1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
|
# cython: boundscheck=False
# cython: wraparound=False
# cython: cdivision=True
# Author: Thomas Moreau <thomas.moreau.2010@gmail.com>
# Author: Olivier Grisel <olivier.grisel@ensta.fr>
from cpython cimport Py_INCREF, PyObject
from libc.stdlib cimport malloc, free
from libc.string cimport memcpy
from libc.stdio cimport printf
from sklearn.tree._utils cimport safe_realloc, sizet_ptr_to_ndarray
from ..utils import check_array
import numpy as np
cimport numpy as np
np.import_array()
cdef extern from "math.h":
float fabsf(float x) nogil
cdef extern from "numpy/arrayobject.h":
object PyArray_NewFromDescr(object subtype, np.dtype descr,
int nd, np.npy_intp* dims,
np.npy_intp* strides,
void* data, int flags, object obj)
# XXX using (size_t)(-1) is ugly, but SIZE_MAX is not available in C89
# (i.e., older MSVC).
cdef SIZE_t DEFAULT = <SIZE_t>(-1)
# Repeat struct definition for numpy
CELL_DTYPE = np.dtype({
'names': ['parent', 'children', 'cell_id', 'point_index', 'is_leaf',
'max_width', 'depth', 'cumulative_size', 'center', 'barycenter',
'min_bounds', 'max_bounds'],
'formats': [np.intp, (np.intp, 8), np.intp, np.intp, np.int32, np.float32,
np.intp, np.intp, (np.float32, 3), (np.float32, 3),
(np.float32, 3), (np.float32, 3)],
'offsets': [
<Py_ssize_t> &(<Cell*> NULL).parent,
<Py_ssize_t> &(<Cell*> NULL).children,
<Py_ssize_t> &(<Cell*> NULL).cell_id,
<Py_ssize_t> &(<Cell*> NULL).point_index,
<Py_ssize_t> &(<Cell*> NULL).is_leaf,
<Py_ssize_t> &(<Cell*> NULL).squared_max_width,
<Py_ssize_t> &(<Cell*> NULL).depth,
<Py_ssize_t> &(<Cell*> NULL).cumulative_size,
<Py_ssize_t> &(<Cell*> NULL).center,
<Py_ssize_t> &(<Cell*> NULL).barycenter,
<Py_ssize_t> &(<Cell*> NULL).min_bounds,
<Py_ssize_t> &(<Cell*> NULL).max_bounds,
]
})
assert CELL_DTYPE.itemsize == sizeof(Cell)
cdef class _QuadTree:
"""Array-based representation of a QuadTree.
This class is currently working for indexing 2D data (regular QuadTree) and
for indexing 3D data (OcTree). It is planned to split the 2 implementations
using `Cython.Tempita` to save some memory for QuadTree.
Note that this code is currently internally used only by the Barnes-Hut
method in `sklearn.manifold.TSNE`. It is planned to be refactored and
generalized in the future to be compatible with nearest neighbors API of
`sklearn.neighbors` with 2D and 3D data.
"""
def __cinit__(self, int n_dimensions, int verbose):
"""Constructor."""
# Parameters of the tree
self.n_dimensions = n_dimensions
self.verbose = verbose
self.n_cells_per_cell = 2 ** self.n_dimensions
# Inner structures
self.max_depth = 0
self.cell_count = 0
self.capacity = 0
self.n_points = 0
self.cells = NULL
def __dealloc__(self):
"""Destructor."""
# Free all inner structures
free(self.cells)
property cumulative_size:
def __get__(self):
return self._get_cell_ndarray()['cumulative_size'][:self.cell_count]
property leafs:
def __get__(self):
return self._get_cell_ndarray()['is_leaf'][:self.cell_count]
def build_tree(self, X):
"""Build a tree from an arary of points X."""
cdef:
int i
DTYPE_t[3] pt
DTYPE_t[3] min_bounds, max_bounds
# validate X and prepare for query
# X = check_array(X, dtype=DTYPE_t, order='C')
n_samples = X.shape[0]
capacity = 100
self._resize(capacity)
m = np.min(X, axis=0)
M = np.max(X, axis=0)
# Scale the maximum to get all points strictly in the tree bounding box
# The 3 bounds are for positive, negative and small values
M = np.maximum(M * (1. + 1e-3 * np.sign(M)), M + 1e-3)
for i in range(self.n_dimensions):
min_bounds[i] = m[i]
max_bounds[i] = M[i]
if self.verbose > 10:
printf("[QuadTree] bounding box axis %i : [%f, %f]\n",
i, min_bounds[i], max_bounds[i])
# Create the initial node with boundaries from the dataset
self._init_root(min_bounds, max_bounds)
for i in range(n_samples):
for j in range(self.n_dimensions):
pt[j] = X[i, j]
self.insert_point(pt, i)
# Shrink the cells array to reduce memory usage
self._resize(capacity=self.cell_count)
cdef int insert_point(self, DTYPE_t[3] point, SIZE_t point_index,
SIZE_t cell_id=0) nogil except -1:
"""Insert a point in the QuadTree."""
