other, i_node2,
                                            bounds, heap, reduced_dist_LB1)
                self._query_dual_depthfirst(2 * i_node1 + 2, other, i_node2,
                                            bounds, heap, reduced_dist_LB2)
            else:
                self._query_dual_depthfirst(2 * i_node1 + 2, other, i_node2,
                                            bounds, heap, reduced_dist_LB2)
                self._query_dual_depthfirst(2 * i_node1 + 1, other, i_node2,
                                            bounds, heap, reduced_dist_LB1)
        return 0

    cdef int _query_dual_breadthfirst(self, BinaryTree other,
                                      NeighborsHeap heap,
                                      NodeHeap nodeheap) except -1:
        """Non-recursive dual-tree k-neighbors query, breadth-first"""
        cdef ITYPE_t i, i1, i2, i_node1, i_node2, i_pt
        cdef DTYPE_t dist_pt, reduced_dist_LB
        cdef DTYPE_t[::1] bounds = np.full(other.node_data.shape[0], np.inf)
        cdef NodeData_t* node_data1 = &self.node_data[0]
        cdef NodeData_t* node_data2 = &other.node_data[0]
        cdef NodeData_t node_info1, node_info2
        cdef DTYPE_t* data1 = &self.data[0, 0]
        cdef DTYPE_t* data2 = &other.data[0, 0]
        cdef ITYPE_t n_features = self.data.shape[1]

        # Set up the node heap and push the head nodes onto it
        cdef NodeHeapData_t nodeheap_item
        nodeheap_item.val = min_rdist_dual(self, 0, other, 0)
        nodeheap_item.i1 = 0
        nodeheap_item.i2 = 0
        nodeheap.push(nodeheap_item)

        while nodeheap.n > 0:
            nodeheap_item = nodeheap.pop()
            reduced_dist_LB = nodeheap_item.val
            i_node1 = nodeheap_item.i1
            i_node2 = nodeheap_item.i2

            node_info1 = node_data1[i_node1]
            node_info2 = node_data2[i_node2]

            #------------------------------------------------------------
            # Case 1: nodes are further apart than the current bound:
            #         trim both from the query
            if reduced_dist_LB > bounds[i_node2]:
                pass

            #------------------------------------------------------------
            # Case 2: both nodes are leaves:
            #         do a brute-force search comparing all pairs
            elif node_info1.is_leaf and node_info2.is_leaf:
                bounds[i_node2] = -1

                for i2 in range(node_info2.idx_start, node_info2.idx_end):
                    i_pt = other.idx_array[i2]

                    if heap.largest(i_pt) <= reduced_dist_LB:
                        continue

                    for i1 in range(node_info1.idx_start, node_info1.idx_end):
                        dist_pt = self.rdist(
                            data1 + n_features * self.idx_array[i1],
                            data2 + n_features * i_pt,
                            n_features)
                        if dist_pt < heap.largest(i_pt):
                            heap._push(i_pt, dist_pt, self.idx_array[i1])

                    # keep track of node bound
                    bounds[i_node2] = fmax(bounds[i_node2],
                                           heap.largest(i_pt))

            #------------------------------------------------------------
            # Case 3a: node 1 is a leaf or is smaller: split node 2 and
            #          recursively query, starting with the nearest subnode
            elif node_info1.is_leaf or (not node_info2.is_leaf
                                        and (node_info2.radius
                                             > node_info1.radius)):
                nodeheap_item.i1 = i_node1
                for i2 in range(2 * i_node2 + 1, 2 * i_node2 + 3):
                    nodeheap_item.i2 = i2
                    nodeheap_item.val = min_rdist_dual(self, i_node1,
                                                       other, i2)
                    nodeheap.push(nodeheap_item)

            #------------------------------------------------------------
            # Case 3b: node 2 is a leaf or is smaller: split node 1 and
            #          recursively query, starting with the nearest subnode
            else:
                nodeheap_item.i2 = i_node2
                for i1 in range(2 * i_node1 + 1, 2 * i_node1 + 3):
                    nodeheap_item.i1 = i1
                    nodeheap_item.val = min_rdist_dual(self, i1,
                                                       other, i_node2)
                    nodeheap.push(nodeheap_item)
        return 0

    cdef ITYPE_t _query_radius_single(self,
                                      ITYPE_t i_node,
                                      DTYPE_t* pt, DTYPE_t r,
                                      ITYPE_t* indices,
                                      DTYPE_t* distances,
                                      ITYPE_t count,
                                      int count_only,
                                      int return_distance) nogil:
        """recursive single-tree radius query, depth-first"""
        cdef DTYPE_t* data = &self.data[0, 0]
        cdef ITYPE_t* idx_array = &self.idx_array[0]
        cdef ITYPE_t n_features = self.data.shape[1]
        cdef NodeData_t node_info = self.node_data[i_node]

        cdef ITYPE_t i
        cdef DTYPE_t reduced_r

        cdef DTYPE_t dist_pt, dist_LB = 0, dist_UB = 0
        min_max_dist(self, i_node, pt, &dist_LB, &dist_UB)

