File: _encoders.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (849 lines) | stat: -rw-r--r-- 33,310 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
# Authors: Andreas Mueller <amueller@ais.uni-bonn.de>
#          Joris Van den Bossche <jorisvandenbossche@gmail.com>
# License: BSD 3 clause

from __future__ import division

import numbers
import warnings

import numpy as np
from scipy import sparse

from .. import get_config as _get_config
from ..base import BaseEstimator, TransformerMixin
from ..externals import six
from ..utils import check_array
from ..utils import deprecated
from ..utils.fixes import _argmax, _object_dtype_isnan
from ..utils.validation import check_is_fitted

from .base import _transform_selected
from .label import _encode, _encode_check_unknown

range = six.moves.range

__all__ = [
    'OneHotEncoder',
    'OrdinalEncoder'
]


class _BaseEncoder(BaseEstimator, TransformerMixin):
    """
    Base class for encoders that includes the code to categorize and
    transform the input features.

    """

    def _check_X(self, X):
        """
        Perform custom check_array:
        - convert list of strings to object dtype
        - check for missing values for object dtype data (check_array does
          not do that)

        """
        X_temp = check_array(X, dtype=None)
        if not hasattr(X, 'dtype') and np.issubdtype(X_temp.dtype, np.str_):
            X = check_array(X, dtype=np.object)
        else:
            X = X_temp

        if X.dtype == np.dtype('object'):
            if not _get_config()['assume_finite']:
                if _object_dtype_isnan(X).any():
                    raise ValueError("Input contains NaN")

        return X

    def _fit(self, X, handle_unknown='error'):
        X = self._check_X(X)

        n_samples, n_features = X.shape

        if self._categories != 'auto':
            if X.dtype != object:
                for cats in self._categories:
                    if not np.all(np.sort(cats) == np.array(cats)):
                        raise ValueError("Unsorted categories are not "
                                         "supported for numerical categories")
            if len(self._categories) != n_features:
                raise ValueError("Shape mismatch: if n_values is an array,"
                                 " it has to be of shape (n_features,).")

        self.categories_ = []

        for i in range(n_features):
            Xi = X[:, i]
            if self._categories == 'auto':
                cats = _encode(Xi)
            else:
                cats = np.array(self._categories[i], dtype=X.dtype)
                if handle_unknown == 'error':
                    diff = _encode_check_unknown(Xi, cats)
                    if diff:
                        msg = ("Found unknown categories {0} in column {1}"
                               " during fit".format(diff, i))
                        raise ValueError(msg)
            self.categories_.append(cats)

    def _transform(self, X, handle_unknown='error'):
        X = self._check_X(X)

        _, n_features = X.shape
        X_int = np.zeros_like(X, dtype=np.int)
        X_mask = np.ones_like(X, dtype=np.bool)

        for i in range(n_features):
            Xi = X[:, i]
            diff, valid_mask = _encode_check_unknown(Xi, self.categories_[i],
                                                     return_mask=True)

            if not np.all(valid_mask):
                if handle_unknown == 'error':
                    msg = ("Found unknown categories {0} in column {1}"
                           " during transform".format(diff, i))
                    raise ValueError(msg)
                else:
                    # Set the problematic rows to an acceptable value and
                    # continue `The rows are marked `X_mask` and will be
                    # removed later.
                    X_mask[:, i] = valid_mask
                    # cast Xi into the largest string type necessary
                    # to handle different lengths of numpy strings
                    if (self.categories_[i].dtype.kind in ('U', 'S')
                            and self.categories_[i].itemsize > Xi.itemsize):
                        Xi = Xi.astype(self.categories_[i].dtype)
                    else:
                        Xi = Xi.copy()

                    Xi[~valid_mask] = self.categories_[i][0]
            _, encoded = _encode(Xi, self.categories_[i], encode=True)
            X_int[:, i] = encoded

        return X_int, X_mask


class OneHotEncoder(_BaseEncoder):
    """Encode categorical integer features as a one-hot numeric array.

