File: test_approximate.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (498 lines) | stat: -rw-r--r-- 20,129 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
"""
Testing for the approximate neighbor search using
Locality Sensitive Hashing Forest module
(sklearn.neighbors.LSHForest).
"""

# Author: Maheshakya Wijewardena, Joel Nothman

import numpy as np
import scipy.sparse as sp

from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_array_less
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import ignore_warnings

from sklearn.metrics.pairwise import pairwise_distances
from sklearn.neighbors import LSHForest
from sklearn.neighbors import NearestNeighbors


def test_lsh_forest_deprecation():
    assert_warns_message(DeprecationWarning,
                         "LSHForest has poor performance and has been "
                         "deprecated in 0.19. It will be removed "
                         "in version 0.21.", LSHForest)


def test_neighbors_accuracy_with_n_candidates():
    # Checks whether accuracy increases as `n_candidates` increases.
    n_candidates_values = np.array([.1, 50, 500])
    n_samples = 100
    n_features = 10
    n_iter = 10
    n_points = 5
    rng = np.random.RandomState(42)
    accuracies = np.zeros(n_candidates_values.shape[0], dtype=float)
    X = rng.rand(n_samples, n_features)

    for i, n_candidates in enumerate(n_candidates_values):
        lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
            n_candidates=n_candidates, random_state=0)
        ignore_warnings(lshf.fit)(X)
        for j in range(n_iter):
            query = X[rng.randint(0, n_samples)].reshape(1, -1)

            neighbors = lshf.kneighbors(query, n_neighbors=n_points,
                                        return_distance=False)
            distances = pairwise_distances(query, X, metric='cosine')
            ranks = np.argsort(distances)[0, :n_points]

            intersection = np.intersect1d(ranks, neighbors).shape[0]
            ratio = intersection / float(n_points)
            accuracies[i] = accuracies[i] + ratio

        accuracies[i] = accuracies[i] / float(n_iter)
    # Sorted accuracies should be equal to original accuracies
    print('accuracies:', accuracies)
    assert_true(np.all(np.diff(accuracies) >= 0),
                msg="Accuracies are not non-decreasing.")
    # Highest accuracy should be strictly greater than the lowest
    assert_true(np.ptp(accuracies) > 0,
                msg="Highest accuracy is not strictly greater than lowest.")


def test_neighbors_accuracy_with_n_estimators():
    # Checks whether accuracy increases as `n_estimators` increases.
    n_estimators = np.array([1, 10, 100])
    n_samples = 100
    n_features = 10
    n_iter = 10
    n_points = 5
    rng = np.random.RandomState(42)
    accuracies = np.zeros(n_estimators.shape[0], dtype=float)
    X = rng.rand(n_samples, n_features)

    for i, t in enumerate(n_estimators):
        lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
            n_candidates=500, n_estimators=t)
        ignore_warnings(lshf.fit)(X)
        for j in range(n_iter):
            query = X[rng.randint(0, n_samples)].reshape(1, -1)
            neighbors = lshf.kneighbors(query, n_neighbors=n_points,
                                        return_distance=False)
            distances = pairwise_distances(query, X, metric='cosine')
            ranks = np.argsort(distances)[0, :n_points]

            intersection = np.intersect1d(ranks, neighbors).shape[0]
            ratio = intersection / float(n_points)
            accuracies[i] = accuracies[i] + ratio

        accuracies[i] = accuracies[i] / float(n_iter)
    # Sorted accuracies should be equal to original accuracies
    assert_true(np.all(np.diff(accuracies) >= 0),
                msg="Accuracies are not non-decreasing.")
    # Highest accuracy should be strictly greater than the lowest
    assert_true(np.ptp(accuracies) > 0,
                msg="Highest accuracy is not strictly greater than lowest.")


