File: data.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (2938 lines) | stat: -rw-r--r-- 107,640 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Andreas Mueller <amueller@ais.uni-bonn.de>
#          Eric Martin <eric@ericmart.in>
#          Giorgio Patrini <giorgio.patrini@anu.edu.au>
#          Eric Chang <ericchang2017@u.northwestern.edu>
# License: BSD 3 clause

from __future__ import division

from itertools import chain, combinations
import warnings
from itertools import combinations_with_replacement as combinations_w_r
from distutils.version import LooseVersion

import numpy as np
from scipy import sparse
from scipy import stats
from scipy import optimize

from ..base import BaseEstimator, TransformerMixin
from ..externals import six
from ..externals.six import string_types
from ..utils import check_array
from ..utils.extmath import row_norms
from ..utils.extmath import _incremental_mean_and_var
from ..utils.fixes import boxcox, nanpercentile, nanmedian
from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1,
                                      inplace_csr_row_normalize_l2)
from ..utils.sparsefuncs import (inplace_column_scale,
                                 mean_variance_axis, incr_mean_variance_axis,
                                 min_max_axis)
from ..utils.validation import (check_is_fitted, check_random_state,
                                FLOAT_DTYPES)

from ._encoders import OneHotEncoder


BOUNDS_THRESHOLD = 1e-7


zip = six.moves.zip
map = six.moves.map
range = six.moves.range

__all__ = [
    'Binarizer',
    'KernelCenterer',
    'MinMaxScaler',
    'MaxAbsScaler',
    'Normalizer',
    'OneHotEncoder',
    'RobustScaler',
    'StandardScaler',
    'QuantileTransformer',
    'PowerTransformer',
    'add_dummy_feature',
    'binarize',
    'normalize',
    'scale',
    'robust_scale',
    'maxabs_scale',
    'minmax_scale',
    'quantile_transform',
    'power_transform',
]


def _handle_zeros_in_scale(scale, copy=True):
    ''' Makes sure that whenever scale is zero, we handle it correctly.

    This happens in most scalers when we have constant features.'''

    # if we are fitting on 1D arrays, scale might be a scalar
    if np.isscalar(scale):
        if scale == .0:
            scale = 1.
        return scale
    elif isinstance(scale, np.ndarray):
        if copy:
            # New array to avoid side-effects
            scale = scale.copy()
        scale[scale == 0.0] = 1.0
        return scale


def scale(X, axis=0, with_mean=True, with_std=True, copy=True):
    """Standardize a dataset along any axis

    Center to the mean and component wise scale to unit variance.

    Read more in the :ref:`User Guide <preprocessing_scaler>`.

    Parameters
    ----------
    X : {array-like, sparse matrix}
        The data to center and scale.

    axis : int (0 by default)
        axis used to compute the means and standard deviations along. If 0,
        independently standardize each feature, otherwise (if 1) standardize
        each sample.

    with_mean : boolean, True by default
        If True, center the data before scaling.

    with_std : boolean, True by default
        If True, scale the data to unit variance (or equivalently,
        unit standard deviation).

    copy : boolean, optional, default True
        set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array or a scipy.sparse
        CSC matrix and if axis is 1).

    Notes
    -----
    This implementation will refuse to center scipy.sparse matrices
    since it would make them non-sparse and would potentially crash the
    program with memory exhaustion problems.

    Instead the caller is expected to either set explicitly
    `with_mean=False` (in that case, only variance scaling will be
    performed on the features of the CSC matrix) or to call `X.toarray()`
    if he/she expects the materialized dense array to fit in memory.

    To avoid memory copy the caller should pass a CSC matrix.

    NaNs are treated as missing values: disregarded to compute the statistics,
    and maintained during the data transformation.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.

    See also
    --------
    StandardScaler: Performs scaling to unit variance using the``Transformer`` API
        (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`).

    """  # noqa
    X = check_array(X, accept_sparse='csc', copy=copy, ensure_2d=False,
                    warn_on_dtype=True, estimator='the scale function',
                    dtype=FLOAT_DTYPES, force_all_finite='allow-nan')
    if sparse.issparse(X):
        if with_mean:
            raise ValueError(
                "Cannot center sparse matrices: pass `with_mean=False` instead"
                " See docstring for motivation and alternatives.")
        if axis != 0:
            raise ValueError("Can only scale sparse matrix on axis=0, "
                             " got axis=%d" % axis)
        if with_std:
            _, var = mean_variance_axis(X, axis=0)
            var = _handle_zeros_in_scale(var, copy=False)
            inplace_column_scale(X, 1 / np.sqrt(var))
    else:
        X = np.asarray(X)
        if with_mean:
            mean_ = np.nanmean(X, axis)
        if with_std:
            scale_ = np.nanstd(X, axis)
        # Xr is a view on the original array that enables easy use of
        # broadcasting on the axis in which we are interested in
        Xr = np.rollaxis(X, axis)
        if with_mean:
            Xr -= mean_
            mean_1 = np.nanmean(Xr, axis=0)
            # Verify that mean_1 is 'close to zero'. If X contains very
            # large values, mean_1 can also be very large, due to a lack of
            # precision of mean_. In this case, a pre-scaling of the
            # concerned feature is efficient, for instance by its mean or
            # maximum.
            if not np.allclose(mean_1, 0):
                warnings.warn("Numerical issues were encountered "
                              "when centering the data "
                              "and might not be solved. Dataset may "
                              "contain too large values. You may need "
                              "to prescale your features.")
                Xr -= mean_1
        if with_std:
            scale_ = _handle_zeros_in_scale(scale_, copy=False)
            Xr /= scale_
            if with_mean:
                mean_2 = np.nanmean(Xr, axis=0)
                # If mean_2 is not 'close to zero', it comes from the fact that
                # scale_ is very small so that mean_2 = mean_1/scale_ > 0, even
                # if mean_1 was close to zero. The problem is thus essentially
                # due to the lack of precision of mean_. A solution is then to
                # subtract the mean again:
                if not np.allclose(mean_2, 0):
                    warnings.warn("Numerical issues were encountered "
                                  "when scaling the data "
                                  "and might not be solved. The standard "
                                  "deviation of the data is probably "
                                  "very close to 0. ")
                    Xr -= mean_2
    return X


class MinMaxScaler(BaseEstimator, TransformerMixin):
    """Transforms features by scaling each feature to a given range.