cdef int ax
cdef DTYPE_t n_frac
cdef SIZE_t selected_child
cdef Cell* cell = &self.cells[cell_id]
cdef SIZE_t n_point = cell.cumulative_size
if self.verbose > 10:
printf("[QuadTree] Inserting depth %li\n", cell.depth)
# Assert that the point is in the right range
if DEBUGFLAG:
self._check_point_in_cell(point, cell)
# If the cell is an empty leaf, insert the point in it
if cell.cumulative_size == 0:
cell.cumulative_size = 1
self.n_points += 1
for i in range(self.n_dimensions):
cell.barycenter[i] = point[i]
cell.point_index = point_index
if self.verbose > 10:
printf("[QuadTree] inserted point %li in cell %li\n",
point_index, cell_id)
return cell_id
# If the cell is not a leaf, update cell internals and
# recurse in selected child
if not cell.is_leaf:
for ax in range(self.n_dimensions):
# barycenter update using a weighted mean
cell.barycenter[ax] = (
n_point * cell.barycenter[ax] + point[ax]) / (n_point + 1)
# Increase the size of the subtree starting from this cell
cell.cumulative_size += 1
# Insert child in the correct subtree
selected_child = self._select_child(point, cell)
if self.verbose > 49:
printf("[QuadTree] selected child %li\n", selected_child)
if selected_child == -1:
self.n_points += 1
return self._insert_point_in_new_child(point, cell, point_index)
return self.insert_point(point, point_index, selected_child)
# Finally, if the cell is a leaf with a point already inserted,
# split the cell in n_cells_per_cell if the point is not a duplicate.
# If it is a duplicate, increase the size of the leaf and return.
if self._is_duplicate(point, cell.barycenter):
if self.verbose > 10:
printf("[QuadTree] found a duplicate!\n")
cell.cumulative_size += 1
self.n_points += 1
return cell_id
# In a leaf, the barycenter correspond to the only point included
# in it.
self._insert_point_in_new_child(cell.barycenter, cell, cell.point_index,
cell.cumulative_size)
return self.insert_point(point, point_index, cell_id)
# XXX: This operation is not Thread safe
cdef SIZE_t _insert_point_in_new_child(self, DTYPE_t[3] point, Cell* cell,
SIZE_t point_index, SIZE_t size=1
) nogil:
"""Create a child of cell which will contain point."""
# Local variable definition
cdef:
SIZE_t cell_id, cell_child_id, parent_id
DTYPE_t[3] save_point
DTYPE_t width
Cell* child
int i
# If the maximal capacity of the Tree have been reach, double the capacity
# We need to save the current cell id and the current point to retrieve them
# in case the reallocation
if self.cell_count + 1 > self.capacity:
parent_id = cell.cell_id
for i in range(self.n_dimensions):
save_point[i] = point[i]
self._resize(DEFAULT)
cell = &self.cells[parent_id]
point = save_point
# Get an empty cell and initialize it
cell_id = self.cell_count
self.cell_count += 1
child = &self.cells[cell_id]
self._init_cell(child, cell.cell_id, cell.depth + 1)
child.cell_id = cell_id
# Set the cell as an inner cell of the Tree
cell.is_leaf = False
cell.point_index = -1
# Set the correct boundary for the cell, store the point in the cell
# and compute its index in the children array.
cell_child_id = 0
for i in range(self.n_dimensions):
cell_child_id *= 2
if point[i] >= cell.center[i]:
cell_child_id += 1
child.min_bounds[i] = cell.center[i]
child.max_bounds[i] = cell.max_bounds[i]
else:
child.min_bounds[i] = cell.min_bounds[i]
child.max_bounds[i] = cell.center[i]
child.center[i] = (child.min_bounds[i] + child.max_bounds[i]) / 2.
