1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
import pickle
import itertools
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal
from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap,
simultaneous_sort, kernel_norm,
nodeheap_sort, DTYPE, ITYPE)
from sklearn.neighbors.dist_metrics import DistanceMetric
from sklearn.utils import check_random_state
from sklearn.utils.testing import assert_allclose
rng = np.random.RandomState(10)
V_mahalanobis = rng.rand(3, 3)
V_mahalanobis = np.dot(V_mahalanobis, V_mahalanobis.T)
DIMENSION = 3
METRICS = {'euclidean': {},
'manhattan': {},
'minkowski': dict(p=3),
'chebyshev': {},
'seuclidean': dict(V=rng.random_sample(DIMENSION)),
'wminkowski': dict(p=3, w=rng.random_sample(DIMENSION)),
'mahalanobis': dict(V=V_mahalanobis)}
DISCRETE_METRICS = ['hamming',
'canberra',
'braycurtis']
BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski',
'rogerstanimoto', 'russellrao', 'sokalmichener',
'sokalsneath']
def dist_func(x1, x2, p):
return np.sum((x1 - x2) ** p) ** (1. / p)
def brute_force_neighbors(X, Y, k, metric, **kwargs):
D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X)
ind = np.argsort(D, axis=1)[:, :k]
dist = D[np.arange(Y.shape[0])[:, None], ind]
return dist, ind
@pytest.mark.parametrize('metric', METRICS)
@pytest.mark.parametrize('k', (1, 3, 5))
@pytest.mark.parametrize('dualtree', (True, False))
@pytest.mark.parametrize('breadth_first', (True, False))
def test_ball_tree_query(metric, k, dualtree, breadth_first):
rng = check_random_state(0)
X = rng.random_sample((40, DIMENSION))
Y = rng.random_sample((10, DIMENSION))
kwargs = METRICS[metric]
bt = BallTree(X, leaf_size=1, metric=metric, **kwargs)
dist1, ind1 = bt.query(Y, k, dualtree=dualtree,
breadth_first=breadth_first)
dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs)
# don't check indices here: if there are any duplicate distances,
# the indices may not match. Distances should not have this problem.
assert_array_almost_equal(dist1, dist2)
@pytest.mark.parametrize('metric',
itertools.chain(BOOLEAN_METRICS, DISCRETE_METRICS))
def test_ball_tree_query_metrics(metric):
rng = check_random_state(0)
if metric in BOOLEAN_METRICS:
X = rng.random_sample((40, 10)).round(0)
Y = rng.random_sample((10, 10)).round(0)
elif metric in DISCRETE_METRICS:
X = (4 * rng.random_sample((40, 10))).round(0)
Y = (4 * rng.random_sample((10, 10))).round(0)
k = 5
bt = BallTree(X, leaf_size=1, metric=metric)
dist1, ind1 = bt.query(Y, k)
dist2, ind2 = brute_force_neighbors(X, Y, k, metric)
assert_array_almost_equal(dist1, dist2)
def test_ball_tree_query_radius(n_samples=100, n_features=10):
rng = check_random_state(0)
X = 2 * rng.random_sample(size=(n_samples, n_features)) - 1
query_pt = np.zeros(n_features, dtype=float)
eps = 1E-15 # roundoff error can cause test to fail
bt = BallTree(X, leaf_size=5)
rad = np.sqrt(((X - query_pt) ** 2).sum(1))
for r in np.linspace(rad[0], rad[-1], 100):
ind = bt.query_radius([query_pt], r + eps)[0]
i = np.where(rad <= r + eps)[0]
ind.sort()
i.sort()
assert_array_almost_equal(i, ind)
def test_ball_tree_query_radius_distance(n_samples=100, n_features=10):
rng = check_random_state(0)
X = 2 * rng.random_sample(size=(n_samples, n_features)) - 1
query_pt = np.zeros(n_features, dtype=float)
eps = 1E-15 # roundoff error can cause test to fail
bt = BallTree(X, leaf_size=5)
rad = np.sqrt(((X - query_pt) ** 2).sum(1))
for r in np.linspace(rad[0], rad[-1], 100):
ind, dist = bt.query_radius([query_pt], r + eps, return_distance=True)
ind = ind[0]
dist = dist[0]
d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1))
assert_array_almost_equal(d, dist)
def compute_kernel_slow(Y, X, kernel, h):
d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1))
norm = kernel_norm(h, X.shape[1], kernel)
if kernel == 'gaussian':
return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1)
elif kernel == 'tophat':
return norm * (d < h).sum(-1)
elif kernel == 'epanechnikov':
return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1)
elif kernel == 'exponential':
return norm * (np.exp(-d / h)).sum(-1)
elif kernel == 'linear':
return norm * ((1 - d / h) * (d < h)).sum(-1)
elif kernel == 'cosine':
return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1)