    This estimator scales and translates each feature individually such
    that it is in the given range on the training set, e.g. between
    zero and one.

    The transformation is given by::

        X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
        X_scaled = X_std * (max - min) + min

    where min, max = feature_range.

    This transformation is often used as an alternative to zero mean,
    unit variance scaling.

    Read more in the :ref:`User Guide <preprocessing_scaler>`.

    Parameters
    ----------
    feature_range : tuple (min, max), default=(0, 1)
        Desired range of transformed data.

    copy : boolean, optional, default True
        Set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array).

    Attributes
    ----------
    min_ : ndarray, shape (n_features,)
        Per feature adjustment for minimum.

    scale_ : ndarray, shape (n_features,)
        Per feature relative scaling of the data.

        .. versionadded:: 0.17
           *scale_* attribute.

    data_min_ : ndarray, shape (n_features,)
        Per feature minimum seen in the data

        .. versionadded:: 0.17
           *data_min_*

    data_max_ : ndarray, shape (n_features,)
        Per feature maximum seen in the data

        .. versionadded:: 0.17
           *data_max_*

    data_range_ : ndarray, shape (n_features,)
        Per feature range ``(data_max_ - data_min_)`` seen in the data

        .. versionadded:: 0.17
           *data_range_*

    Examples
    --------
    >>> from sklearn.preprocessing import MinMaxScaler

    >>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
    >>> scaler = MinMaxScaler()
    >>> print(scaler.fit(data))
    MinMaxScaler(copy=True, feature_range=(0, 1))
    >>> print(scaler.data_max_)
    [ 1. 18.]
    >>> print(scaler.transform(data))
    [[0.   0.  ]
     [0.25 0.25]
     [0.5  0.5 ]
     [1.   1.  ]]
    >>> print(scaler.transform([[2, 2]]))
    [[1.5 0. ]]

    See also
    --------
    minmax_scale: Equivalent function without the estimator API.

    Notes
    -----
    NaNs are treated as missing values: disregarded in fit, and maintained in
    transform.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
    """

    def __init__(self, feature_range=(0, 1), copy=True):
        self.feature_range = feature_range
        self.copy = copy

    def _reset(self):
        """Reset internal data-dependent state of the scaler, if necessary.

        __init__ parameters are not touched.
        """

        # Checking one attribute is enough, becase they are all set together
        # in partial_fit
        if hasattr(self, 'scale_'):
            del self.scale_
            del self.min_
            del self.n_samples_seen_
            del self.data_min_
            del self.data_max_
            del self.data_range_

    def fit(self, X, y=None):
        """Compute the minimum and maximum to be used for later scaling.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data used to compute the per-feature minimum and maximum
            used for later scaling along the features axis.
        """

        # Reset internal state before fitting
        self._reset()
        return self.partial_fit(X, y)

    def partial_fit(self, X, y=None):
        """Online computation of min and max on X for later scaling.
        All of X is processed as a single batch. This is intended for cases
        when `fit` is not feasible due to very large number of `n_samples`
        or because X is read from a continuous stream.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data used to compute the mean and standard deviation
            used for later scaling along the features axis.

        y
            Ignored
        """
        feature_range = self.feature_range
        if feature_range[0] >= feature_range[1]:
            raise ValueError("Minimum of desired feature range must be smaller"
                             " than maximum. Got %s." % str(feature_range))

        if sparse.issparse(X):
            raise TypeError("MinMaxScaler does no support sparse input. "
                            "You may consider to use MaxAbsScaler instead.")

        X = check_array(X, copy=self.copy, warn_on_dtype=True,
                        estimator=self, dtype=FLOAT_DTYPES,
                        force_all_finite="allow-nan")

        data_min = np.nanmin(X, axis=0)
        data_max = np.nanmax(X, axis=0)

        # First pass
        if not hasattr(self, 'n_samples_seen_'):
            self.n_samples_seen_ = X.shape[0]
        # Next steps
        else:
            data_min = np.minimum(self.data_min_, data_min)
            data_max = np.maximum(self.data_max_, data_max)
            self.n_samples_seen_ += X.shape[0]

        data_range = data_max - data_min
        self.scale_ = ((feature_range[1] - feature_range[0]) /
                       _handle_zeros_in_scale(data_range))
        self.min_ = feature_range[0] - data_min * self.scale_
        self.data_min_ = data_min
        self.data_max_ = data_max
        self.data_range_ = data_range
        return self

    def transform(self, X):
        """Scaling features of X according to feature_range.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            Input data that will be transformed.
        """
        check_is_fitted(self, 'scale_')

        X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES,
                        force_all_finite="allow-nan")

        X *= self.scale_
        X += self.min_
        return X

    def inverse_transform(self, X):
        """Undo the scaling of X according to feature_range.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            Input data that will be transformed. It cannot be sparse.
        """
        check_is_fitted(self, 'scale_')

        X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES,
                        force_all_finite="allow-nan")

        X -= self.min_
        X /= self.scale_
        return X


def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True):
    """Transforms features by scaling each feature to a given range.

    This estimator scales and translates each feature individually such
    that it is in the given range on the training set, i.e. between
    zero and one.

    The transformation is given by::

        X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
        X_scaled = X_std * (max - min) + min

    where min, max = feature_range.

    This transformation is often used as an alternative to zero mean,
    unit variance scaling.

    Read more in the :ref:`User Guide <preprocessing_scaler>`.

    .. versionadded:: 0.17
       *minmax_scale* function interface
       to :class:`sklearn.preprocessing.MinMaxScaler`.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        The data.

    feature_range : tuple (min, max), default=(0, 1)
        Desired range of transformed data.

    axis : int (0 by default)
        axis used to scale along. If 0, independently scale each feature,
        otherwise (if 1) scale each sample.

    copy : boolean, optional, default is True
        Set to False to perform inplace scaling and avoid a copy (if the input
        is already a numpy array).

    See also
    --------
    MinMaxScaler: Performs scaling to a given range using the``Transformer`` API
        (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`).