@ignore_warnings
def test_kneighbors():
    # Checks whether desired number of neighbors are returned.
    # It is guaranteed to return the requested number of neighbors
    # if `min_hash_match` is set to 0. Returned distances should be
    # in ascending order.
    n_samples = 12
    n_features = 2
    n_iter = 10
    rng = np.random.RandomState(42)
    X = rng.rand(n_samples, n_features)

    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
        min_hash_match=0)
    # Test unfitted estimator
    assert_raises(ValueError, lshf.kneighbors, X[0])

    ignore_warnings(lshf.fit)(X)

    for i in range(n_iter):
        n_neighbors = rng.randint(0, n_samples)
        query = X[rng.randint(0, n_samples)].reshape(1, -1)
        neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors,
                                    return_distance=False)
        # Desired number of neighbors should be returned.
        assert_equal(neighbors.shape[1], n_neighbors)

    # Multiple points
    n_queries = 5
    queries = X[rng.randint(0, n_samples, n_queries)]
    distances, neighbors = lshf.kneighbors(queries,
                                           n_neighbors=1,
                                           return_distance=True)
    assert_equal(neighbors.shape[0], n_queries)
    assert_equal(distances.shape[0], n_queries)
    # Test only neighbors
    neighbors = lshf.kneighbors(queries, n_neighbors=1,
                                return_distance=False)
    assert_equal(neighbors.shape[0], n_queries)
    # Test random point(not in the data set)
    query = rng.randn(n_features).reshape(1, -1)
    lshf.kneighbors(query, n_neighbors=1,
                    return_distance=False)
    # Test n_neighbors at initialization
    neighbors = lshf.kneighbors(query, return_distance=False)
    assert_equal(neighbors.shape[1], 5)
    # Test `neighbors` has an integer dtype
    assert_true(neighbors.dtype.kind == 'i',
                msg="neighbors are not in integer dtype.")


def test_radius_neighbors():
    # Checks whether Returned distances are less than `radius`
    # At least one point should be returned when the `radius` is set
    # to mean distance from the considering point to other points in
    # the database.
    # Moreover, this test compares the radius neighbors of LSHForest
    # with the `sklearn.neighbors.NearestNeighbors`.
    n_samples = 12
    n_features = 2
    n_iter = 10
    rng = np.random.RandomState(42)
    X = rng.rand(n_samples, n_features)

    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)()
    # Test unfitted estimator
    assert_raises(ValueError, lshf.radius_neighbors, X[0])

    ignore_warnings(lshf.fit)(X)

    for i in range(n_iter):
        # Select a random point in the dataset as the query
        query = X[rng.randint(0, n_samples)].reshape(1, -1)

        # At least one neighbor should be returned when the radius is the
        # mean distance from the query to the points of the dataset.
        mean_dist = np.mean(pairwise_distances(query, X, metric='cosine'))
        neighbors = lshf.radius_neighbors(query, radius=mean_dist,
                                          return_distance=False)

        assert_equal(neighbors.shape, (1,))
        assert_equal(neighbors.dtype, object)
        assert_greater(neighbors[0].shape[0], 0)
        # All distances to points in the results of the radius query should
        # be less than mean_dist
        distances, neighbors = lshf.radius_neighbors(query,
                                                     radius=mean_dist,
                                                     return_distance=True)
        assert_array_less(distances[0], mean_dist)

    # Multiple points
    n_queries = 5
    queries = X[rng.randint(0, n_samples, n_queries)]
    distances, neighbors = lshf.radius_neighbors(queries,
                                                 return_distance=True)

    # dists and inds should not be 1D arrays or arrays of variable lengths
    # hence the use of the object dtype.
    assert_equal(distances.shape, (n_queries,))
    assert_equal(distances.dtype, object)
    assert_equal(neighbors.shape, (n_queries,))
    assert_equal(neighbors.dtype, object)

    # Compare with exact neighbor search
    query = X[rng.randint(0, n_samples)].reshape(1, -1)
    mean_dist = np.mean(pairwise_distances(query, X, metric='cosine'))
    nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X)

    distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist)
    distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist)

    # The following fails on some platforms. See #10244

    # # Radius-based queries do not sort the result points and the order
    # # depends on the method, the random_state and the dataset order.
    # # We need to sort the results ourselves before performing any comparison.
    # sorted_dists_exact = np.sort(distances_exact[0])
    # sorted_dists_approx = np.sort(distances_approx[0])
    #
    # # Distances to exact neighbors are less than or equal to approximate
    # # counterparts as the approximate radius query might have missed some
    # # closer neighbors.
    #
    # assert_true(np.all(np.less_equal(sorted_dists_exact,
    #                                  sorted_dists_approx)))


@ignore_warnings
def test_radius_neighbors_boundary_handling():
    X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]]
    n_points = len(X)

    # Build an exact nearest neighbors model as reference model to ensure
    # consistency between exact and approximate methods
    nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X)