width = child.max_bounds[i] - child.min_bounds[i]
child.barycenter[i] = point[i]
child.squared_max_width = max(child.squared_max_width, width*width)
# Store the point info and the size to account for duplicated points
child.point_index = point_index
child.cumulative_size = size
# Store the child cell in the correct place in children
cell.children[cell_child_id] = child.cell_id
if DEBUGFLAG:
# Assert that the point is in the right range
self._check_point_in_cell(point, child)
if self.verbose > 10:
printf("[QuadTree] inserted point %li in new child %li\n",
point_index, cell_id)
return cell_id
cdef bint _is_duplicate(self, DTYPE_t[3] point1, DTYPE_t[3] point2) nogil:
"""Check if the two given points are equals."""
cdef int i
cdef bint res = True
for i in range(self.n_dimensions):
# Use EPSILON to avoid numerical error that would overgrow the tree
res &= fabsf(point1[i] - point2[i]) <= EPSILON
return res
cdef SIZE_t _select_child(self, DTYPE_t[3] point, Cell* cell) nogil:
"""Select the child of cell which contains the given query point."""
cdef:
int i
SIZE_t selected_child = 0
for i in range(self.n_dimensions):
# Select the correct child cell to insert the point by comparing
# it to the borders of the cells using precomputed center.
selected_child *= 2
if point[i] >= cell.center[i]:
selected_child += 1
return cell.children[selected_child]
cdef void _init_cell(self, Cell* cell, SIZE_t parent, SIZE_t depth) nogil:
"""Initialize a cell structure with some constants."""
cell.parent = parent
cell.is_leaf = True
cell.depth = depth
cell.squared_max_width = 0
cell.cumulative_size = 0
for i in range(self.n_cells_per_cell):
cell.children[i] = DEFAULT
cdef void _init_root(self, DTYPE_t[3] min_bounds, DTYPE_t[3] max_bounds
) nogil:
"""Initialize the root node with the given space boundaries"""
cdef:
int i
DTYPE_t width
Cell* root = &self.cells[0]
self._init_cell(root, -1, 0)
for i in range(self.n_dimensions):
root.min_bounds[i] = min_bounds[i]
root.max_bounds[i] = max_bounds[i]
root.center[i] = (max_bounds[i] + min_bounds[i]) / 2.
width = max_bounds[i] - min_bounds[i]
root.squared_max_width = max(root.squared_max_width, width*width)
root.cell_id = 0
self.cell_count += 1
cdef int _check_point_in_cell(self, DTYPE_t[3] point, Cell* cell
) nogil except -1:
"""Check that the given point is in the cell boundaries."""
if self.verbose >= 50:
if self.n_dimensions == 3:
printf("[QuadTree] Checking point (%f, %f, %f) in cell %li "
"([%f/%f, %f/%f, %f/%f], size %li)\n",
point[0], point[1], point[2], cell.cell_id,
cell.min_bounds[0], cell.max_bounds[0], cell.min_bounds[1],
cell.max_bounds[1], cell.min_bounds[2], cell.max_bounds[2],
cell.cumulative_size)
else:
printf("[QuadTree] Checking point (%f, %f) in cell %li "
"([%f/%f, %f/%f], size %li)\n",
point[0], point[1],cell.cell_id, cell.min_bounds[0],
cell.max_bounds[0], cell.min_bounds[1],
cell.max_bounds[1], cell.cumulative_size)
for i in range(self.n_dimensions):
if (cell.min_bounds[i] > point[i] or
cell.max_bounds[i] <= point[i]):
with gil:
msg = "[QuadTree] InsertionError: point out of cell "
msg += "boundary.\nAxis %li: cell [%f, %f]; point %f\n"
msg %= i, cell.min_bounds[i], cell.max_bounds[i], point[i]
raise ValueError(msg)
def _check_coherence(self):
"""Check the coherence of the cells of the tree.
Check that the info stored in each cell is compatible with the info
stored in descendent and sibling cells. Raise a ValueError if this
fails.
"""
for cell in self.cells[:self.cell_count]:
# Check that the barycenter of inserted point is within the cell
# boundaries
self._check_point_in_cell(cell.barycenter, &cell)
if not cell.is_leaf:
# Compute the number of point in children and compare with
# its cummulative_size.
n_points = 0
for idx in range(self.n_cells_per_cell):
child_id = cell.children[idx]
if child_id != -1:
child = self.cells[child_id]
n_points += child.cumulative_size
assert child.cell_id == child_id, (
"Cell id not correctly initiliazed.")
if n_points != cell.cumulative_size:
raise ValueError(
"Cell {} is incoherent. Size={} but found {} points "
"in children. ({})"
.format(cell.cell_id, cell.cumulative_size,
n_points, cell.children))
# Make sure that the number of point in the tree correspond to the
# cummulative size in root cell.
if self.n_points != self.cells[0].cumulative_size:
raise ValueError(
"QuadTree is incoherent. Size={} but found {} points "
"in children."