        #------------------------------------------------------------
        # Case 1: all node points are outside distance r.
        #         prune this branch.
        if dist_LB > r:
            pass

        #------------------------------------------------------------
        # Case 2: all node points are within distance r
        #         add all points to neighbors
        elif dist_UB <= r:
            if count_only:
                count += (node_info.idx_end - node_info.idx_start)
            else:
                for i in range(node_info.idx_start, node_info.idx_end):
                    if (count < 0) or (count >= self.data.shape[0]):
                        return -1
                    indices[count] = idx_array[i]
                    if return_distance:
                        distances[count] = self.dist(pt, (data + n_features
                                                          * idx_array[i]),
                                                     n_features)
                    count += 1

        #------------------------------------------------------------
        # Case 3: this is a leaf node.  Go through all points to
        #         determine if they fall within radius
        elif node_info.is_leaf:
            reduced_r = self.dist_metric._dist_to_rdist(r)

            for i in range(node_info.idx_start, node_info.idx_end):
                dist_pt = self.rdist(pt, (data + n_features * idx_array[i]),
                                     n_features)
                if dist_pt <= reduced_r:
                    if (count < 0) or (count >= self.data.shape[0]):
                        return -1
                    if count_only:
                        pass
                    else:
                        indices[count] = idx_array[i]
                        if return_distance:
                            distances[count] =\
                                self.dist_metric._rdist_to_dist(dist_pt)
                    count += 1

        #------------------------------------------------------------
        # Case 4: Node is not a leaf.  Recursively query subnodes
        else:
            count = self._query_radius_single(2 * i_node + 1, pt, r,
                                              indices, distances, count,
                                              count_only, return_distance)
            count = self._query_radius_single(2 * i_node + 2, pt, r,
                                              indices, distances, count,
                                              count_only, return_distance)

        return count

    cdef DTYPE_t _kde_single_breadthfirst(self, DTYPE_t* pt,
                                          KernelType kernel, DTYPE_t h,
                                          DTYPE_t log_knorm,
                                          DTYPE_t log_atol, DTYPE_t log_rtol,
                                          NodeHeap nodeheap,
                                          DTYPE_t* node_log_min_bounds,
                                          DTYPE_t* node_log_bound_spreads):
        """non-recursive single-tree kernel density estimation"""
        # For the given point, node_log_min_bounds and node_log_bound_spreads
        # will encode the current bounds on the density between the point
        # and the associated node.
        # The variables global_log_min_bound and global_log_bound_spread
        # keep track of the global bounds on density.  The procedure here is
        # to split nodes, updating these bounds, until the bounds are within
        # atol & rtol.
        cdef ITYPE_t i, i1, i2, i_node
        cdef DTYPE_t N1, N2
        cdef DTYPE_t global_log_min_bound, global_log_bound_spread
        cdef DTYPE_t global_log_max_bound

        cdef DTYPE_t* data = &self.data[0, 0]
        cdef bint with_sample_weight = self.sample_weight is not None
        cdef DTYPE_t* sample_weight
        if with_sample_weight:
            sample_weight = &self.sample_weight[0]
        cdef ITYPE_t* idx_array = &self.idx_array[0]
        cdef NodeData_t* node_data = &self.node_data[0]
        cdef DTYPE_t N
        cdef DTYPE_t log_weight
        if with_sample_weight:
            N = self.sum_weight
        else:
            N = <DTYPE_t> self.data.shape[0]
        cdef ITYPE_t n_features = self.data.shape[1]

        cdef NodeData_t node_info
        cdef DTYPE_t dist_pt, log_density
        cdef DTYPE_t dist_LB_1 = 0, dist_LB_2 = 0
        cdef DTYPE_t dist_UB_1 = 0, dist_UB_2 = 0

        cdef DTYPE_t dist_UB, dist_LB

        # push the top node to the heap
        cdef NodeHeapData_t nodeheap_item
        nodeheap_item.val = min_dist(self, 0, pt)
        nodeheap_item.i1 = 0
        nodeheap.push(nodeheap_item)