    # Build a LSHForest model with hyperparameter values that always guarantee
    # exact results on this toy dataset.
    lsfh = ignore_warnings(LSHForest, category=DeprecationWarning)(
        min_hash_match=0, n_candidates=n_points, random_state=42).fit(X)

    # define a query aligned with the first axis
    query = [[1., 0.]]

    # Compute the exact cosine distances of the query to the four points of
    # the dataset
    dists = pairwise_distances(query, X, metric='cosine').ravel()

    # The first point is almost aligned with the query (very small angle),
    # the cosine distance should therefore be almost null:
    assert_almost_equal(dists[0], 0, decimal=5)

    # The second point form an angle of 45 degrees to the query vector
    assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4))

    # The third point is orthogonal from the query vector hence at a distance
    # exactly one:
    assert_almost_equal(dists[2], 1)

    # The last point is almost colinear but with opposite sign to the query
    # therefore it has a cosine 'distance' very close to the maximum possible
    # value of 2.
    assert_almost_equal(dists[3], 2, decimal=5)

    # If we query with a radius of one, all the samples except the last sample
    # should be included in the results. This means that the third sample
    # is lying on the boundary of the radius query:
    exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1)
    approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1)

    assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2])
    assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2])
    assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1])
    assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1])

    # If we perform the same query with a slightly lower radius, the third
    # point of the dataset that lay on the boundary of the previous query
    # is now rejected:
    eps = np.finfo(np.float64).eps
    exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps)
    approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps)

    assert_array_equal(np.sort(exact_idx[0]), [0, 1])
    assert_array_equal(np.sort(approx_idx[0]), [0, 1])
    assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2])
    assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2])


def test_distances():
    # Checks whether returned neighbors are from closest to farthest.
    n_samples = 12
    n_features = 2
    n_iter = 10
    rng = np.random.RandomState(42)
    X = rng.rand(n_samples, n_features)

    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)()
    ignore_warnings(lshf.fit)(X)

    for i in range(n_iter):
        n_neighbors = rng.randint(0, n_samples)
        query = X[rng.randint(0, n_samples)].reshape(1, -1)
        distances, neighbors = lshf.kneighbors(query,
                                               n_neighbors=n_neighbors,
                                               return_distance=True)

        # Returned neighbors should be from closest to farthest, that is
        # increasing distance values.
        assert_true(np.all(np.diff(distances[0]) >= 0))

        # Note: the radius_neighbors method does not guarantee the order of
        # the results.


def test_fit():
    # Checks whether `fit` method sets all attribute values correctly.
    n_samples = 12
    n_features = 2
    n_estimators = 5
    rng = np.random.RandomState(42)
    X = rng.rand(n_samples, n_features)

    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
        n_estimators=n_estimators)
    ignore_warnings(lshf.fit)(X)

    # _input_array = X
    assert_array_equal(X, lshf._fit_X)
    # A hash function g(p) for each tree
    assert_equal(n_estimators, len(lshf.hash_functions_))
    # Hash length = 32
    assert_equal(32, lshf.hash_functions_[0].components_.shape[0])
    # Number of trees_ in the forest
    assert_equal(n_estimators, len(lshf.trees_))
    # Each tree has entries for every data point
    assert_equal(n_samples, len(lshf.trees_[0]))
    # Original indices after sorting the hashes
    assert_equal(n_estimators, len(lshf.original_indices_))
    # Each set of original indices in a tree has entries for every data point
    assert_equal(n_samples, len(lshf.original_indices_[0]))


def test_partial_fit():
    # Checks whether inserting array is consistent with fitted data.
    # `partial_fit` method should set all attribute values correctly.
    n_samples = 12
    n_samples_partial_fit = 3
    n_features = 2
    rng = np.random.RandomState(42)
    X = rng.rand(n_samples, n_features)
    X_partial_fit = rng.rand(n_samples_partial_fit, n_features)

    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)()

    # Test unfitted estimator
    ignore_warnings(lshf.partial_fit)(X)
    assert_array_equal(X, lshf._fit_X)

    ignore_warnings(lshf.fit)(X)

    # Insert wrong dimension
    assert_raises(ValueError, lshf.partial_fit,
                  np.random.randn(n_samples_partial_fit, n_features - 1))

    ignore_warnings(lshf.partial_fit)(X_partial_fit)