    Notes
    -----
    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
    """  # noqa
    # Unlike the scaler object, this function allows 1d input.
    # If copy is required, it will be done inside the scaler object.
    X = check_array(X, copy=False, ensure_2d=False, warn_on_dtype=True,
                    dtype=FLOAT_DTYPES, force_all_finite='allow-nan')
    original_ndim = X.ndim

    if original_ndim == 1:
        X = X.reshape(X.shape[0], 1)

    s = MinMaxScaler(feature_range=feature_range, copy=copy)
    if axis == 0:
        X = s.fit_transform(X)
    else:
        X = s.fit_transform(X.T).T

    if original_ndim == 1:
        X = X.ravel()

    return X


class StandardScaler(BaseEstimator, TransformerMixin):
    """Standardize features by removing the mean and scaling to unit variance

    The standard score of a sample `x` is calculated as:

        z = (x - u) / s

    where `u` is the mean of the training samples or zero if `with_mean=False`,
    and `s` is the standard deviation of the training samples or one if
    `with_std=False`.

    Centering and scaling happen independently on each feature by computing
    the relevant statistics on the samples in the training set. Mean and
    standard deviation are then stored to be used on later data using the
    `transform` method.

    Standardization of a dataset is a common requirement for many
    machine learning estimators: they might behave badly if the
    individual features do not more or less look like standard normally
    distributed data (e.g. Gaussian with 0 mean and unit variance).

    For instance many elements used in the objective function of
    a learning algorithm (such as the RBF kernel of Support Vector
    Machines or the L1 and L2 regularizers of linear models) assume that
    all features are centered around 0 and have variance in the same
    order. If a feature has a variance that is orders of magnitude larger
    that others, it might dominate the objective function and make the
    estimator unable to learn from other features correctly as expected.

    This scaler can also be applied to sparse CSR or CSC matrices by passing
    `with_mean=False` to avoid breaking the sparsity structure of the data.

    Read more in the :ref:`User Guide <preprocessing_scaler>`.

    Parameters
    ----------
    copy : boolean, optional, default True
        If False, try to avoid a copy and do inplace scaling instead.
        This is not guaranteed to always work inplace; e.g. if the data is
        not a NumPy array or scipy.sparse CSR matrix, a copy may still be
        returned.

    with_mean : boolean, True by default
        If True, center the data before scaling.
        This does not work (and will raise an exception) when attempted on
        sparse matrices, because centering them entails building a dense
        matrix which in common use cases is likely to be too large to fit in
        memory.

    with_std : boolean, True by default
        If True, scale the data to unit variance (or equivalently,
        unit standard deviation).

    Attributes
    ----------
    scale_ : ndarray or None, shape (n_features,)
        Per feature relative scaling of the data. This is calculated using
        `np.sqrt(var_)`. Equal to ``None`` when ``with_std=False``.

        .. versionadded:: 0.17
           *scale_*

    mean_ : ndarray or None, shape (n_features,)
        The mean value for each feature in the training set.
        Equal to ``None`` when ``with_mean=False``.

    var_ : ndarray or None, shape (n_features,)
        The variance for each feature in the training set. Used to compute
        `scale_`. Equal to ``None`` when ``with_std=False``.

    n_samples_seen_ : int or array, shape (n_features,)
        The number of samples processed by the estimator for each feature.
        If there are not missing samples, the ``n_samples_seen`` will be an
        integer, otherwise it will be an array.
        Will be reset on new calls to fit, but increments across
        ``partial_fit`` calls.

    Examples
    --------
    >>> from sklearn.preprocessing import StandardScaler
    >>> data = [[0, 0], [0, 0], [1, 1], [1, 1]]
    >>> scaler = StandardScaler()
    >>> print(scaler.fit(data))
    StandardScaler(copy=True, with_mean=True, with_std=True)
    >>> print(scaler.mean_)
    [0.5 0.5]
    >>> print(scaler.transform(data))
    [[-1. -1.]
     [-1. -1.]
     [ 1.  1.]
     [ 1.  1.]]
    >>> print(scaler.transform([[2, 2]]))
    [[3. 3.]]

    See also
    --------
    scale: Equivalent function without the estimator API.

    :class:`sklearn.decomposition.PCA`
        Further removes the linear correlation across features with 'whiten=True'.

    Notes
    -----
    NaNs are treated as missing values: disregarded in fit, and maintained in
    transform.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
    """  # noqa

    def __init__(self, copy=True, with_mean=True, with_std=True):
        self.with_mean = with_mean
        self.with_std = with_std
        self.copy = copy

    def _reset(self):
        """Reset internal data-dependent state of the scaler, if necessary.

        __init__ parameters are not touched.
        """

        # Checking one attribute is enough, becase they are all set together
        # in partial_fit
        if hasattr(self, 'scale_'):
            del self.scale_
            del self.n_samples_seen_
            del self.mean_
            del self.var_

    def fit(self, X, y=None):
        """Compute the mean and std to be used for later scaling.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape [n_samples, n_features]
            The data used to compute the mean and standard deviation
            used for later scaling along the features axis.

        y
            Ignored
        """

        # Reset internal state before fitting
        self._reset()
        return self.partial_fit(X, y)

    def partial_fit(self, X, y=None):
        """Online computation of mean and std on X for later scaling.
        All of X is processed as a single batch. This is intended for cases
        when `fit` is not feasible due to very large number of `n_samples`
        or because X is read from a continuous stream.

        The algorithm for incremental mean and std is given in Equation 1.5a,b
        in Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. "Algorithms
        for computing the sample variance: Analysis and recommendations."
        The American Statistician 37.3 (1983): 242-247:

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape [n_samples, n_features]
            The data used to compute the mean and standard deviation
            used for later scaling along the features axis.

        y
            Ignored
        """
        X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
                        warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES,
                        force_all_finite='allow-nan')

        # Even in the case of `with_mean=False`, we update the mean anyway
        # This is needed for the incremental computation of the var
        # See incr_mean_variance_axis and _incremental_mean_variance_axis

        # if n_samples_seen_ is an integer (i.e. no missing values), we need to
        # transform it to a NumPy array of shape (n_features,) required by
        # incr_mean_variance_axis and _incremental_variance_axis
        if (hasattr(self, 'n_samples_seen_') and
                isinstance(self.n_samples_seen_, (int, np.integer))):
            self.n_samples_seen_ = np.repeat(self.n_samples_seen_,
                                             X.shape[1]).astype(np.int64)

        if sparse.issparse(X):
            if self.with_mean:
                raise ValueError(
                    "Cannot center sparse matrices: pass `with_mean=False` "
                    "instead. See docstring for motivation and alternatives.")