    The input to this transformer should be an array-like of integers or
    strings, denoting the values taken on by categorical (discrete) features.
    The features are encoded using a one-hot (aka 'one-of-K' or 'dummy')
    encoding scheme. This creates a binary column for each category and
    returns a sparse matrix or dense array.

    By default, the encoder derives the categories based on the unique values
    in each feature. Alternatively, you can also specify the `categories`
    manually.
    The OneHotEncoder previously assumed that the input features take on
    values in the range [0, max(values)). This behaviour is deprecated.

    This encoding is needed for feeding categorical data to many scikit-learn
    estimators, notably linear models and SVMs with the standard kernels.

    Note: a one-hot encoding of y labels should use a LabelBinarizer
    instead.

    Read more in the :ref:`User Guide <preprocessing_categorical_features>`.

    Parameters
    ----------
    categories : 'auto' or a list of lists/arrays of values, default='auto'.
        Categories (unique values) per feature:

        - 'auto' : Determine categories automatically from the training data.
        - list : ``categories[i]`` holds the categories expected in the ith
          column. The passed categories should not mix strings and numeric
          values within a single feature, and should be sorted in case of
          numeric values.

        The used categories can be found in the ``categories_`` attribute.

    sparse : boolean, default=True
        Will return sparse matrix if set True else will return an array.

    dtype : number type, default=np.float
        Desired dtype of output.

    handle_unknown : 'error' or 'ignore', default='error'.
        Whether to raise an error or ignore if an unknown categorical feature
        is present during transform (default is to raise). When this parameter
        is set to 'ignore' and an unknown category is encountered during
        transform, the resulting one-hot encoded columns for this feature
        will be all zeros. In the inverse transform, an unknown category
        will be denoted as None.

    n_values : 'auto', int or array of ints, default='auto'
        Number of values per feature.

        - 'auto' : determine value range from training data.
        - int : number of categorical values per feature.
                Each feature value should be in ``range(n_values)``
        - array : ``n_values[i]`` is the number of categorical values in
                  ``X[:, i]``. Each feature value should be
                  in ``range(n_values[i])``

        .. deprecated:: 0.20
            The `n_values` keyword was deprecated in version 0.20 and will
            be removed in 0.22. Use `categories` instead.

    categorical_features : 'all' or array of indices or mask, default='all'
        Specify what features are treated as categorical.

        - 'all': All features are treated as categorical.
        - array of indices: Array of categorical feature indices.
        - mask: Array of length n_features and with dtype=bool.

        Non-categorical features are always stacked to the right of the matrix.

        .. deprecated:: 0.20
            The `categorical_features` keyword was deprecated in version
            0.20 and will be removed in 0.22.
            You can use the ``ColumnTransformer`` instead.

    Attributes
    ----------
    categories_ : list of arrays
        The categories of each feature determined during fitting
        (in order of the features in X and corresponding with the output
        of ``transform``).

    active_features_ : array
        Indices for active features, meaning values that actually occur
        in the training set. Only available when n_values is ``'auto'``.

        .. deprecated:: 0.20
            The ``active_features_`` attribute was deprecated in version
            0.20 and will be removed in 0.22.

    feature_indices_ : array of shape (n_features,)
        Indices to feature ranges.
        Feature ``i`` in the original data is mapped to features
        from ``feature_indices_[i]`` to ``feature_indices_[i+1]``
        (and then potentially masked by ``active_features_`` afterwards)

        .. deprecated:: 0.20
            The ``feature_indices_`` attribute was deprecated in version
            0.20 and will be removed in 0.22.

    n_values_ : array of shape (n_features,)
        Maximum number of values per feature.

        .. deprecated:: 0.20
            The ``n_values_`` attribute was deprecated in version
            0.20 and will be removed in 0.22.