else:
raise ValueError('kernel not recognized')
@pytest.mark.parametrize("kernel", ['gaussian', 'tophat', 'epanechnikov',
'exponential', 'linear', 'cosine'])
@pytest.mark.parametrize("h", [0.01, 0.1, 1])
@pytest.mark.parametrize("rtol", [0, 1E-5])
@pytest.mark.parametrize("atol", [1E-6, 1E-2])
@pytest.mark.parametrize("breadth_first", [True, False])
def test_ball_tree_kde(kernel, h, rtol, atol, breadth_first, n_samples=100,
n_features=3):
np.random.seed(0)
X = np.random.random((n_samples, n_features))
Y = np.random.random((n_samples, n_features))
bt = BallTree(X, leaf_size=10)
dens_true = compute_kernel_slow(Y, X, kernel, h)
dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol,
kernel=kernel,
breadth_first=breadth_first)
assert_allclose(dens, dens_true,
atol=atol, rtol=max(rtol, 1e-7))
def test_gaussian_kde(n_samples=1000):
# Compare gaussian KDE results to scipy.stats.gaussian_kde
from scipy.stats import gaussian_kde
rng = check_random_state(0)
x_in = rng.normal(0, 1, n_samples)
x_out = np.linspace(-5, 5, 30)
for h in [0.01, 0.1, 1]:
bt = BallTree(x_in[:, None])
gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in))
dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples
dens_gkde = gkde.evaluate(x_out)
assert_array_almost_equal(dens_bt, dens_gkde, decimal=3)
def test_ball_tree_two_point(n_samples=100, n_features=3):
rng = check_random_state(0)
X = rng.random_sample((n_samples, n_features))
Y = rng.random_sample((n_samples, n_features))
r = np.linspace(0, 1, 10)
bt = BallTree(X, leaf_size=10)
D = DistanceMetric.get_metric("euclidean").pairwise(Y, X)
counts_true = [(D <= ri).sum() for ri in r]
def check_two_point(r, dualtree):
counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree)
assert_array_almost_equal(counts, counts_true)
for dualtree in (True, False):
check_two_point(r, dualtree)
def test_ball_tree_pickle():
rng = check_random_state(0)
X = rng.random_sample((10, 3))
bt1 = BallTree(X, leaf_size=1)
# Test if BallTree with callable metric is picklable
bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2)
ind1, dist1 = bt1.query(X)
ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X)
def check_pickle_protocol(protocol):
s = pickle.dumps(bt1, protocol=protocol)
bt2 = pickle.loads(s)
s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol)
bt2_pyfunc = pickle.loads(s_pyfunc)
ind2, dist2 = bt2.query(X)
ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X)
assert_array_almost_equal(ind1, ind2)
assert_array_almost_equal(dist1, dist2)
assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc)
assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc)
assert isinstance(bt2, BallTree)
for protocol in (0, 1, 2):
check_pickle_protocol(protocol)
def test_neighbors_heap(n_pts=5, n_nbrs=10):
heap = NeighborsHeap(n_pts, n_nbrs)
for row in range(n_pts):
d_in = rng.random_sample(2 * n_nbrs).astype(DTYPE)
i_in = np.arange(2 * n_nbrs, dtype=ITYPE)
for d, i in zip(d_in, i_in):
heap.push(row, d, i)
ind = np.argsort(d_in)
d_in = d_in[ind]
i_in = i_in[ind]
d_heap, i_heap = heap.get_arrays(sort=True)
assert_array_almost_equal(d_in[:n_nbrs], d_heap[row])
assert_array_almost_equal(i_in[:n_nbrs], i_heap[row])
def test_node_heap(n_nodes=50):
vals = rng.random_sample(n_nodes).astype(DTYPE)
i1 = np.argsort(vals)
vals2, i2 = nodeheap_sort(vals)
assert_array_almost_equal(i1, i2)
assert_array_almost_equal(vals[i1], vals2)
def test_simultaneous_sort(n_rows=10, n_pts=201):
dist = rng.random_sample((n_rows, n_pts)).astype(DTYPE)
ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE)
dist2 = dist.copy()
ind2 = ind.copy()
# simultaneous sort rows using function
simultaneous_sort(dist, ind)
# simultaneous sort rows using numpy
i = np.argsort(dist2, axis=1)
row_ind = np.arange(n_rows)[:, None]
dist2 = dist2[row_ind, i]
ind2 = ind2[row_ind, i]
assert_array_almost_equal(dist, dist2)
assert_array_almost_equal(ind, ind2)
def test_query_haversine():
rng = check_random_state(0)
X = 2 * np.pi * rng.random_sample((40, 2))
bt = BallTree(X, leaf_size=1, metric='haversine')
dist1, ind1 = bt.query(X, k=5)
dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine')
assert_array_almost_equal(dist1, dist2)
assert_array_almost_equal(ind1, ind2)
|