    # size of _input_array = samples + 1 after insertion
    assert_equal(lshf._fit_X.shape[0],
                 n_samples + n_samples_partial_fit)
    # size of original_indices_[1] = samples + 1
    assert_equal(len(lshf.original_indices_[0]),
                 n_samples + n_samples_partial_fit)
    # size of trees_[1] = samples + 1
    assert_equal(len(lshf.trees_[1]),
                 n_samples + n_samples_partial_fit)


def test_hash_functions():
    # Checks randomness of hash functions.
    # Variance and mean of each hash function (projection vector)
    # should be different from flattened array of hash functions.
    # If hash functions are not randomly built (seeded with
    # same value), variances and means of all functions are equal.
    n_samples = 12
    n_features = 2
    n_estimators = 5
    rng = np.random.RandomState(42)
    X = rng.rand(n_samples, n_features)

    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
        n_estimators=n_estimators,
        random_state=rng.randint(0, np.iinfo(np.int32).max))
    ignore_warnings(lshf.fit)(X)

    hash_functions = []
    for i in range(n_estimators):
        hash_functions.append(lshf.hash_functions_[i].components_)

    for i in range(n_estimators):
        assert_not_equal(np.var(hash_functions),
                         np.var(lshf.hash_functions_[i].components_))

    for i in range(n_estimators):
        assert_not_equal(np.mean(hash_functions),
                         np.mean(lshf.hash_functions_[i].components_))


def test_candidates():
    # Checks whether candidates are sufficient.
    # This should handle the cases when number of candidates is 0.
    # User should be warned when number of candidates is less than
    # requested number of neighbors.
    X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1],
                        [6, 10, 2]], dtype=np.float32)
    X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1)

    # For zero candidates
    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
        min_hash_match=32)
    ignore_warnings(lshf.fit)(X_train)

    message = ("Number of candidates is not sufficient to retrieve"
               " %i neighbors with"
               " min_hash_match = %i. Candidates are filled up"
               " uniformly from unselected"
               " indices." % (3, 32))
    assert_warns_message(UserWarning, message, lshf.kneighbors,
                         X_test, n_neighbors=3)
    distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3)
    assert_equal(distances.shape[1], 3)

    # For candidates less than n_neighbors
    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
        min_hash_match=31)
    ignore_warnings(lshf.fit)(X_train)

    message = ("Number of candidates is not sufficient to retrieve"
               " %i neighbors with"
               " min_hash_match = %i. Candidates are filled up"
               " uniformly from unselected"
               " indices." % (5, 31))
    assert_warns_message(UserWarning, message, lshf.kneighbors,
                         X_test, n_neighbors=5)
    distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5)
    assert_equal(distances.shape[1], 5)


def test_graphs():
    # Smoke tests for graph methods.
    n_samples_sizes = [5, 10, 20]
    n_features = 3
    rng = np.random.RandomState(42)

    for n_samples in n_samples_sizes:
        X = rng.rand(n_samples, n_features)
        lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
            min_hash_match=0)
        ignore_warnings(lshf.fit)(X)

        kneighbors_graph = lshf.kneighbors_graph(X)
        radius_neighbors_graph = lshf.radius_neighbors_graph(X)

        assert_equal(kneighbors_graph.shape[0], n_samples)
        assert_equal(kneighbors_graph.shape[1], n_samples)
        assert_equal(radius_neighbors_graph.shape[0], n_samples)
        assert_equal(radius_neighbors_graph.shape[1], n_samples)


def test_sparse_input():
    X1 = sp.rand(50, 100, random_state=0)
    X2 = sp.rand(10, 100, random_state=1)
    forest_sparse = ignore_warnings(LSHForest, category=DeprecationWarning)(
        radius=1, random_state=0).fit(X1)
    forest_dense = ignore_warnings(LSHForest, category=DeprecationWarning)(
        radius=1, random_state=0).fit(X1.A)

    d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True)
    d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True)

    assert_almost_equal(d_sparse, d_dense)
    assert_almost_equal(i_sparse, i_dense)

    d_sparse, i_sparse = forest_sparse.radius_neighbors(X2,
                                                        return_distance=True)
    d_dense, i_dense = forest_dense.radius_neighbors(X2.A,
                                                     return_distance=True)
    assert_equal(d_sparse.shape, d_dense.shape)
    for a, b in zip(d_sparse, d_dense):
        assert_almost_equal(a, b)
    for a, b in zip(i_sparse, i_dense):
        assert_almost_equal(a, b)