        global_log_min_bound = log(N) + compute_log_kernel(max_dist(self,
                                                                    0, pt),
                                                           h, kernel)
        global_log_max_bound = log(N) + compute_log_kernel(nodeheap_item.val,
                                                           h, kernel)
        global_log_bound_spread = logsubexp(global_log_max_bound,
                                            global_log_min_bound)

        node_log_min_bounds[0] = global_log_min_bound
        node_log_bound_spreads[0] = global_log_bound_spread

        while nodeheap.n > 0:
            nodeheap_item = nodeheap.pop()
            i_node = nodeheap_item.i1

            node_info = node_data[i_node]
            if with_sample_weight:
                N1 = _total_node_weight(node_data, sample_weight,
                                        idx_array, i_node)
            else:
                N1 = node_info.idx_end - node_info.idx_start

            #------------------------------------------------------------
            # Case 1: local bounds are equal to within per-point tolerance.
            if (log_knorm + node_log_bound_spreads[i_node] - log(N1) + log(N)
                <= logaddexp(log_atol, (log_rtol + log_knorm
                                        + node_log_min_bounds[i_node]))):
                pass

            #------------------------------------------------------------
            # Case 2: global bounds are within rtol & atol.
            elif (log_knorm + global_log_bound_spread
                  <= logaddexp(log_atol,
                               log_rtol + log_knorm + global_log_min_bound)):
                break

            #------------------------------------------------------------
            # Case 3: node is a leaf. Count contributions from all points
            elif node_info.is_leaf:
                global_log_min_bound =\
                    logsubexp(global_log_min_bound,
                              node_log_min_bounds[i_node])
                global_log_bound_spread =\
                    logsubexp(global_log_bound_spread,
                              node_log_bound_spreads[i_node])
                for i in range(node_info.idx_start, node_info.idx_end):
                    dist_pt = self.dist(pt, data + n_features * idx_array[i],
                                        n_features)
                    log_density = compute_log_kernel(dist_pt, h, kernel)
                    if with_sample_weight:
                        log_weight = np.log(sample_weight[idx_array[i]])
                    else:
                        log_weight = 0.
                    global_log_min_bound = logaddexp(global_log_min_bound,
                                                     log_density + log_weight)

            #------------------------------------------------------------
            # Case 4: split node and query subnodes
            else:
                i1 = 2 * i_node + 1
                i2 = 2 * i_node + 2

                if with_sample_weight:
                    N1 = _total_node_weight(node_data, sample_weight,
                                            idx_array, i1)
                    N2 = _total_node_weight(node_data, sample_weight,
                                            idx_array, i2)
                else:
                    N1 = node_data[i1].idx_end - node_data[i1].idx_start
                    N2 = node_data[i2].idx_end - node_data[i2].idx_start

                min_max_dist(self, i1, pt, &dist_LB_1, &dist_UB_1)
                min_max_dist(self, i2, pt, &dist_LB_2, &dist_UB_2)

                node_log_min_bounds[i1] = (log(N1) +
                                           compute_log_kernel(dist_UB_1,
                                                              h, kernel))
                node_log_bound_spreads[i1] = (log(N1) +
                                              compute_log_kernel(dist_LB_1,
                                                                 h, kernel))

                node_log_min_bounds[i2] = (log(N2) +
                                           compute_log_kernel(dist_UB_2,
                                                              h, kernel))
                node_log_bound_spreads[i2] = (log(N2) +
                                              compute_log_kernel(dist_LB_2,
                                                                 h, kernel))

                global_log_min_bound = logsubexp(global_log_min_bound,
                                                 node_log_min_bounds[i_node])
                global_log_min_bound = logaddexp(global_log_min_bound,
                                                 node_log_min_bounds[i1])
                global_log_min_bound = logaddexp(global_log_min_bound,
                                                 node_log_min_bounds[i2])

                global_log_bound_spread =\
                    logsubexp(global_log_bound_spread,
                              node_log_bound_spreads[i_node])
                global_log_bound_spread = logaddexp(global_log_bound_spread,
                                                    node_log_bound_spreads[i1])
                global_log_bound_spread = logaddexp(global_log_bound_spread,
                                                    node_log_bound_spreads[i2])

