1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
import warnings
from ..base import BaseEstimator, TransformerMixin
from ..utils import check_array
from ..utils.testing import assert_allclose_dense_sparse
from ..externals.six import string_types
def _identity(X):
"""The identity function.
"""
return X
class FunctionTransformer(BaseEstimator, TransformerMixin):
"""Constructs a transformer from an arbitrary callable.
A FunctionTransformer forwards its X (and optionally y) arguments to a
user-defined function or function object and returns the result of this
function. This is useful for stateless transformations such as taking the
log of frequencies, doing custom scaling, etc.
Note: If a lambda is used as the function, then the resulting
transformer will not be pickleable.
.. versionadded:: 0.17
Read more in the :ref:`User Guide <function_transformer>`.
Parameters
----------
func : callable, optional default=None
The callable to use for the transformation. This will be passed
the same arguments as transform, with args and kwargs forwarded.
If func is None, then func will be the identity function.
inverse_func : callable, optional default=None
The callable to use for the inverse transformation. This will be
passed the same arguments as inverse transform, with args and
kwargs forwarded. If inverse_func is None, then inverse_func
will be the identity function.
validate : bool, optional default=True
Indicate that the input X array should be checked before calling
``func``. The possibilities are:
- If False, there is no input validation.
- If True, then X will be converted to a 2-dimensional NumPy array or
sparse matrix. If the conversion is not possible an exception is
raised.
.. deprecated:: 0.20
``validate=True`` as default will be replaced by
``validate=False`` in 0.22.
accept_sparse : boolean, optional
Indicate that func accepts a sparse matrix as input. If validate is
False, this has no effect. Otherwise, if accept_sparse is false,
sparse matrix inputs will cause an exception to be raised.
pass_y : bool, optional default=False
Indicate that transform should forward the y argument to the
inner callable.
.. deprecated::0.19
check_inverse : bool, default=True
Whether to check that or ``func`` followed by ``inverse_func`` leads to
the original inputs. It can be used for a sanity check, raising a
warning when the condition is not fulfilled.
.. versionadded:: 0.20
kw_args : dict, optional
Dictionary of additional keyword arguments to pass to func.
inv_kw_args : dict, optional
Dictionary of additional keyword arguments to pass to inverse_func.
"""
def __init__(self, func=None, inverse_func=None, validate=None,
accept_sparse=False, pass_y='deprecated', check_inverse=True,
kw_args=None, inv_kw_args=None):
self.func = func
self.inverse_func = inverse_func
self.validate = validate
self.accept_sparse = accept_sparse
self.pass_y = pass_y
self.check_inverse = check_inverse
self.kw_args = kw_args
self.inv_kw_args = inv_kw_args
def _check_input(self, X):
# FIXME: Future warning to be removed in 0.22
if self.validate is None:
self._validate = True
warnings.warn("The default validate=True will be replaced by "
"validate=False in 0.22.", FutureWarning)
else:
self._validate = self.validate
if self._validate:
return check_array(X, accept_sparse=self.accept_sparse)
return X
def _check_inverse_transform(self, X):
"""Check that func and inverse_func are the inverse."""
idx_selected = slice(None, None, max(1, X.shape[0] // 100))
try:
assert_allclose_dense_sparse(
X[idx_selected],
self.inverse_transform(self.transform(X[idx_selected])))
except AssertionError:
warnings.warn("The provided functions are not strictly"
" inverse of each other. If you are sure you"
" want to proceed regardless, set"
" 'check_inverse=False'.", UserWarning)
def fit(self, X, y=None):
"""Fit transformer by checking X.
If ``validate`` is ``True``, ``X`` will be checked.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input array.
Returns
-------
self
"""
X = self._check_input(X)
if (self.check_inverse and not (self.func is None or
self.inverse_func is None)):
self._check_inverse_transform(X)
return self
def transform(self, X, y='deprecated'):
"""Transform X using the forward function.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input array.
y : (ignored)
.. deprecated::0.19
Returns
-------
X_out : array-like, shape (n_samples, n_features)
Transformed input.
"""
if not isinstance(y, string_types) or y != 'deprecated':
warnings.warn("The parameter y on transform() is "
"deprecated since 0.19 and will be removed in 0.21",
DeprecationWarning)
return self._transform(X, y=y, func=self.func, kw_args=self.kw_args)
def inverse_transform(self, X, y='deprecated'):
"""Transform X using the inverse function.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input array.
y : (ignored)
.. deprecated::0.19
Returns
-------
X_out : array-like, shape (n_samples, n_features)
Transformed input.
"""
if not isinstance(y, string_types) or y != 'deprecated':
warnings.warn("The parameter y on inverse_transform() is "
"deprecated since 0.19 and will be removed in 0.21",
DeprecationWarning)
return self._transform(X, y=y, func=self.inverse_func,
kw_args=self.inv_kw_args)
def _transform(self, X, y=None, func=None, kw_args=None):
X = self._check_input(X)
if func is None:
func = _identity
if (not isinstance(self.pass_y, string_types) or
self.pass_y != 'deprecated'):
# We do this to know if pass_y was set to False / True
pass_y = self.pass_y
warnings.warn("The parameter pass_y is deprecated since 0.19 and "
"will be removed in 0.21", DeprecationWarning)
else:
pass_y = False
return func(X, *((y,) if pass_y else ()),
**(kw_args if kw_args else {}))
|