    Examples
    --------
    Given a dataset with two features, we let the encoder find the unique
    values per feature and transform the data to a binary one-hot encoding.

    >>> from sklearn.preprocessing import OneHotEncoder
    >>> enc = OneHotEncoder(handle_unknown='ignore')
    >>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
    >>> enc.fit(X)
    ... # doctest: +ELLIPSIS
    OneHotEncoder(categorical_features=None, categories=None,
           dtype=<... 'numpy.float64'>, handle_unknown='ignore',
           n_values=None, sparse=True)

    >>> enc.categories_
    [array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
    >>> enc.transform([['Female', 1], ['Male', 4]]).toarray()
    array([[1., 0., 1., 0., 0.],
           [0., 1., 0., 0., 0.]])
    >>> enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])
    array([['Male', 1],
           [None, 2]], dtype=object)
    >>> enc.get_feature_names()
    array(['x0_Female', 'x0_Male', 'x1_1', 'x1_2', 'x1_3'], dtype=object)

    See also
    --------
    sklearn.preprocessing.OrdinalEncoder : performs an ordinal (integer)
      encoding of the categorical features.
    sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of
      dictionary items (also handles string-valued features).
    sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot
      encoding of dictionary items or strings.
    sklearn.preprocessing.LabelBinarizer : binarizes labels in a one-vs-all
      fashion.
    sklearn.preprocessing.MultiLabelBinarizer : transforms between iterable of
      iterables and a multilabel format, e.g. a (samples x classes) binary
      matrix indicating the presence of a class label.
    """

    def __init__(self, n_values=None, categorical_features=None,
                 categories=None, sparse=True, dtype=np.float64,
                 handle_unknown='error'):
        self.categories = categories
        self.sparse = sparse
        self.dtype = dtype
        self.handle_unknown = handle_unknown
        self.n_values = n_values
        self.categorical_features = categorical_features

    # Deprecated attributes

    @property
    @deprecated("The ``active_features_`` attribute was deprecated in version "
                "0.20 and will be removed 0.22.")
    def active_features_(self):
        check_is_fitted(self, 'categories_')
        return self._active_features_

    @property
    @deprecated("The ``feature_indices_`` attribute was deprecated in version "
                "0.20 and will be removed 0.22.")
    def feature_indices_(self):
        check_is_fitted(self, 'categories_')
        return self._feature_indices_

    @property
    @deprecated("The ``n_values_`` attribute was deprecated in version "
                "0.20 and will be removed 0.22.")
    def n_values_(self):
        check_is_fitted(self, 'categories_')
        return self._n_values_

    def _handle_deprecations(self, X):
        # internal version of the attributes to handle deprecations
        self._n_values = self.n_values
        self._categories = getattr(self, '_categories', None)
        self._categorical_features = getattr(self, '_categorical_features',
                                             None)

        # user manually set the categories or second fit -> never legacy mode
        if self.categories is not None or self._categories is not None:
            self._legacy_mode = False
            if self.categories is not None:
                self._categories = self.categories

        # categories not set -> infer if we need legacy mode or not
        elif self.n_values is not None and self.n_values != 'auto':
            msg = (
                "Passing 'n_values' is deprecated in version 0.20 and will be "
                "removed in 0.22. You can use the 'categories' keyword "
                "instead. 'n_values=n' corresponds to 'categories=[range(n)]'."
            )
            warnings.warn(msg, DeprecationWarning)
            self._legacy_mode = True

        else:  # n_values = 'auto'
            if self.handle_unknown == 'ignore':
                # no change in behaviour, no need to raise deprecation warning
                self._legacy_mode = False
                self._categories = 'auto'
                if self.n_values == 'auto':
                    # user manually specified this
                    msg = (
                        "Passing 'n_values' is deprecated in version 0.20 and "
                        "will be removed in 0.22. n_values='auto' can be "
                        "replaced with categories='auto'."
                    )
                    warnings.warn(msg, DeprecationWarning)
            else:

