File: test_rbm.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (194 lines) | stat: -rw-r--r-- 6,266 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import sys
import re

import numpy as np
from scipy.sparse import csc_matrix, csr_matrix, lil_matrix
from sklearn.utils.testing import (assert_almost_equal, assert_array_equal,
                                   assert_true)

from sklearn.datasets import load_digits
from sklearn.externals.six.moves import cStringIO as StringIO
from sklearn.neural_network import BernoulliRBM
from sklearn.utils.validation import assert_all_finite
np.seterr(all='warn')

Xdigits = load_digits().data
Xdigits -= Xdigits.min()
Xdigits /= Xdigits.max()


def test_fit():
    X = Xdigits.copy()

    rbm = BernoulliRBM(n_components=64, learning_rate=0.1,
                       batch_size=10, n_iter=7, random_state=9)
    rbm.fit(X)

    assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0)

    # in-place tricks shouldn't have modified X
    assert_array_equal(X, Xdigits)


def test_partial_fit():
    X = Xdigits.copy()
    rbm = BernoulliRBM(n_components=64, learning_rate=0.1,
                       batch_size=20, random_state=9)
    n_samples = X.shape[0]
    n_batches = int(np.ceil(float(n_samples) / rbm.batch_size))
    batch_slices = np.array_split(X, n_batches)

    for i in range(7):
        for batch in batch_slices:
            rbm.partial_fit(batch)

    assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0)
    assert_array_equal(X, Xdigits)


def test_transform():
    X = Xdigits[:100]
    rbm1 = BernoulliRBM(n_components=16, batch_size=5,
                        n_iter=5, random_state=42)
    rbm1.fit(X)

    Xt1 = rbm1.transform(X)
    Xt2 = rbm1._mean_hiddens(X)

    assert_array_equal(Xt1, Xt2)


def test_small_sparse():
    # BernoulliRBM should work on small sparse matrices.
    X = csr_matrix(Xdigits[:4])
    BernoulliRBM().fit(X)       # no exception


def test_small_sparse_partial_fit():
    for sparse in [csc_matrix, csr_matrix]:
        X_sparse = sparse(Xdigits[:100])
        X = Xdigits[:100].copy()

        rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1,
                            batch_size=10, random_state=9)
        rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1,
                            batch_size=10, random_state=9)

        rbm1.partial_fit(X_sparse)
        rbm2.partial_fit(X)

        assert_almost_equal(rbm1.score_samples(X).mean(),
                            rbm2.score_samples(X).mean(),
                            decimal=0)


def test_sample_hiddens():
    rng = np.random.RandomState(0)
    X = Xdigits[:100]
    rbm1 = BernoulliRBM(n_components=2, batch_size=5,
                        n_iter=5, random_state=42)
    rbm1.fit(X)

    h = rbm1._mean_hiddens(X[0])
    hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0)

    assert_almost_equal(h, hs, decimal=1)


def test_fit_gibbs():
    # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]]
    # from the same input
    rng = np.random.RandomState(42)
    X = np.array([[0.], [1.]])
    rbm1 = BernoulliRBM(n_components=2, batch_size=2,
                        n_iter=42, random_state=rng)
    # you need that much iters
    rbm1.fit(X)
    assert_almost_equal(rbm1.components_,
                        np.array([[0.02649814], [0.02009084]]), decimal=4)
    assert_almost_equal(rbm1.gibbs(X), X)
    return rbm1


def test_fit_gibbs_sparse():
    # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from
    # the same input even when the input is sparse, and test against non-sparse
    rbm1 = test_fit_gibbs()
    rng = np.random.RandomState(42)
    from scipy.sparse import csc_matrix
    X = csc_matrix([[0.], [1.]])
    rbm2 = BernoulliRBM(n_components=2, batch_size=2,
                        n_iter=42, random_state=rng)
    rbm2.fit(X)
    assert_almost_equal(rbm2.components_,
                        np.array([[0.02649814], [0.02009084]]), decimal=4)
    assert_almost_equal(rbm2.gibbs(X), X.toarray())
    assert_almost_equal(rbm1.components_, rbm2.components_)


def test_gibbs_smoke():
    # Check if we don't get NaNs sampling the full digits dataset.
    # Also check that sampling again will yield different results.
    X = Xdigits
    rbm1 = BernoulliRBM(n_components=42, batch_size=40,
                        n_iter=20, random_state=42)
    rbm1.fit(X)
    X_sampled = rbm1.gibbs(X)
    assert_all_finite(X_sampled)
    X_sampled2 = rbm1.gibbs(X)
    assert np.all((X_sampled != X_sampled2).max(axis=1))


def test_score_samples():
    # Test score_samples (pseudo-likelihood) method.
    # Assert that pseudo-likelihood is computed without clipping.
    # See Fabian's blog, http://bit.ly/1iYefRk
    rng = np.random.RandomState(42)
    X = np.vstack([np.zeros(1000), np.ones(1000)])
    rbm1 = BernoulliRBM(n_components=10, batch_size=2,
                        n_iter=10, random_state=rng)
    rbm1.fit(X)
    assert (rbm1.score_samples(X) < -300).all()

    # Sparse vs. dense should not affect the output. Also test sparse input
    # validation.
    rbm1.random_state = 42
    d_score = rbm1.score_samples(X)
    rbm1.random_state = 42
    s_score = rbm1.score_samples(lil_matrix(X))
    assert_almost_equal(d_score, s_score)

    # Test numerical stability (#2785): would previously generate infinities
    # and crash with an exception.
    with np.errstate(under='ignore'):
        rbm1.score_samples([np.arange(1000) * 100])


def test_rbm_verbose():
    rbm = BernoulliRBM(n_iter=2, verbose=10)
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        rbm.fit(Xdigits)
    finally:
        sys.stdout = old_stdout


def test_sparse_and_verbose():
    # Make sure RBM works with sparse input when verbose=True
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    from scipy.sparse import csc_matrix
    X = csc_matrix([[0.], [1.]])
    rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1,
                       random_state=42, verbose=True)
    try:
        rbm.fit(X)
        s = sys.stdout.getvalue()
        # make sure output is sound
        assert_true(re.match(r"\[BernoulliRBM\] Iteration 1,"
                             r" pseudo-likelihood = -?(\d)+(\.\d+)?,"
                             r" time = (\d|\.)+s",
                             s))
    finally:
        sys.stdout = old_stdout