                # TODO: rank by the spread rather than the distance?
                nodeheap_item.val = dist_LB_1
                nodeheap_item.i1 = i1
                nodeheap.push(nodeheap_item)

                nodeheap_item.val = dist_LB_2
                nodeheap_item.i1 = i2
                nodeheap.push(nodeheap_item)

        nodeheap.clear()
        return logaddexp(global_log_min_bound,
                         global_log_bound_spread - log(2))

    cdef int _kde_single_depthfirst(
                   self, ITYPE_t i_node, DTYPE_t* pt,
                   KernelType kernel, DTYPE_t h,
                   DTYPE_t log_knorm,
                   DTYPE_t log_atol, DTYPE_t log_rtol,
                   DTYPE_t local_log_min_bound,
                   DTYPE_t local_log_bound_spread,
                   DTYPE_t* global_log_min_bound,
                   DTYPE_t* global_log_bound_spread) except -1:
        """recursive single-tree kernel density estimate, depth-first"""
        # For the given point, local_min_bound and local_max_bound give the
        # minimum and maximum density for the current node, while
        # global_min_bound and global_max_bound give the minimum and maximum
        # density over the entire tree.  We recurse down until global_min_bound
        # and global_max_bound are within rtol and atol.
        cdef ITYPE_t i, i1, i2, iw, start, end
        cdef DTYPE_t N1, N2

        cdef DTYPE_t* data = &self.data[0, 0]
        cdef NodeData_t* node_data = &self.node_data[0]
        cdef bint with_sample_weight = self.sample_weight is not None
        cdef DTYPE_t* sample_weight
        cdef DTYPE_t log_weight
        if with_sample_weight:
            sample_weight = &self.sample_weight[0]
        cdef ITYPE_t* idx_array = &self.idx_array[0]
        cdef ITYPE_t n_features = self.data.shape[1]

        cdef NodeData_t node_info = self.node_data[i_node]
        cdef DTYPE_t dist_pt, log_dens_contribution

        cdef DTYPE_t child1_log_min_bound, child2_log_min_bound
        cdef DTYPE_t child1_log_bound_spread, child2_log_bound_spread
        cdef DTYPE_t dist_UB = 0, dist_LB = 0

        if with_sample_weight:
            N1  = _total_node_weight(node_data, sample_weight,
                                     idx_array, i_node)
            N2 = self.sum_weight
        else:
            N1 = <DTYPE_t>(node_info.idx_end - node_info.idx_start)
            N2 = <DTYPE_t>self.data.shape[0]

        #------------------------------------------------------------
        # Case 1: local bounds are equal to within errors.  Return
        if (log_knorm + local_log_bound_spread - log(N1) + log(N2)
            <= logaddexp(log_atol, (log_rtol + log_knorm
                                    + local_log_min_bound))):
            pass

        #------------------------------------------------------------
        # Case 2: global bounds are within rtol & atol. Return
        elif (log_knorm + global_log_bound_spread[0]
            <= logaddexp(log_atol, (log_rtol + log_knorm
                                    + global_log_min_bound[0]))):
            pass

        #------------------------------------------------------------
        # Case 3: node is a leaf. Count contributions from all points
        elif node_info.is_leaf:
            global_log_min_bound[0] = logsubexp(global_log_min_bound[0],
                                                local_log_min_bound)
            global_log_bound_spread[0] = logsubexp(global_log_bound_spread[0],
                                                   local_log_bound_spread)
            for i in range(node_info.idx_start, node_info.idx_end):
                dist_pt = self.dist(pt, (data + n_features * idx_array[i]),
                                    n_features)
                log_dens_contribution = compute_log_kernel(dist_pt, h, kernel)
                if with_sample_weight:
                    log_weight = np.log(sample_weight[idx_array[i]])
                else:
                    log_weight = 0.
                global_log_min_bound[0] = logaddexp(global_log_min_bound[0],
                                                    (log_dens_contribution +
                                                     log_weight))

        #------------------------------------------------------------
        # Case 4: split node and query subnodes
        else:
            i1 = 2 * i_node + 1
            i2 = 2 * i_node + 2

            if with_sample_weight:
                N1 = _total_node_weight(node_data, sample_weight,
                                        idx_array, i1)
                N2 = _total_node_weight(node_data, sample_weight,
                                        idx_array, i2)
            else:
                N1 = <DTYPE_t>(self.node_data[i1].idx_end - self.node_data[i1].idx_start)
                N2 = <DTYPE_t>(self.node_data[i2].idx_end - self.node_data[i2].idx_start)

