1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
"""
Kernel Density Estimation
-------------------------
"""
# Author: Jake Vanderplas <jakevdp@cs.washington.edu>
import numpy as np
from scipy.special import gammainc
from ..base import BaseEstimator
from ..utils import check_array, check_random_state, check_consistent_length
from ..utils.extmath import row_norms
from .ball_tree import BallTree, DTYPE
from .kd_tree import KDTree
VALID_KERNELS = ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear',
'cosine']
TREE_DICT = {'ball_tree': BallTree, 'kd_tree': KDTree}
# TODO: implement a brute force version for testing purposes
# TODO: bandwidth estimation
# TODO: create a density estimation base class?
class KernelDensity(BaseEstimator):
"""Kernel Density Estimation
Read more in the :ref:`User Guide <kernel_density>`.
Parameters
----------
bandwidth : float
The bandwidth of the kernel.
algorithm : string
The tree algorithm to use. Valid options are
['kd_tree'|'ball_tree'|'auto']. Default is 'auto'.
kernel : string
The kernel to use. Valid kernels are
['gaussian'|'tophat'|'epanechnikov'|'exponential'|'linear'|'cosine']
Default is 'gaussian'.
metric : string
The distance metric to use. Note that not all metrics are
valid with all algorithms. Refer to the documentation of
:class:`BallTree` and :class:`KDTree` for a description of
available algorithms. Note that the normalization of the density
output is correct only for the Euclidean distance metric. Default
is 'euclidean'.
atol : float
The desired absolute tolerance of the result. A larger tolerance will
generally lead to faster execution. Default is 0.
rtol : float
The desired relative tolerance of the result. A larger tolerance will
generally lead to faster execution. Default is 1E-8.
breadth_first : boolean
If true (default), use a breadth-first approach to the problem.
Otherwise use a depth-first approach.
leaf_size : int
Specify the leaf size of the underlying tree. See :class:`BallTree`
or :class:`KDTree` for details. Default is 40.
metric_params : dict
Additional parameters to be passed to the tree for use with the
metric. For more information, see the documentation of
:class:`BallTree` or :class:`KDTree`.
"""
def __init__(self, bandwidth=1.0, algorithm='auto',
kernel='gaussian', metric="euclidean", atol=0, rtol=0,
breadth_first=True, leaf_size=40, metric_params=None):
self.algorithm = algorithm
self.bandwidth = bandwidth
self.kernel = kernel
self.metric = metric
self.atol = atol
self.rtol = rtol
self.breadth_first = breadth_first
self.leaf_size = leaf_size
self.metric_params = metric_params
# run the choose algorithm code so that exceptions will happen here
# we're using clone() in the GenerativeBayes classifier,
# so we can't do this kind of logic in __init__
self._choose_algorithm(self.algorithm, self.metric)
if bandwidth <= 0:
raise ValueError("bandwidth must be positive")
if kernel not in VALID_KERNELS:
raise ValueError("invalid kernel: '{0}'".format(kernel))
def _choose_algorithm(self, algorithm, metric):
# given the algorithm string + metric string, choose the optimal
# algorithm to compute the result.
if algorithm == 'auto':
# use KD Tree if possible
if metric in KDTree.valid_metrics:
return 'kd_tree'
elif metric in BallTree.valid_metrics:
return 'ball_tree'
else:
raise ValueError("invalid metric: '{0}'".format(metric))
elif algorithm in TREE_DICT:
if metric not in TREE_DICT[algorithm].valid_metrics:
raise ValueError("invalid metric for {0}: "
"'{1}'".format(TREE_DICT[algorithm],
metric))
return algorithm
else:
raise ValueError("invalid algorithm: '{0}'".format(algorithm))
def fit(self, X, y=None, sample_weight=None):
"""Fit the Kernel Density model on the data.
Parameters
----------
X : array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
sample_weight : array_like, shape (n_samples,), optional
List of sample weights attached to the data X.
"""
algorithm = self._choose_algorithm(self.algorithm, self.metric)
X = check_array(X, order='C', dtype=DTYPE)
if sample_weight is not None:
sample_weight = check_array(sample_weight, order='C', dtype=DTYPE,
ensure_2d=False)
if sample_weight.ndim != 1:
raise ValueError("the shape of sample_weight must be ({0},),"
" but was {1}".format(X.shape[0],
sample_weight.shape))
check_consistent_length(X, sample_weight)
if sample_weight.min() <= 0:
raise ValueError("sample_weight must have positive values")
kwargs = self.metric_params
if kwargs is None:
kwargs = {}
self.tree_ = TREE_DICT[algorithm](X, metric=self.metric,
leaf_size=self.leaf_size,
sample_weight=sample_weight,
**kwargs)
return self
def score_samples(self, X):
"""Evaluate the density model on the data.
Parameters
----------
X : array_like, shape (n_samples, n_features)
An array of points to query. Last dimension should match dimension
of training data (n_features).
Returns
-------
density : ndarray, shape (n_samples,)
The array of log(density) evaluations. These are normalized to be
probability densities, so values will be low for high-dimensional
data.
"""
# The returned density is normalized to the number of points.
# For it to be a probability, we must scale it. For this reason
# we'll also scale atol.
X = check_array(X, order='C', dtype=DTYPE)
if self.tree_.sample_weight is None:
N = self.tree_.data.shape[0]
else:
N = self.tree_.sum_weight
atol_N = self.atol * N
log_density = self.tree_.kernel_density(
X, h=self.bandwidth, kernel=self.kernel, atol=atol_N,
rtol=self.rtol, breadth_first=self.breadth_first, return_log=True)
log_density -= np.log(N)
return log_density
def score(self, X, y=None):
"""Compute the total log probability density under the model.
Parameters
----------
X : array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
logprob : float
Total log-likelihood of the data in X. This is normalized to be a
probability density, so the value will be low for high-dimensional
data.
"""
return np.sum(self.score_samples(X))
def sample(self, n_samples=1, random_state=None):
"""Generate random samples from the model.
Currently, this is implemented only for gaussian and tophat kernels.
Parameters
----------
n_samples : int, optional
Number of samples to generate. Defaults to 1.
random_state : int, RandomState instance or None. default to None
If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the
RandomState instance used by `np.random`.
Returns
-------
X : array_like, shape (n_samples, n_features)
List of samples.
"""
# TODO: implement sampling for other valid kernel shapes
if self.kernel not in ['gaussian', 'tophat']:
raise NotImplementedError()
data = np.asarray(self.tree_.data)
rng = check_random_state(random_state)
u = rng.uniform(0, 1, size=n_samples)
if self.tree_.sample_weight is None:
i = (u * data.shape[0]).astype(np.int64)
else:
cumsum_weight = np.cumsum(np.asarray(self.tree_.sample_weight))
sum_weight = cumsum_weight[-1]
i = np.searchsorted(cumsum_weight, u * sum_weight)
if self.kernel == 'gaussian':
return np.atleast_2d(rng.normal(data[i], self.bandwidth))
elif self.kernel == 'tophat':
# we first draw points from a d-dimensional normal distribution,
# then use an incomplete gamma function to map them to a uniform
# d-dimensional tophat distribution.
dim = data.shape[1]
X = rng.normal(size=(n_samples, dim))
s_sq = row_norms(X, squared=True)
correction = (gammainc(0.5 * dim, 0.5 * s_sq) ** (1. / dim)
* self.bandwidth / np.sqrt(s_sq))
return data[i] + X * correction[:, np.newaxis]
|