.format(self.n_points, self.cells[0].cumulative_size))
cdef long summarize(self, DTYPE_t[3] point, DTYPE_t* results,
float squared_theta=.5, SIZE_t cell_id=0, long idx=0
) nogil:
"""Summarize the tree compared to a query point.
Input arguments
---------------
point : array (n_dimensions)
query point to construct the summary.
cell_id : integer, optional (default: 0)
current cell of the tree summarized. This should be set to 0 for
external calls.
idx : integer, optional (default: 0)
current index in the result array. This should be set to 0 for
external calls
squared_theta: float, optional (default: .5)
threshold to decide whether the node is sufficiently far
from the query point to be a good summary. The formula is such that
the node is a summary if
node_width^2 / dist_node_point^2 < squared_theta.
Note that the argument should be passed as theta^2 to avoid
computing square roots of the distances.
Output arguments
----------------
results : array (n_samples * (n_dimensions+2))
result will contain a summary of the tree information compared to
the query point:
- results[idx:idx+n_dimensions] contains the coordinate-wise
difference between the query point and the summary cell idx.
This is useful in t-SNE to compute the negative forces.
- result[idx+n_dimensions+1] contains the squared euclidean
distance to the summary cell idx.
- result[idx+n_dimensions+2] contains the number of point of the
tree contained in the summary cell idx.
Return
------
idx : integer
number of elements in the results array.
"""
cdef:
int i, idx_d = idx + self.n_dimensions
bint duplicate = True
Cell* cell = &self.cells[cell_id]
results[idx_d] = 0.
for i in range(self.n_dimensions):
results[idx + i] = point[i] - cell.barycenter[i]
results[idx_d] += results[idx + i] * results[idx + i]
duplicate &= fabsf(results[idx + i]) <= EPSILON
# Do not compute self interactions
if duplicate and cell.is_leaf:
return idx
# Check whether we can use this node as a summary
# It's a summary node if the angular size as measured from the point
# is relatively small (w.r.t. to theta) or if it is a leaf node.
# If it can be summarized, we use the cell center of mass
# Otherwise, we go a higher level of resolution and into the leaves.
if cell.is_leaf or (
(cell.squared_max_width / results[idx_d]) < squared_theta):
results[idx_d + 1] = <DTYPE_t> cell.cumulative_size
return idx + self.n_dimensions + 2
else:
# Recursively compute the summary in nodes
for c in range(self.n_cells_per_cell):
child_id = cell.children[c]
if child_id != -1:
idx = self.summarize(point, results, squared_theta,
child_id, idx)
return idx
def get_cell(self, point):
"""return the id of the cell containing the query point or raise
ValueError if the point is not in the tree
"""
cdef DTYPE_t[3] query_pt
cdef int i
assert len(point) == self.n_dimensions, (
"Query point should be a point in dimension {}."
.format(self.n_dimensions))
for i in range(self.n_dimensions):
query_pt[i] = point[i]
return self._get_cell(query_pt, 0)
cdef int _get_cell(self, DTYPE_t[3] point, SIZE_t cell_id=0
) nogil except -1:
"""guts of get_cell.
Return the id of the cell containing the query point or raise ValueError
if the point is not in the tree"""
cdef:
SIZE_t selected_child
Cell* cell = &self.cells[cell_id]
if cell.is_leaf:
if self._is_duplicate(cell.barycenter, point):
if self.verbose > 99:
printf("[QuadTree] Found point in cell: %li\n",
cell.cell_id)
return cell_id
with gil:
raise ValueError("Query point not in the Tree.")
selected_child = self._select_child(point, cell)
if selected_child > 0:
if self.verbose > 99:
printf("[QuadTree] Selected_child: %li\n", selected_child)
return self._get_cell(point, selected_child)
with gil:
raise ValueError("Query point not in the Tree.")