            min_max_dist(self, i1, pt, &dist_LB, &dist_UB)
            child1_log_min_bound = log(N1) + compute_log_kernel(dist_UB, h,
                                                                kernel)
            child1_log_bound_spread = logsubexp(log(N1) +
                                                compute_log_kernel(dist_LB, h,
                                                                   kernel),
                                                child1_log_min_bound)

            min_max_dist(self, i2, pt, &dist_LB, &dist_UB)
            child2_log_min_bound = log(N2) + compute_log_kernel(dist_UB, h,
                                                                kernel)
            child2_log_bound_spread = logsubexp(log(N2) +
                                                compute_log_kernel(dist_LB, h,
                                                                   kernel),
                                                child2_log_min_bound)

            global_log_min_bound[0] = logsubexp(global_log_min_bound[0],
                                                local_log_min_bound)
            global_log_min_bound[0] = logaddexp(global_log_min_bound[0],
                                                child1_log_min_bound)
            global_log_min_bound[0] = logaddexp(global_log_min_bound[0],
                                                child2_log_min_bound)

            global_log_bound_spread[0] = logsubexp(global_log_bound_spread[0],
                                                   local_log_bound_spread)
            global_log_bound_spread[0] = logaddexp(global_log_bound_spread[0],
                                                   child1_log_bound_spread)
            global_log_bound_spread[0] = logaddexp(global_log_bound_spread[0],
                                                   child2_log_bound_spread)

            self._kde_single_depthfirst(i1, pt, kernel, h, log_knorm,
                                        log_atol, log_rtol,
                                        child1_log_min_bound,
                                        child1_log_bound_spread,
                                        global_log_min_bound,
                                        global_log_bound_spread)
            self._kde_single_depthfirst(i2, pt, kernel, h, log_knorm,
                                        log_atol, log_rtol,
                                        child2_log_min_bound,
                                        child2_log_bound_spread,
                                        global_log_min_bound,
                                        global_log_bound_spread)
        return 0

    cdef int _two_point_single(self, ITYPE_t i_node, DTYPE_t* pt, DTYPE_t* r,
                               ITYPE_t* count, ITYPE_t i_min,
                               ITYPE_t i_max) except -1:
        """recursive single-tree two-point correlation function query"""
        cdef DTYPE_t* data = &self.data[0, 0]
        cdef ITYPE_t* idx_array = &self.idx_array[0]
        cdef ITYPE_t n_features = self.data.shape[1]
        cdef NodeData_t node_info = self.node_data[i_node]

        cdef ITYPE_t i, j, Npts
        cdef DTYPE_t reduced_r

        cdef DTYPE_t dist_pt, dist_LB = 0, dist_UB = 0
        min_max_dist(self, i_node, pt, &dist_LB, &dist_UB)

        #------------------------------------------------------------
        # Go through bounds and check for cuts
        while i_min < i_max:
            if dist_LB > r[i_min]:
                i_min += 1
            else:
                break

        while i_max > i_min:
            Npts = (node_info.idx_end - node_info.idx_start)
            if dist_UB <= r[i_max - 1]:
                count[i_max - 1] += Npts
                i_max -= 1
            else:
                break

        if i_min < i_max:
            # If node is a leaf, go through all points
            if node_info.is_leaf:
                for i in range(node_info.idx_start, node_info.idx_end):
                    dist_pt = self.dist(pt, (data + n_features * idx_array[i]),
                                        n_features)
                    j = i_max - 1
                    while (j >= i_min) and (dist_pt <= r[j]):
                        count[j] += 1
                        j -= 1

            else:
                self._two_point_single(2 * i_node + 1, pt, r,
                                       count, i_min, i_max)
                self._two_point_single(2 * i_node + 2, pt, r,
                                       count, i_min, i_max)
        return 0

    cdef int _two_point_dual(self, ITYPE_t i_node1,
                             BinaryTree other, ITYPE_t i_node2,
                             DTYPE_t* r, ITYPE_t* count,
                             ITYPE_t i_min, ITYPE_t i_max) except -1:
        """recursive dual-tree two-point correlation function query"""
        cdef DTYPE_t* data1 = &self.data[0, 0]
        cdef DTYPE_t* data2 = &other.data[0, 0]
        cdef ITYPE_t* idx_array1 = &self.idx_array[0]
        cdef ITYPE_t* idx_array2 = &other.idx_array[0]
        cdef NodeData_t node_info1 = self.node_data[i_node1]
        cdef NodeData_t node_info2 = other.node_data[i_node2]

        cdef ITYPE_t n_features = self.data.shape[1]

        cdef ITYPE_t i1, i2, j, Npts
        cdef DTYPE_t reduced_r

        cdef DTYPE_t dist_pt, dist_LB = 0, dist_UB = 0
        dist_LB = min_dist_dual(self, i_node1, other, i_node2)
        dist_UB = max_dist_dual(self, i_node1, other, i_node2)