            sparse_constructor = (sparse.csr_matrix
                                  if X.format == 'csr' else sparse.csc_matrix)
            counts_nan = sparse_constructor(
                        (np.isnan(X.data), X.indices, X.indptr),
                        shape=X.shape).sum(axis=0).A.ravel()

            if not hasattr(self, 'n_samples_seen_'):
                self.n_samples_seen_ = (X.shape[0] -
                                        counts_nan).astype(np.int64)

            if self.with_std:
                # First pass
                if not hasattr(self, 'scale_'):
                    self.mean_, self.var_ = mean_variance_axis(X, axis=0)
                # Next passes
                else:
                    self.mean_, self.var_, self.n_samples_seen_ = \
                        incr_mean_variance_axis(X, axis=0,
                                                last_mean=self.mean_,
                                                last_var=self.var_,
                                                last_n=self.n_samples_seen_)
            else:
                self.mean_ = None
                self.var_ = None
                if hasattr(self, 'scale_'):
                    self.n_samples_seen_ += X.shape[0] - counts_nan
        else:
            if not hasattr(self, 'n_samples_seen_'):
                self.n_samples_seen_ = np.zeros(X.shape[1], dtype=np.int64)

            # First pass
            if not hasattr(self, 'scale_'):
                self.mean_ = .0
                if self.with_std:
                    self.var_ = .0
                else:
                    self.var_ = None

            if not self.with_mean and not self.with_std:
                self.mean_ = None
                self.var_ = None
                self.n_samples_seen_ += X.shape[0] - np.isnan(X).sum(axis=0)
            else:
                self.mean_, self.var_, self.n_samples_seen_ = \
                    _incremental_mean_and_var(X, self.mean_, self.var_,
                                              self.n_samples_seen_)

        # for backward-compatibility, reduce n_samples_seen_ to an integer
        # if the number of samples is the same for each feature (i.e. no
        # missing values)
        if np.ptp(self.n_samples_seen_) == 0:
            self.n_samples_seen_ = self.n_samples_seen_[0]

        if self.with_std:
            self.scale_ = _handle_zeros_in_scale(np.sqrt(self.var_))
        else:
            self.scale_ = None

        return self

    def transform(self, X, y='deprecated', copy=None):
        """Perform standardization by centering and scaling

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data used to scale along the features axis.
        y : (ignored)
            .. deprecated:: 0.19
               This parameter will be removed in 0.21.
        copy : bool, optional (default: None)
            Copy the input X or not.
        """
        if not isinstance(y, string_types) or y != 'deprecated':
            warnings.warn("The parameter y on transform() is "
                          "deprecated since 0.19 and will be removed in 0.21",
                          DeprecationWarning)

        check_is_fitted(self, 'scale_')

        copy = copy if copy is not None else self.copy
        X = check_array(X, accept_sparse='csr', copy=copy, warn_on_dtype=True,
                        estimator=self, dtype=FLOAT_DTYPES,
                        force_all_finite='allow-nan')

        if sparse.issparse(X):
            if self.with_mean:
                raise ValueError(
                    "Cannot center sparse matrices: pass `with_mean=False` "
                    "instead. See docstring for motivation and alternatives.")
            if self.scale_ is not None:
                inplace_column_scale(X, 1 / self.scale_)
        else:
            if self.with_mean:
                X -= self.mean_
            if self.with_std:
                X /= self.scale_
        return X

    def inverse_transform(self, X, copy=None):
        """Scale back the data to the original representation

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data used to scale along the features axis.
        copy : bool, optional (default: None)
            Copy the input X or not.

        Returns
        -------
        X_tr : array-like, shape [n_samples, n_features]
            Transformed array.
        """
        check_is_fitted(self, 'scale_')

        copy = copy if copy is not None else self.copy
        if sparse.issparse(X):
            if self.with_mean:
                raise ValueError(
                    "Cannot uncenter sparse matrices: pass `with_mean=False` "
                    "instead See docstring for motivation and alternatives.")
            if not sparse.isspmatrix_csr(X):
                X = X.tocsr()
                copy = False
            if copy:
                X = X.copy()
            if self.scale_ is not None:
                inplace_column_scale(X, self.scale_)
        else:
            X = np.asarray(X)
            if copy:
                X = X.copy()
            if self.with_std:
                X *= self.scale_
            if self.with_mean:
                X += self.mean_
        return X


class MaxAbsScaler(BaseEstimator, TransformerMixin):
    """Scale each feature by its maximum absolute value.

    This estimator scales and translates each feature individually such
    that the maximal absolute value of each feature in the
    training set will be 1.0. It does not shift/center the data, and
    thus does not destroy any sparsity.

    This scaler can also be applied to sparse CSR or CSC matrices.

    .. versionadded:: 0.17

    Parameters
    ----------
    copy : boolean, optional, default is True
        Set to False to perform inplace scaling and avoid a copy (if the input
        is already a numpy array).

    Attributes
    ----------
    scale_ : ndarray, shape (n_features,)
        Per feature relative scaling of the data.

        .. versionadded:: 0.17
           *scale_* attribute.

    max_abs_ : ndarray, shape (n_features,)
        Per feature maximum absolute value.

    n_samples_seen_ : int
        The number of samples processed by the estimator. Will be reset on
        new calls to fit, but increments across ``partial_fit`` calls.

    Examples
    --------
    >>> from sklearn.preprocessing import MaxAbsScaler
    >>> X = [[ 1., -1.,  2.],
    ...      [ 2.,  0.,  0.],
    ...      [ 0.,  1., -1.]]
    >>> transformer = MaxAbsScaler().fit(X)
    >>> transformer
    MaxAbsScaler(copy=True)
    >>> transformer.transform(X)
    array([[ 0.5, -1. ,  1. ],
           [ 1. ,  0. ,  0. ],
           [ 0. ,  1. , -0.5]])

    See also
    --------
    maxabs_scale: Equivalent function without the estimator API.

    Notes
    -----
    NaNs are treated as missing values: disregarded in fit, and maintained in
    transform.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
    """

    def __init__(self, copy=True):
        self.copy = copy

    def _reset(self):
        """Reset internal data-dependent state of the scaler, if necessary.