                # check if we have integer or categorical input
                try:
                    X = check_array(X, dtype=np.int)
                except ValueError:
                    self._legacy_mode = False
                    self._categories = 'auto'
                else:
                    msg = (
                        "The handling of integer data will change in version "
                        "0.22. Currently, the categories are determined "
                        "based on the range [0, max(values)], while in the "
                        "future they will be determined based on the unique "
                        "values.\nIf you want the future behaviour and "
                        "silence this warning, you can specify "
                        "\"categories='auto'\".\n"
                        "In case you used a LabelEncoder before this "
                        "OneHotEncoder to convert the categories to integers, "
                        "then you can now use the OneHotEncoder directly."
                    )
                    warnings.warn(msg, FutureWarning)
                    self._legacy_mode = True
                    self._n_values = 'auto'

        # if user specified categorical_features -> always use legacy mode
        if self.categorical_features is not None:
            if (isinstance(self.categorical_features, six.string_types)
                    and self.categorical_features == 'all'):
                warnings.warn(
                    "The 'categorical_features' keyword is deprecated in "
                    "version 0.20 and will be removed in 0.22. The passed "
                    "value of 'all' is the default and can simply be removed.",
                    DeprecationWarning)
            else:
                if self.categories is not None:
                    raise ValueError(
                        "The 'categorical_features' keyword is deprecated, "
                        "and cannot be used together with specifying "
                        "'categories'.")
                warnings.warn(
                    "The 'categorical_features' keyword is deprecated in "
                    "version 0.20 and will be removed in 0.22. You can "
                    "use the ColumnTransformer instead.", DeprecationWarning)
                # Set categories_ to empty list if no categorical columns exist
                n_features = X.shape[1]
                sel = np.zeros(n_features, dtype=bool)
                sel[np.asarray(self.categorical_features)] = True
                if sum(sel) == 0:
                    self.categories_ = []
                self._legacy_mode = True
            self._categorical_features = self.categorical_features
        else:
            self._categorical_features = 'all'

    def fit(self, X, y=None):
        """Fit OneHotEncoder to X.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data to determine the categories of each feature.

        Returns
        -------
        self
        """
        if self.handle_unknown not in ('error', 'ignore'):
            msg = ("handle_unknown should be either 'error' or 'ignore', "
                   "got {0}.".format(self.handle_unknown))
            raise ValueError(msg)

        self._handle_deprecations(X)

        if self._legacy_mode:
            _transform_selected(X, self._legacy_fit_transform, self.dtype,
                                self._categorical_features,
                                copy=True)
            return self
        else:
            self._fit(X, handle_unknown=self.handle_unknown)
            return self

    def _legacy_fit_transform(self, X):
        """Assumes X contains only categorical features."""
        dtype = getattr(X, 'dtype', None)
        X = check_array(X, dtype=np.int)
        if np.any(X < 0):
            raise ValueError("OneHotEncoder in legacy mode cannot handle "
                             "categories encoded as negative integers. "
                             "Please set categories='auto' explicitly to "
                             "be able to use arbitrary integer values as "
                             "category identifiers.")
        n_samples, n_features = X.shape
        if (isinstance(self._n_values, six.string_types) and
                self._n_values == 'auto'):
            n_values = np.max(X, axis=0) + 1
        elif isinstance(self._n_values, numbers.Integral):
            if (np.max(X, axis=0) >= self._n_values).any():
                raise ValueError("Feature out of bounds for n_values=%d"
                                 % self._n_values)
            n_values = np.empty(n_features, dtype=np.int)
            n_values.fill(self._n_values)
        else:
            try:
                n_values = np.asarray(self._n_values, dtype=int)
            except (ValueError, TypeError):
                raise TypeError("Wrong type for parameter `n_values`. Expected"
                                " 'auto', int or array of ints, got %r"
                                % type(X))
            if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]:
                raise ValueError("Shape mismatch: if n_values is an array,"
                                 " it has to be of shape (n_features,).")