        #------------------------------------------------------------
        # Go through bounds and check for cuts
        while i_min < i_max:
            if dist_LB > r[i_min]:
                i_min += 1
            else:
                break

        while i_max > i_min:
            Npts = ((node_info1.idx_end - node_info1.idx_start)
                    * (node_info2.idx_end - node_info2.idx_start))
            if dist_UB <= r[i_max - 1]:
                count[i_max - 1] += Npts
                i_max -= 1
            else:
                break

        if i_min < i_max:
            if node_info1.is_leaf and node_info2.is_leaf:
                # If both nodes are leaves, go through all points
                for i1 in range(node_info1.idx_start, node_info1.idx_end):
                    for i2 in range(node_info2.idx_start, node_info2.idx_end):
                        dist_pt = self.dist((data1 + n_features
                                             * idx_array1[i1]),
                                            (data2 + n_features
                                             * idx_array2[i2]),
                                            n_features)
                        j = i_max - 1
                        while (j >= i_min) and (dist_pt <= r[j]):
                            count[j] += 1
                            j -= 1

            elif node_info1.is_leaf:
                # If only one is a leaf, split the other
                for i2 in range(2 * i_node2 + 1, 2 * i_node2 + 3):
                    self._two_point_dual(i_node1, other, i2,
                                         r, count, i_min, i_max)

            elif node_info2.is_leaf:
                for i1 in range(2 * i_node1 + 1, 2 * i_node1 + 3):
                    self._two_point_dual(i1, other, i_node2,
                                         r, count, i_min, i_max)

            else:
                 # neither is a leaf: split & query both
                for i1 in range(2 * i_node1 + 1, 2 * i_node1 + 3):
                    for i2 in range(2 * i_node2 + 1, 2 * i_node2 + 3):
                        self._two_point_dual(i1, other, i2,
                                             r, count, i_min, i_max)
        return 0


######################################################################
# Python functions for benchmarking and testing C implementations

def load_heap(DTYPE_t[:, ::1] X, ITYPE_t k):
    """test fully loading the heap"""
    assert k <= X.shape[1]
    cdef NeighborsHeap heap = NeighborsHeap(X.shape[0], k)
    cdef ITYPE_t i, j
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            heap._push(i, X[i, j], j)
    return heap.get_arrays()


def simultaneous_sort(DTYPE_t[:, ::1] distances, ITYPE_t[:, ::1] indices):
    """In-place simultaneous sort the given row of the arrays

    This python wrapper exists primarily to enable unit testing
    of the _simultaneous_sort C routine.
    """
    assert distances.shape[0] == indices.shape[0]
    assert distances.shape[1] == indices.shape[1]
    cdef ITYPE_t row
    for row in range(distances.shape[0]):
        _simultaneous_sort(&distances[row, 0],
                           &indices[row, 0],
                           distances.shape[1])


def nodeheap_sort(DTYPE_t[::1] vals):
    """In-place reverse sort of vals using NodeHeap"""
    cdef ITYPE_t[::1] indices = np.zeros(vals.shape[0], dtype=ITYPE)
    cdef DTYPE_t[::1] vals_sorted = np.zeros_like(vals)

    # use initial size 0 to check corner case
    cdef NodeHeap heap = NodeHeap(0)
    cdef NodeHeapData_t data
    cdef ITYPE_t i
    for i in range(vals.shape[0]):
        data.val = vals[i]
        data.i1 = i
        data.i2 = i + 1
        heap.push(data)

    for i in range(vals.shape[0]):
        data = heap.pop()
        vals_sorted[i] = data.val
        indices[i] = data.i1

    return np.asarray(vals_sorted), np.asarray(indices)

# Reimplementation for MSVC support
cdef inline double fmin(double a, double b):
    return min(a, b)

cdef inline double fmax(double a, double b) nogil:
    return max(a, b)

cdef inline DTYPE_t _total_node_weight(NodeData_t* node_data,
                                       DTYPE_t* sample_weight,
                                       ITYPE_t* idx_array,
                                       ITYPE_t i_node):
    cdef ITYPE_t i
    cdef DTYPE_t N = 0.0
    for i in range(node_data[i_node].idx_start, node_data[i_node].idx_end):
        N += sample_weight[idx_array[i]]
    return N