        __init__ parameters are not touched.
        """

        # Checking one attribute is enough, becase they are all set together
        # in partial_fit
        if hasattr(self, 'scale_'):
            del self.scale_
            del self.n_samples_seen_
            del self.max_abs_

    def fit(self, X, y=None):
        """Compute the maximum absolute value to be used for later scaling.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape [n_samples, n_features]
            The data used to compute the per-feature minimum and maximum
            used for later scaling along the features axis.
        """

        # Reset internal state before fitting
        self._reset()
        return self.partial_fit(X, y)

    def partial_fit(self, X, y=None):
        """Online computation of max absolute value of X for later scaling.
        All of X is processed as a single batch. This is intended for cases
        when `fit` is not feasible due to very large number of `n_samples`
        or because X is read from a continuous stream.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape [n_samples, n_features]
            The data used to compute the mean and standard deviation
            used for later scaling along the features axis.

        y
            Ignored
        """
        X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
                        estimator=self, dtype=FLOAT_DTYPES,
                        force_all_finite='allow-nan')

        if sparse.issparse(X):
            mins, maxs = min_max_axis(X, axis=0, ignore_nan=True)
            max_abs = np.maximum(np.abs(mins), np.abs(maxs))
        else:
            max_abs = np.nanmax(np.abs(X), axis=0)

        # First pass
        if not hasattr(self, 'n_samples_seen_'):
            self.n_samples_seen_ = X.shape[0]
        # Next passes
        else:
            max_abs = np.maximum(self.max_abs_, max_abs)
            self.n_samples_seen_ += X.shape[0]

        self.max_abs_ = max_abs
        self.scale_ = _handle_zeros_in_scale(max_abs)
        return self

    def transform(self, X):
        """Scale the data

        Parameters
        ----------
        X : {array-like, sparse matrix}
            The data that should be scaled.
        """
        check_is_fitted(self, 'scale_')
        X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
                        estimator=self, dtype=FLOAT_DTYPES,
                        force_all_finite='allow-nan')

        if sparse.issparse(X):
            inplace_column_scale(X, 1.0 / self.scale_)
        else:
            X /= self.scale_
        return X

    def inverse_transform(self, X):
        """Scale back the data to the original representation

        Parameters
        ----------
        X : {array-like, sparse matrix}
            The data that should be transformed back.
        """
        check_is_fitted(self, 'scale_')
        X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
                        estimator=self, dtype=FLOAT_DTYPES,
                        force_all_finite='allow-nan')

        if sparse.issparse(X):
            inplace_column_scale(X, self.scale_)
        else:
            X *= self.scale_
        return X


def maxabs_scale(X, axis=0, copy=True):
    """Scale each feature to the [-1, 1] range without breaking the sparsity.

    This estimator scales each feature individually such
    that the maximal absolute value of each feature in the
    training set will be 1.0.

    This scaler can also be applied to sparse CSR or CSC matrices.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        The data.

    axis : int (0 by default)
        axis used to scale along. If 0, independently scale each feature,
        otherwise (if 1) scale each sample.

    copy : boolean, optional, default is True
        Set to False to perform inplace scaling and avoid a copy (if the input
        is already a numpy array).

    See also
    --------
    MaxAbsScaler: Performs scaling to the [-1, 1] range using the``Transformer`` API
        (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`).

    Notes
    -----
    NaNs are treated as missing values: disregarded to compute the statistics,
    and maintained during the data transformation.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
    """  # noqa
    # Unlike the scaler object, this function allows 1d input.

    # If copy is required, it will be done inside the scaler object.
    X = check_array(X, accept_sparse=('csr', 'csc'), copy=False,
                    ensure_2d=False, dtype=FLOAT_DTYPES,
                    force_all_finite='allow-nan')
    original_ndim = X.ndim

    if original_ndim == 1:
        X = X.reshape(X.shape[0], 1)

    s = MaxAbsScaler(copy=copy)
    if axis == 0:
        X = s.fit_transform(X)
    else:
        X = s.fit_transform(X.T).T

    if original_ndim == 1:
        X = X.ravel()

    return X


class RobustScaler(BaseEstimator, TransformerMixin):
    """Scale features using statistics that are robust to outliers.

    This Scaler removes the median and scales the data according to
    the quantile range (defaults to IQR: Interquartile Range).
    The IQR is the range between the 1st quartile (25th quantile)
    and the 3rd quartile (75th quantile).

    Centering and scaling happen independently on each feature by
    computing the relevant statistics on the samples in the training
    set. Median and interquartile range are then stored to be used on
    later data using the ``transform`` method.

    Standardization of a dataset is a common requirement for many
    machine learning estimators. Typically this is done by removing the mean
    and scaling to unit variance. However, outliers can often influence the
    sample mean / variance in a negative way. In such cases, the median and
    the interquartile range often give better results.

    .. versionadded:: 0.17

    Read more in the :ref:`User Guide <preprocessing_scaler>`.

    Parameters
    ----------
    with_centering : boolean, True by default
        If True, center the data before scaling.
        This will cause ``transform`` to raise an exception when attempted on
        sparse matrices, because centering them entails building a dense
        matrix which in common use cases is likely to be too large to fit in
        memory.

    with_scaling : boolean, True by default
        If True, scale the data to interquartile range.

    quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0
        Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR
        Quantile range used to calculate ``scale_``.

        .. versionadded:: 0.18

    copy : boolean, optional, default is True
        If False, try to avoid a copy and do inplace scaling instead.
        This is not guaranteed to always work inplace; e.g. if the data is
        not a NumPy array or scipy.sparse CSR matrix, a copy may still be
        returned.

    Attributes
    ----------
    center_ : array of floats
        The median value for each feature in the training set.

    scale_ : array of floats
        The (scaled) interquartile range for each feature in the training set.

        .. versionadded:: 0.17
           *scale_* attribute.

    Examples
    --------
    >>> from sklearn.preprocessing import RobustScaler
    >>> X = [[ 1., -2.,  2.],
    ...      [ -2.,  1.,  3.],
    ...      [ 4.,  1., -2.]]
    >>> transformer = RobustScaler().fit(X)
    >>> transformer
    RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
           with_scaling=True)
    >>> transformer.transform(X)
    array([[ 0. , -2. ,  0. ],
           [-1. ,  0. ,  0.4],
           [ 1. ,  0. , -1.6]])

    See also
    --------
    robust_scale: Equivalent function without the estimator API.

    :class:`sklearn.decomposition.PCA`
        Further removes the linear correlation across features with
        'whiten=True'.