        self._n_values_ = n_values
        self.categories_ = [np.arange(n_val - 1, dtype=dtype)
                            for n_val in n_values]
        n_values = np.hstack([[0], n_values])
        indices = np.cumsum(n_values)
        self._feature_indices_ = indices

        column_indices = (X + indices[:-1]).ravel()
        row_indices = np.repeat(np.arange(n_samples, dtype=np.int32),
                                n_features)
        data = np.ones(n_samples * n_features)
        out = sparse.coo_matrix((data, (row_indices, column_indices)),
                                shape=(n_samples, indices[-1]),
                                dtype=self.dtype).tocsr()

        if (isinstance(self._n_values, six.string_types) and
                self._n_values == 'auto'):
            mask = np.array(out.sum(axis=0)).ravel() != 0
            active_features = np.where(mask)[0]
            out = out[:, active_features]
            self._active_features_ = active_features

            self.categories_ = [
                np.unique(X[:, i]).astype(dtype) if dtype
                else np.unique(X[:, i]) for i in range(n_features)]

        return out if self.sparse else out.toarray()

    def fit_transform(self, X, y=None):
        """Fit OneHotEncoder to X, then transform X.

        Equivalent to fit(X).transform(X) but more convenient.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data to encode.

        Returns
        -------
        X_out : sparse matrix if sparse=True else a 2-d array
            Transformed input.
        """
        if self.handle_unknown not in ('error', 'ignore'):
            msg = ("handle_unknown should be either 'error' or 'ignore', "
                   "got {0}.".format(self.handle_unknown))
            raise ValueError(msg)

        self._handle_deprecations(X)

        if self._legacy_mode:
            return _transform_selected(
                X, self._legacy_fit_transform, self.dtype,
                self._categorical_features, copy=True)
        else:
            return self.fit(X).transform(X)

    def _legacy_transform(self, X):
        """Assumes X contains only categorical features."""
        X = check_array(X, dtype=np.int)
        if np.any(X < 0):
            raise ValueError("OneHotEncoder in legacy mode cannot handle "
                             "categories encoded as negative integers. "
                             "Please set categories='auto' explicitly to "
                             "be able to use arbitrary integer values as "
                             "category identifiers.")
        n_samples, n_features = X.shape

        indices = self._feature_indices_
        if n_features != indices.shape[0] - 1:
            raise ValueError("X has different shape than during fitting."
                             " Expected %d, got %d."
                             % (indices.shape[0] - 1, n_features))

        # We use only those categorical features of X that are known using fit.
        # i.e lesser than n_values_ using mask.
        # This means, if self.handle_unknown is "ignore", the row_indices and
        # col_indices corresponding to the unknown categorical feature are
        # ignored.
        mask = (X < self._n_values_).ravel()
        if np.any(~mask):
            if self.handle_unknown not in ['error', 'ignore']:
                raise ValueError("handle_unknown should be either error or "
                                 "unknown got %s" % self.handle_unknown)
            if self.handle_unknown == 'error':
                raise ValueError("unknown categorical feature present %s "
                                 "during transform." % X.ravel()[~mask])

        column_indices = (X + indices[:-1]).ravel()[mask]
        row_indices = np.repeat(np.arange(n_samples, dtype=np.int32),
                                n_features)[mask]
        data = np.ones(np.sum(mask))
        out = sparse.coo_matrix((data, (row_indices, column_indices)),
                                shape=(n_samples, indices[-1]),
                                dtype=self.dtype).tocsr()
        if (isinstance(self._n_values, six.string_types) and
                self._n_values == 'auto'):
            out = out[:, self._active_features_]

        return out if self.sparse else out.toarray()

    def _transform_new(self, X):
        """New implementation assuming categorical input"""
        X_temp = check_array(X, dtype=None)
        if not hasattr(X, 'dtype') and np.issubdtype(X_temp.dtype, np.str_):
            X = check_array(X, dtype=np.object)
        else:
            X = X_temp

