1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
"""Stochastic optimization methods for MLP
"""
# Authors: Jiyuan Qian <jq401@nyu.edu>
# License: BSD 3 clause
import numpy as np
class BaseOptimizer(object):
"""Base (Stochastic) gradient descent optimizer
Parameters
----------
params : list, length = len(coefs_) + len(intercepts_)
The concatenated list containing coefs_ and intercepts_ in MLP model.
Used for initializing velocities and updating params
learning_rate_init : float, optional, default 0.1
The initial learning rate used. It controls the step-size in updating
the weights
Attributes
----------
learning_rate : float
the current learning rate
"""
def __init__(self, params, learning_rate_init=0.1):
self.params = [param for param in params]
self.learning_rate_init = learning_rate_init
self.learning_rate = float(learning_rate_init)
def update_params(self, grads):
"""Update parameters with given gradients
Parameters
----------
grads : list, length = len(params)
Containing gradients with respect to coefs_ and intercepts_ in MLP
model. So length should be aligned with params
"""
updates = self._get_updates(grads)
for param, update in zip(self.params, updates):
param += update
def iteration_ends(self, time_step):
"""Perform update to learning rate and potentially other states at the
end of an iteration
"""
pass
def trigger_stopping(self, msg, verbose):
"""Decides whether it is time to stop training
Parameters
----------
msg : str
Message passed in for verbose output
verbose : bool
Print message to stdin if True
Returns
-------
is_stopping : bool
True if training needs to stop
"""
if verbose:
print(msg + " Stopping.")
return True
class SGDOptimizer(BaseOptimizer):
"""Stochastic gradient descent optimizer with momentum
Parameters
----------
params : list, length = len(coefs_) + len(intercepts_)
The concatenated list containing coefs_ and intercepts_ in MLP model.
Used for initializing velocities and updating params
learning_rate_init : float, optional, default 0.1
The initial learning rate used. It controls the step-size in updating
the weights
lr_schedule : {'constant', 'adaptive', 'invscaling'}, default 'constant'
Learning rate schedule for weight updates.
-'constant', is a constant learning rate given by
'learning_rate_init'.
-'invscaling' gradually decreases the learning rate 'learning_rate_' at
each time step 't' using an inverse scaling exponent of 'power_t'.
learning_rate_ = learning_rate_init / pow(t, power_t)
-'adaptive', keeps the learning rate constant to
'learning_rate_init' as long as the training keeps decreasing.
Each time 2 consecutive epochs fail to decrease the training loss by
tol, or fail to increase validation score by tol if 'early_stopping'
is on, the current learning rate is divided by 5.
momentum : float, optional, default 0.9
Value of momentum used, must be larger than or equal to 0
nesterov : bool, optional, default True
Whether to use nesterov's momentum or not. Use nesterov's if True
Attributes
----------
learning_rate : float
the current learning rate
velocities : list, length = len(params)
velocities that are used to update params
"""
def __init__(self, params, learning_rate_init=0.1, lr_schedule='constant',
momentum=0.9, nesterov=True, power_t=0.5):
super(SGDOptimizer, self).__init__(params, learning_rate_init)
self.lr_schedule = lr_schedule
self.momentum = momentum
self.nesterov = nesterov
self.power_t = power_t
self.velocities = [np.zeros_like(param) for param in params]
def iteration_ends(self, time_step):
"""Perform updates to learning rate and potential other states at the
end of an iteration
Parameters
----------
time_step : int
number of training samples trained on so far, used to update
learning rate for 'invscaling'
"""
if self.lr_schedule == 'invscaling':
self.learning_rate = (float(self.learning_rate_init) /
(time_step + 1) ** self.power_t)
def trigger_stopping(self, msg, verbose):
if self.lr_schedule != 'adaptive':
if verbose:
print(msg + " Stopping.")
return True
if self.learning_rate <= 1e-6:
if verbose:
print(msg + " Learning rate too small. Stopping.")
return True
self.learning_rate /= 5.
if verbose:
print(msg + " Setting learning rate to %f" %
self.learning_rate)
return False
def _get_updates(self, grads):
"""Get the values used to update params with given gradients
Parameters
----------
grads : list, length = len(coefs_) + len(intercepts_)
Containing gradients with respect to coefs_ and intercepts_ in MLP
model. So length should be aligned with params
Returns
-------
updates : list, length = len(grads)
The values to add to params
"""
updates = [self.momentum * velocity - self.learning_rate * grad
for velocity, grad in zip(self.velocities, grads)]
self.velocities = updates
if self.nesterov:
updates = [self.momentum * velocity - self.learning_rate * grad
for velocity, grad in zip(self.velocities, grads)]
return updates
class AdamOptimizer(BaseOptimizer):
"""Stochastic gradient descent optimizer with Adam
Note: All default values are from the original Adam paper
Parameters
----------
params : list, length = len(coefs_) + len(intercepts_)
The concatenated list containing coefs_ and intercepts_ in MLP model.
Used for initializing velocities and updating params
learning_rate_init : float, optional, default 0.1
The initial learning rate used. It controls the step-size in updating
the weights
beta_1 : float, optional, default 0.9
Exponential decay rate for estimates of first moment vector, should be
in [0, 1)
beta_2 : float, optional, default 0.999
Exponential decay rate for estimates of second moment vector, should be
in [0, 1)
epsilon : float, optional, default 1e-8
Value for numerical stability
Attributes
----------
learning_rate : float
The current learning rate
t : int
Timestep
ms : list, length = len(params)
First moment vectors
vs : list, length = len(params)
Second moment vectors
References
----------
Kingma, Diederik, and Jimmy Ba.
"Adam: A method for stochastic optimization."
arXiv preprint arXiv:1412.6980 (2014).
"""
def __init__(self, params, learning_rate_init=0.001, beta_1=0.9,
beta_2=0.999, epsilon=1e-8):
super(AdamOptimizer, self).__init__(params, learning_rate_init)
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.t = 0
self.ms = [np.zeros_like(param) for param in params]
self.vs = [np.zeros_like(param) for param in params]
def _get_updates(self, grads):
"""Get the values used to update params with given gradients
Parameters
----------
grads : list, length = len(coefs_) + len(intercepts_)
Containing gradients with respect to coefs_ and intercepts_ in MLP
model. So length should be aligned with params
Returns
-------
updates : list, length = len(grads)
The values to add to params
"""
self.t += 1
self.ms = [self.beta_1 * m + (1 - self.beta_1) * grad
for m, grad in zip(self.ms, grads)]
self.vs = [self.beta_2 * v + (1 - self.beta_2) * (grad ** 2)
for v, grad in zip(self.vs, grads)]
self.learning_rate = (self.learning_rate_init *
np.sqrt(1 - self.beta_2 ** self.t) /
(1 - self.beta_1 ** self.t))
updates = [-self.learning_rate * m / (np.sqrt(v) + self.epsilon)
for m, v in zip(self.ms, self.vs)]
return updates
|