    Notes
    -----
    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.

    https://en.wikipedia.org/wiki/Median
    https://en.wikipedia.org/wiki/Interquartile_range
    """

    def __init__(self, with_centering=True, with_scaling=True,
                 quantile_range=(25.0, 75.0), copy=True):
        self.with_centering = with_centering
        self.with_scaling = with_scaling
        self.quantile_range = quantile_range
        self.copy = copy

    def fit(self, X, y=None):
        """Compute the median and quantiles to be used for scaling.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data used to compute the median and quantiles
            used for later scaling along the features axis.
        """
        # at fit, convert sparse matrices to csc for optimized computation of
        # the quantiles
        X = check_array(X, accept_sparse='csc', copy=self.copy, estimator=self,
                        dtype=FLOAT_DTYPES, force_all_finite='allow-nan')

        q_min, q_max = self.quantile_range
        if not 0 <= q_min <= q_max <= 100:
            raise ValueError("Invalid quantile range: %s" %
                             str(self.quantile_range))

        if self.with_centering:
            if sparse.issparse(X):
                raise ValueError(
                    "Cannot center sparse matrices: use `with_centering=False`"
                    " instead. See docstring for motivation and alternatives.")
            self.center_ = nanmedian(X, axis=0)
        else:
            self.center_ = None

        if self.with_scaling:
            quantiles = []
            for feature_idx in range(X.shape[1]):
                if sparse.issparse(X):
                    column_nnz_data = X.data[X.indptr[feature_idx]:
                                             X.indptr[feature_idx + 1]]
                    column_data = np.zeros(shape=X.shape[0], dtype=X.dtype)
                    column_data[:len(column_nnz_data)] = column_nnz_data
                else:
                    column_data = X[:, feature_idx]

                quantiles.append(nanpercentile(column_data,
                                               self.quantile_range))

            quantiles = np.transpose(quantiles)

            self.scale_ = quantiles[1] - quantiles[0]
            self.scale_ = _handle_zeros_in_scale(self.scale_, copy=False)
        else:
            self.scale_ = None

        return self

    def transform(self, X):
        """Center and scale the data.

        Parameters
        ----------
        X : {array-like, sparse matrix}
            The data used to scale along the specified axis.
        """
        check_is_fitted(self, 'center_', 'scale_')
        X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
                        estimator=self, dtype=FLOAT_DTYPES,
                        force_all_finite='allow-nan')

        if sparse.issparse(X):
            if self.with_scaling:
                inplace_column_scale(X, 1.0 / self.scale_)
        else:
            if self.with_centering:
                X -= self.center_
            if self.with_scaling:
                X /= self.scale_
        return X

    def inverse_transform(self, X):
        """Scale back the data to the original representation

        Parameters
        ----------
        X : array-like
            The data used to scale along the specified axis.
        """
        check_is_fitted(self, 'center_', 'scale_')
        X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
                        estimator=self, dtype=FLOAT_DTYPES,
                        force_all_finite='allow-nan')

        if sparse.issparse(X):
            if self.with_scaling:
                inplace_column_scale(X, self.scale_)
        else:
            if self.with_scaling:
                X *= self.scale_
            if self.with_centering:
                X += self.center_
        return X


def robust_scale(X, axis=0, with_centering=True, with_scaling=True,
                 quantile_range=(25.0, 75.0), copy=True):
    """Standardize a dataset along any axis

    Center to the median and component wise scale
    according to the interquartile range.

    Read more in the :ref:`User Guide <preprocessing_scaler>`.

    Parameters
    ----------
    X : array-like
        The data to center and scale.

    axis : int (0 by default)
        axis used to compute the medians and IQR along. If 0,
        independently scale each feature, otherwise (if 1) scale
        each sample.

    with_centering : boolean, True by default
        If True, center the data before scaling.

    with_scaling : boolean, True by default
        If True, scale the data to unit variance (or equivalently,
        unit standard deviation).

    quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0
        Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR
        Quantile range used to calculate ``scale_``.

        .. versionadded:: 0.18

    copy : boolean, optional, default is True
        set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array or a scipy.sparse
        CSR matrix and if axis is 1).

    Notes
    -----
    This implementation will refuse to center scipy.sparse matrices
    since it would make them non-sparse and would potentially crash the
    program with memory exhaustion problems.

    Instead the caller is expected to either set explicitly
    `with_centering=False` (in that case, only variance scaling will be
    performed on the features of the CSR matrix) or to call `X.toarray()`
    if he/she expects the materialized dense array to fit in memory.

    To avoid memory copy the caller should pass a CSR matrix.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.

    See also
    --------
    RobustScaler: Performs centering and scaling using the ``Transformer`` API
        (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`).
    """
    X = check_array(X, accept_sparse=('csr', 'csc'), copy=False,
                    ensure_2d=False, dtype=FLOAT_DTYPES,
                    force_all_finite='allow-nan')
    original_ndim = X.ndim

    if original_ndim == 1:
        X = X.reshape(X.shape[0], 1)

    s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling,
                     quantile_range=quantile_range, copy=copy)
    if axis == 0:
        X = s.fit_transform(X)
    else:
        X = s.fit_transform(X.T).T

    if original_ndim == 1:
        X = X.ravel()

    return X


class PolynomialFeatures(BaseEstimator, TransformerMixin):
    """Generate polynomial and interaction features.

    Generate a new feature matrix consisting of all polynomial combinations
    of the features with degree less than or equal to the specified degree.
    For example, if an input sample is two dimensional and of the form
    [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2].

    Parameters
    ----------
    degree : integer
        The degree of the polynomial features. Default = 2.

    interaction_only : boolean, default = False
        If true, only interaction features are produced: features that are
        products of at most ``degree`` *distinct* input features (so not
        ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.).

    include_bias : boolean
        If True (default), then include a bias column, the feature in which
        all polynomial powers are zero (i.e. a column of ones - acts as an
        intercept term in a linear model).

    Examples
    --------
    >>> X = np.arange(6).reshape(3, 2)
    >>> X
    array([[0, 1],
           [2, 3],
           [4, 5]])
    >>> poly = PolynomialFeatures(2)
    >>> poly.fit_transform(X)
    array([[ 1.,  0.,  1.,  0.,  0.,  1.],
           [ 1.,  2.,  3.,  4.,  6.,  9.],
           [ 1.,  4.,  5., 16., 20., 25.]])
    >>> poly = PolynomialFeatures(interaction_only=True)
    >>> poly.fit_transform(X)
    array([[ 1.,  0.,  1.,  0.],
           [ 1.,  2.,  3.,  6.],
           [ 1.,  4.,  5., 20.]])