        n_samples, n_features = X.shape

        X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)

        mask = X_mask.ravel()
        n_values = [cats.shape[0] for cats in self.categories_]
        n_values = np.array([0] + n_values)
        feature_indices = np.cumsum(n_values)

        indices = (X_int + feature_indices[:-1]).ravel()[mask]
        indptr = X_mask.sum(axis=1).cumsum()
        indptr = np.insert(indptr, 0, 0)
        data = np.ones(n_samples * n_features)[mask]

        out = sparse.csr_matrix((data, indices, indptr),
                                shape=(n_samples, feature_indices[-1]),
                                dtype=self.dtype)
        if not self.sparse:
            return out.toarray()
        else:
            return out

    def transform(self, X):
        """Transform X using one-hot encoding.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data to encode.

        Returns
        -------
        X_out : sparse matrix if sparse=True else a 2-d array
            Transformed input.
        """
        check_is_fitted(self, 'categories_')
        if self._legacy_mode:
            return _transform_selected(X, self._legacy_transform, self.dtype,
                                       self._categorical_features,
                                       copy=True)
        else:
            return self._transform_new(X)

    def inverse_transform(self, X):
        """Convert the back data to the original representation.

        In case unknown categories are encountered (all zero's in the
        one-hot encoding), ``None`` is used to represent this category.

        Parameters
        ----------
        X : array-like or sparse matrix, shape [n_samples, n_encoded_features]
            The transformed data.

        Returns
        -------
        X_tr : array-like, shape [n_samples, n_features]
            Inverse transformed array.

        """
        # if self._legacy_mode:
        #     raise ValueError("only supported for categorical features")

        check_is_fitted(self, 'categories_')
        X = check_array(X, accept_sparse='csr')

        n_samples, _ = X.shape
        n_features = len(self.categories_)
        n_transformed_features = sum([len(cats) for cats in self.categories_])

        # validate shape of passed X
        msg = ("Shape of the passed X data is not correct. Expected {0} "
               "columns, got {1}.")
        if X.shape[1] != n_transformed_features:
            raise ValueError(msg.format(n_transformed_features, X.shape[1]))

        # create resulting array of appropriate dtype
        dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
        X_tr = np.empty((n_samples, n_features), dtype=dt)

        j = 0
        found_unknown = {}

        for i in range(n_features):
            n_categories = len(self.categories_[i])
            sub = X[:, j:j + n_categories]

            # for sparse X argmax returns 2D matrix, ensure 1D array
            labels = np.asarray(_argmax(sub, axis=1)).flatten()
            X_tr[:, i] = self.categories_[i][labels]

            if self.handle_unknown == 'ignore':
                # ignored unknown categories: we have a row of all zero's
                unknown = np.asarray(sub.sum(axis=1) == 0).flatten()
                if unknown.any():
                    found_unknown[i] = unknown

            j += n_categories

        # if ignored are found: potentially need to upcast result to
        # insert None values
        if found_unknown:
            if X_tr.dtype != object:
                X_tr = X_tr.astype(object)

            for idx, mask in found_unknown.items():
                X_tr[mask, idx] = None

        return X_tr

    def get_feature_names(self, input_features=None):
        """Return feature names for output features.

        Parameters
        ----------
        input_features : list of string, length n_features, optional
            String names for input features if available. By default,
            "x0", "x1", ... "xn_features" is used.

        Returns
        -------
        output_feature_names : array of string, length n_output_features

        """
        check_is_fitted(self, 'categories_')
        cats = self.categories_
        if input_features is None:
            input_features = ['x%d' % i for i in range(len(cats))]
        elif len(input_features) != len(self.categories_):
            raise ValueError(
                "input_features should have length equal to number of "
                "features ({}), got {}".format(len(self.categories_),
                                               len(input_features)))

        feature_names = []
        for i in range(len(cats)):
            names = [
                input_features[i] + '_' + six.text_type(t) for t in cats[i]]
            feature_names.extend(names)

        return np.array(feature_names, dtype=object)


class OrdinalEncoder(_BaseEncoder):
    """Encode categorical features as an integer array.

