File: _function_transformer.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (201 lines) | stat: -rw-r--r-- 7,178 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import warnings

from ..base import BaseEstimator, TransformerMixin
from ..utils import check_array
from ..utils.testing import assert_allclose_dense_sparse
from ..externals.six import string_types


def _identity(X):
    """The identity function.
    """
    return X


class FunctionTransformer(BaseEstimator, TransformerMixin):
    """Constructs a transformer from an arbitrary callable.

    A FunctionTransformer forwards its X (and optionally y) arguments to a
    user-defined function or function object and returns the result of this
    function. This is useful for stateless transformations such as taking the
    log of frequencies, doing custom scaling, etc.

    Note: If a lambda is used as the function, then the resulting
    transformer will not be pickleable.

    .. versionadded:: 0.17

    Read more in the :ref:`User Guide <function_transformer>`.

    Parameters
    ----------
    func : callable, optional default=None
        The callable to use for the transformation. This will be passed
        the same arguments as transform, with args and kwargs forwarded.
        If func is None, then func will be the identity function.

    inverse_func : callable, optional default=None
        The callable to use for the inverse transformation. This will be
        passed the same arguments as inverse transform, with args and
        kwargs forwarded. If inverse_func is None, then inverse_func
        will be the identity function.

    validate : bool, optional default=True
        Indicate that the input X array should be checked before calling
        ``func``. The possibilities are:

        - If False, there is no input validation.
        - If True, then X will be converted to a 2-dimensional NumPy array or
          sparse matrix. If the conversion is not possible an exception is
          raised.

        .. deprecated:: 0.20
           ``validate=True`` as default will be replaced by
           ``validate=False`` in 0.22.

    accept_sparse : boolean, optional
        Indicate that func accepts a sparse matrix as input. If validate is
        False, this has no effect. Otherwise, if accept_sparse is false,
        sparse matrix inputs will cause an exception to be raised.

    pass_y : bool, optional default=False
        Indicate that transform should forward the y argument to the
        inner callable.

        .. deprecated::0.19

    check_inverse : bool, default=True
       Whether to check that or ``func`` followed by ``inverse_func`` leads to
       the original inputs. It can be used for a sanity check, raising a
       warning when the condition is not fulfilled.

       .. versionadded:: 0.20

    kw_args : dict, optional
        Dictionary of additional keyword arguments to pass to func.

    inv_kw_args : dict, optional
        Dictionary of additional keyword arguments to pass to inverse_func.

    """
    def __init__(self, func=None, inverse_func=None, validate=None,
                 accept_sparse=False, pass_y='deprecated', check_inverse=True,
                 kw_args=None, inv_kw_args=None):
        self.func = func
        self.inverse_func = inverse_func
        self.validate = validate
        self.accept_sparse = accept_sparse
        self.pass_y = pass_y
        self.check_inverse = check_inverse
        self.kw_args = kw_args
        self.inv_kw_args = inv_kw_args

    def _check_input(self, X):
        # FIXME: Future warning to be removed in 0.22
        if self.validate is None:
            self._validate = True
            warnings.warn("The default validate=True will be replaced by "
                          "validate=False in 0.22.", FutureWarning)
        else:
            self._validate = self.validate

        if self._validate:
            return check_array(X, accept_sparse=self.accept_sparse)
        return X

    def _check_inverse_transform(self, X):
        """Check that func and inverse_func are the inverse."""
        idx_selected = slice(None, None, max(1, X.shape[0] // 100))
        try:
            assert_allclose_dense_sparse(
                X[idx_selected],
                self.inverse_transform(self.transform(X[idx_selected])))
        except AssertionError:
            warnings.warn("The provided functions are not strictly"
                          " inverse of each other. If you are sure you"
                          " want to proceed regardless, set"
                          " 'check_inverse=False'.", UserWarning)

    def fit(self, X, y=None):
        """Fit transformer by checking X.

        If ``validate`` is ``True``, ``X`` will be checked.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input array.

        Returns
        -------
        self
        """
        X = self._check_input(X)
        if (self.check_inverse and not (self.func is None or
                                        self.inverse_func is None)):
            self._check_inverse_transform(X)
        return self

    def transform(self, X, y='deprecated'):
        """Transform X using the forward function.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input array.

        y : (ignored)
            .. deprecated::0.19

        Returns
        -------
        X_out : array-like, shape (n_samples, n_features)
            Transformed input.
        """
        if not isinstance(y, string_types) or y != 'deprecated':
            warnings.warn("The parameter y on transform() is "
                          "deprecated since 0.19 and will be removed in 0.21",
                          DeprecationWarning)

        return self._transform(X, y=y, func=self.func, kw_args=self.kw_args)

    def inverse_transform(self, X, y='deprecated'):
        """Transform X using the inverse function.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input array.

        y : (ignored)
            .. deprecated::0.19

        Returns
        -------
        X_out : array-like, shape (n_samples, n_features)
            Transformed input.
        """
        if not isinstance(y, string_types) or y != 'deprecated':
            warnings.warn("The parameter y on inverse_transform() is "
                          "deprecated since 0.19 and will be removed in 0.21",
                          DeprecationWarning)
        return self._transform(X, y=y, func=self.inverse_func,
                               kw_args=self.inv_kw_args)

    def _transform(self, X, y=None, func=None, kw_args=None):
        X = self._check_input(X)

        if func is None:
            func = _identity

        if (not isinstance(self.pass_y, string_types) or
                self.pass_y != 'deprecated'):
            # We do this to know if pass_y was set to False / True
            pass_y = self.pass_y
            warnings.warn("The parameter pass_y is deprecated since 0.19 and "
                          "will be removed in 0.21", DeprecationWarning)
        else:
            pass_y = False

        return func(X, *((y,) if pass_y else ()),
                    **(kw_args if kw_args else {}))