    Attributes
    ----------
    powers_ : array, shape (n_output_features, n_input_features)
        powers_[i, j] is the exponent of the jth input in the ith output.

    n_input_features_ : int
        The total number of input features.

    n_output_features_ : int
        The total number of polynomial output features. The number of output
        features is computed by iterating over all suitably sized combinations
        of input features.

    Notes
    -----
    Be aware that the number of features in the output array scales
    polynomially in the number of features of the input array, and
    exponentially in the degree. High degrees can cause overfitting.

    See :ref:`examples/linear_model/plot_polynomial_interpolation.py
    <sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>`
    """
    def __init__(self, degree=2, interaction_only=False, include_bias=True):
        self.degree = degree
        self.interaction_only = interaction_only
        self.include_bias = include_bias

    @staticmethod
    def _combinations(n_features, degree, interaction_only, include_bias):
        comb = (combinations if interaction_only else combinations_w_r)
        start = int(not include_bias)
        return chain.from_iterable(comb(range(n_features), i)
                                   for i in range(start, degree + 1))

    @property
    def powers_(self):
        check_is_fitted(self, 'n_input_features_')

        combinations = self._combinations(self.n_input_features_, self.degree,
                                          self.interaction_only,
                                          self.include_bias)
        return np.vstack([np.bincount(c, minlength=self.n_input_features_)
                          for c in combinations])

    def get_feature_names(self, input_features=None):
        """
        Return feature names for output features

        Parameters
        ----------
        input_features : list of string, length n_features, optional
            String names for input features if available. By default,
            "x0", "x1", ... "xn_features" is used.

        Returns
        -------
        output_feature_names : list of string, length n_output_features

        """
        powers = self.powers_
        if input_features is None:
            input_features = ['x%d' % i for i in range(powers.shape[1])]
        feature_names = []
        for row in powers:
            inds = np.where(row)[0]
            if len(inds):
                name = " ".join("%s^%d" % (input_features[ind], exp)
                                if exp != 1 else input_features[ind]
                                for ind, exp in zip(inds, row[inds]))
            else:
                name = "1"
            feature_names.append(name)
        return feature_names

    def fit(self, X, y=None):
        """
        Compute number of output features.


        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The data.

        Returns
        -------
        self : instance
        """
        n_samples, n_features = check_array(X, accept_sparse=True).shape
        combinations = self._combinations(n_features, self.degree,
                                          self.interaction_only,
                                          self.include_bias)
        self.n_input_features_ = n_features
        self.n_output_features_ = sum(1 for _ in combinations)
        return self

    def transform(self, X):
        """Transform data to polynomial features

        Parameters
        ----------
        X : array-like or sparse matrix, shape [n_samples, n_features]
            The data to transform, row by row.
            Sparse input should preferably be in CSC format.

        Returns
        -------
        XP : np.ndarray or CSC sparse matrix, shape [n_samples, NP]
            The matrix of features, where NP is the number of polynomial
            features generated from the combination of inputs.
        """
        check_is_fitted(self, ['n_input_features_', 'n_output_features_'])

        X = check_array(X, dtype=FLOAT_DTYPES, accept_sparse='csc')
        n_samples, n_features = X.shape

        if n_features != self.n_input_features_:
            raise ValueError("X shape does not match training shape")

        combinations = self._combinations(n_features, self.degree,
                                          self.interaction_only,
                                          self.include_bias)
        if sparse.isspmatrix(X):
            columns = []
            for comb in combinations:
                if comb:
                    out_col = 1
                    for col_idx in comb:
                        out_col = X[:, col_idx].multiply(out_col)
                    columns.append(out_col)
                else:
                    columns.append(sparse.csc_matrix(np.ones((X.shape[0], 1))))
            XP = sparse.hstack(columns, dtype=X.dtype).tocsc()
        else:
            XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype)
            for i, comb in enumerate(combinations):
                XP[:, i] = X[:, comb].prod(1)

        return XP


def normalize(X, norm='l2', axis=1, copy=True, return_norm=False):
    """Scale input vectors individually to unit norm (vector length).

    Read more in the :ref:`User Guide <preprocessing_normalization>`.

    Parameters
    ----------
    X : {array-like, sparse matrix}, shape [n_samples, n_features]
        The data to normalize, element by element.
        scipy.sparse matrices should be in CSR format to avoid an
        un-necessary copy.

    norm : 'l1', 'l2', or 'max', optional ('l2' by default)
        The norm to use to normalize each non zero sample (or each non-zero
        feature if axis is 0).

    axis : 0 or 1, optional (1 by default)
        axis used to normalize the data along. If 1, independently normalize
        each sample, otherwise (if 0) normalize each feature.

    copy : boolean, optional, default True
        set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array or a scipy.sparse
        CSR matrix and if axis is 1).

    return_norm : boolean, default False
        whether to return the computed norms

    Returns
    -------
    X : {array-like, sparse matrix}, shape [n_samples, n_features]
        Normalized input X.

    norms : array, shape [n_samples] if axis=1 else [n_features]
        An array of norms along given axis for X.
        When X is sparse, a NotImplementedError will be raised
        for norm 'l1' or 'l2'.

    See also
    --------
    Normalizer: Performs normalization using the ``Transformer`` API
        (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`).

    Notes
    -----
    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.

    """
    if norm not in ('l1', 'l2', 'max'):
        raise ValueError("'%s' is not a supported norm" % norm)

    if axis == 0:
        sparse_format = 'csc'
    elif axis == 1:
        sparse_format = 'csr'
    else:
        raise ValueError("'%d' is not a supported axis" % axis)

    X = check_array(X, sparse_format, copy=copy,
                    estimator='the normalize function', dtype=FLOAT_DTYPES)
    if axis == 0:
        X = X.T

    if sparse.issparse(X):
        if return_norm and norm in ('l1', 'l2'):
            raise NotImplementedError("return_norm=True is not implemented "
                                      "for sparse matrices with norm 'l1' "
                                      "or norm 'l2'")
        if norm == 'l1':
            inplace_csr_row_normalize_l1(X)
        elif norm == 'l2':
            inplace_csr_row_normalize_l2(X)
        elif norm == 'max':
            _, norms = min_max_axis(X, 1)
            norms_elementwise = norms.repeat(np.diff(X.indptr))
            mask = norms_elementwise != 0
            X.data[mask] /= norms_elementwise[mask]
    else:
        if norm == 'l1':
            norms = np.abs(X).sum(axis=1)
        elif norm == 'l2':
            norms = row_norms(X)
        elif norm == 'max':
            norms = np.max(X, axis=1)
        norms = _handle_zeros_in_scale(norms, copy=False)
        X /= norms[:, np.newaxis]

    if axis == 0:
        X = X.T

    if return_norm:
        return X, norms
    else:
        return X


class Normalizer(BaseEstimator, TransformerMixin):
    """Normalize samples individually to unit norm.