# Pickling primitives
def __reduce__(self):
"""Reduce re-implementation, for pickling."""
return (_QuadTree, (self.n_dimensions, self.verbose),
self.__getstate__())
def __getstate__(self):
"""Getstate re-implementation, for pickling."""
d = {}
# capacity is inferred during the __setstate__ using nodes
d["max_depth"] = self.max_depth
d["cell_count"] = self.cell_count
d["capacity"] = self.capacity
d["n_points"] = self.n_points
d["cells"] = self._get_cell_ndarray()
return d
def __setstate__(self, d):
"""Setstate re-implementation, for unpickling."""
self.max_depth = d["max_depth"]
self.cell_count = d["cell_count"]
self.capacity = d["capacity"]
self.n_points = d["n_points"]
if 'cells' not in d:
raise ValueError('You have loaded Tree version which '
'cannot be imported')
cell_ndarray = d['cells']
if (cell_ndarray.ndim != 1 or
cell_ndarray.dtype != CELL_DTYPE or
not cell_ndarray.flags.c_contiguous):
raise ValueError('Did not recognise loaded array layout')
self.capacity = cell_ndarray.shape[0]
if self._resize_c(self.capacity) != 0:
raise MemoryError("resizing tree to %d" % self.capacity)
cells = memcpy(self.cells, (<np.ndarray> cell_ndarray).data,
self.capacity * sizeof(Cell))
# Array manipulation methods, to convert it to numpy or to resize
# self.cells array
cdef np.ndarray _get_cell_ndarray(self):
"""Wraps nodes as a NumPy struct array.
The array keeps a reference to this Tree, which manages the underlying
memory. Individual fields are publicly accessible as properties of the
Tree.
"""
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> self.cell_count
cdef np.npy_intp strides[1]
strides[0] = sizeof(Cell)
cdef np.ndarray arr
Py_INCREF(CELL_DTYPE)
arr = PyArray_NewFromDescr(np.ndarray, CELL_DTYPE, 1, shape,
strides, <void*> self.cells,
np.NPY_DEFAULT, None)
Py_INCREF(self)
arr.base = <PyObject*> self
return arr
cdef int _resize(self, SIZE_t capacity) nogil except -1:
"""Resize all inner arrays to `capacity`, if `capacity` == -1, then
double the size of the inner arrays.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
if self._resize_c(capacity) != 0:
# Acquire gil only if we need to raise
with gil:
raise MemoryError()
cdef int _resize_c(self, SIZE_t capacity=DEFAULT) nogil except -1:
"""Guts of _resize
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
if capacity == self.capacity and self.cells != NULL:
return 0
if capacity == DEFAULT:
if self.capacity == 0:
capacity = 9 # default initial value to min
else:
capacity = 2 * self.capacity
safe_realloc(&self.cells, capacity)
# if capacity smaller than cell_count, adjust the counter
if capacity < self.cell_count:
self.cell_count = capacity
self.capacity = capacity
return 0
@staticmethod
def test_summarize():
cdef:
DTYPE_t[3] query_pt
float* summary
int i, n_samples, n_dimensions
n_dimensions = 2
n_samples = 4
angle = 0.9
offset = n_dimensions + 2
X = np.array([[-10., -10.], [9., 10.], [10., 9.], [10., 10.]])
n_dimensions = X.shape[1]
qt = _QuadTree(n_dimensions, verbose=0)
qt.build_tree(X)
summary = <float*> malloc(sizeof(float) * n_samples * 4)
for i in range(n_dimensions):
query_pt[i] = X[0, i]
# Summary should contain only 1 node with size 3 and distance to
# X[1:] barycenter
idx = qt.summarize(query_pt, summary, angle * angle)
node_dist = summary[n_dimensions]
node_size = summary[n_dimensions + 1]
barycenter = X[1:].mean(axis=0)
ds2c = ((X[0] - barycenter) ** 2).sum()
assert idx == offset
assert node_size == 3, "summary size = {}".format(node_size)
assert np.isclose(node_dist, ds2c)
# Summary should contain all 3 node with size 1 and distance to
# each point in X[1:] for ``angle=0``
idx = qt.summarize(query_pt, summary, 0)
node_dist = summary[n_dimensions]
node_size = summary[n_dimensions + 1]
barycenter = X[1:].mean(axis=0)
ds2c = ((X[0] - barycenter) ** 2).sum()
assert idx == 3 * (offset)
for i in range(3):
node_dist = summary[i * offset + n_dimensions]
node_size = summary[i * offset + n_dimensions + 1]
ds2c = ((X[0] - X[i + 1]) ** 2).sum()
assert node_size == 1, "summary size = {}".format(node_size)
assert np.isclose(node_dist, ds2c)
|