    The input to this transformer should be an array-like of integers or
    strings, denoting the values taken on by categorical (discrete) features.
    The features are converted to ordinal integers. This results in
    a single column of integers (0 to n_categories - 1) per feature.

    Read more in the :ref:`User Guide <preprocessing_categorical_features>`.

    Parameters
    ----------
    categories : 'auto' or a list of lists/arrays of values.
        Categories (unique values) per feature:

        - 'auto' : Determine categories automatically from the training data.
        - list : ``categories[i]`` holds the categories expected in the ith
          column. The passed categories should not mix strings and numeric
          values, and should be sorted in case of numeric values.

        The used categories can be found in the ``categories_`` attribute.

    dtype : number type, default np.float64
        Desired dtype of output.

    Attributes
    ----------
    categories_ : list of arrays
        The categories of each feature determined during fitting
        (in order of the features in X and corresponding with the output
        of ``transform``).

    Examples
    --------
    Given a dataset with two features, we let the encoder find the unique
    values per feature and transform the data to an ordinal encoding.

    >>> from sklearn.preprocessing import OrdinalEncoder
    >>> enc = OrdinalEncoder()
    >>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
    >>> enc.fit(X)
    ... # doctest: +ELLIPSIS
    OrdinalEncoder(categories='auto', dtype=<... 'numpy.float64'>)
    >>> enc.categories_
    [array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
    >>> enc.transform([['Female', 3], ['Male', 1]])
    array([[0., 2.],
           [1., 0.]])

    >>> enc.inverse_transform([[1, 0], [0, 1]])
    array([['Male', 1],
           ['Female', 2]], dtype=object)

    See also
    --------
    sklearn.preprocessing.OneHotEncoder : performs a one-hot encoding of
      categorical features.
    sklearn.preprocessing.LabelEncoder : encodes target labels with values
      between 0 and n_classes-1.
    """

    def __init__(self, categories='auto', dtype=np.float64):
        self.categories = categories
        self.dtype = dtype

    def fit(self, X, y=None):
        """Fit the OrdinalEncoder to X.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data to determine the categories of each feature.

        Returns
        -------
        self

        """
        # base classes uses _categories to deal with deprecations in
        # OneHoteEncoder: can be removed once deprecations are removed
        self._categories = self.categories
        self._fit(X)

        return self

    def transform(self, X):
        """Transform X to ordinal codes.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data to encode.

        Returns
        -------
        X_out : sparse matrix or a 2-d array
            Transformed input.

        """
        X_int, _ = self._transform(X)
        return X_int.astype(self.dtype, copy=False)

    def inverse_transform(self, X):
        """Convert the data back to the original representation.

        Parameters
        ----------
        X : array-like or sparse matrix, shape [n_samples, n_encoded_features]
            The transformed data.

        Returns
        -------
        X_tr : array-like, shape [n_samples, n_features]
            Inverse transformed array.

        """
        check_is_fitted(self, 'categories_')
        X = check_array(X, accept_sparse='csr')

        n_samples, _ = X.shape
        n_features = len(self.categories_)

        # validate shape of passed X
        msg = ("Shape of the passed X data is not correct. Expected {0} "
               "columns, got {1}.")
        if X.shape[1] != n_features:
            raise ValueError(msg.format(n_features, X.shape[1]))

        # create resulting array of appropriate dtype
        dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
        X_tr = np.empty((n_samples, n_features), dtype=dt)

        for i in range(n_features):
            labels = X[:, i].astype('int64')
            X_tr[:, i] = self.categories_[i][labels]

        return X_tr