    Each sample (i.e. each row of the data matrix) with at least one
    non zero component is rescaled independently of other samples so
    that its norm (l1 or l2) equals one.

    This transformer is able to work both with dense numpy arrays and
    scipy.sparse matrix (use CSR format if you want to avoid the burden of
    a copy / conversion).

    Scaling inputs to unit norms is a common operation for text
    classification or clustering for instance. For instance the dot
    product of two l2-normalized TF-IDF vectors is the cosine similarity
    of the vectors and is the base similarity metric for the Vector
    Space Model commonly used by the Information Retrieval community.

    Read more in the :ref:`User Guide <preprocessing_normalization>`.

    Parameters
    ----------
    norm : 'l1', 'l2', or 'max', optional ('l2' by default)
        The norm to use to normalize each non zero sample.

    copy : boolean, optional, default True
        set to False to perform inplace row normalization and avoid a
        copy (if the input is already a numpy array or a scipy.sparse
        CSR matrix).

    Examples
    --------
    >>> from sklearn.preprocessing import Normalizer
    >>> X = [[4, 1, 2, 2],
    ...      [1, 3, 9, 3],
    ...      [5, 7, 5, 1]]
    >>> transformer = Normalizer().fit(X) # fit does nothing.
    >>> transformer
    Normalizer(copy=True, norm='l2')
    >>> transformer.transform(X)
    array([[0.8, 0.2, 0.4, 0.4],
           [0.1, 0.3, 0.9, 0.3],
           [0.5, 0.7, 0.5, 0.1]])

    Notes
    -----
    This estimator is stateless (besides constructor parameters), the
    fit method does nothing but is useful when used in a pipeline.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.


    See also
    --------
    normalize: Equivalent function without the estimator API.
    """

    def __init__(self, norm='l2', copy=True):
        self.norm = norm
        self.copy = copy

    def fit(self, X, y=None):
        """Do nothing and return the estimator unchanged

        This method is just there to implement the usual API and hence
        work in pipelines.

        Parameters
        ----------
        X : array-like
        """
        X = check_array(X, accept_sparse='csr')
        return self

    def transform(self, X, y='deprecated', copy=None):
        """Scale each non zero row of X to unit norm

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape [n_samples, n_features]
            The data to normalize, row by row. scipy.sparse matrices should be
            in CSR format to avoid an un-necessary copy.
        y : (ignored)
            .. deprecated:: 0.19
               This parameter will be removed in 0.21.
        copy : bool, optional (default: None)
            Copy the input X or not.
        """
        if not isinstance(y, string_types) or y != 'deprecated':
            warnings.warn("The parameter y on transform() is "
                          "deprecated since 0.19 and will be removed in 0.21",
                          DeprecationWarning)

        copy = copy if copy is not None else self.copy
        X = check_array(X, accept_sparse='csr')
        return normalize(X, norm=self.norm, axis=1, copy=copy)


def binarize(X, threshold=0.0, copy=True):
    """Boolean thresholding of array-like or scipy.sparse matrix

    Read more in the :ref:`User Guide <preprocessing_binarization>`.

    Parameters
    ----------
    X : {array-like, sparse matrix}, shape [n_samples, n_features]
        The data to binarize, element by element.
        scipy.sparse matrices should be in CSR or CSC format to avoid an
        un-necessary copy.

    threshold : float, optional (0.0 by default)
        Feature values below or equal to this are replaced by 0, above it by 1.
        Threshold may not be less than 0 for operations on sparse matrices.

    copy : boolean, optional, default True
        set to False to perform inplace binarization and avoid a copy
        (if the input is already a numpy array or a scipy.sparse CSR / CSC
        matrix and if axis is 1).

    See also
    --------
    Binarizer: Performs binarization using the ``Transformer`` API
        (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`).
    """
    X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy)
    if sparse.issparse(X):
        if threshold < 0:
            raise ValueError('Cannot binarize a sparse matrix with threshold '
                             '< 0')
        cond = X.data > threshold
        not_cond = np.logical_not(cond)
        X.data[cond] = 1
        X.data[not_cond] = 0
        X.eliminate_zeros()
    else:
        cond = X > threshold
        not_cond = np.logical_not(cond)
        X[cond] = 1
        X[not_cond] = 0
    return X


class Binarizer(BaseEstimator, TransformerMixin):
    """Binarize data (set feature values to 0 or 1) according to a threshold

    Values greater than the threshold map to 1, while values less than
    or equal to the threshold map to 0. With the default threshold of 0,
    only positive values map to 1.

    Binarization is a common operation on text count data where the
    analyst can decide to only consider the presence or absence of a
    feature rather than a quantified number of occurrences for instance.

    It can also be used as a pre-processing step for estimators that
    consider boolean random variables (e.g. modelled using the Bernoulli
    distribution in a Bayesian setting).

    Read more in the :ref:`User Guide <preprocessing_binarization>`.

    Parameters
    ----------
    threshold : float, optional (0.0 by default)
        Feature values below or equal to this are replaced by 0, above it by 1.
        Threshold may not be less than 0 for operations on sparse matrices.

    copy : boolean, optional, default True
        set to False to perform inplace binarization and avoid a copy (if
        the input is already a numpy array or a scipy.sparse CSR matrix).

    Examples
    --------
    >>> from sklearn.preprocessing import Binarizer
    >>> X = [[ 1., -1.,  2.],
    ...      [ 2.,  0.,  0.],
    ...      [ 0.,  1., -1.]]
    >>> transformer = Binarizer().fit(X) # fit does nothing.
    >>> transformer
    Binarizer(copy=True, threshold=0.0)
    >>> transformer.transform(X)
    array([[1., 0., 1.],
           [1., 0., 0.],
           [0., 1., 0.]])

    Notes
    -----
    If the input is a sparse matrix, only the non-zero values are subject
    to update by the Binarizer class.

    This estimator is stateless (besides constructor parameters), the
    fit method does nothing but is useful when used in a pipeline.

    See also
    --------
    binarize: Equivalent function without the estimator API.
    """

    def __init__(self, threshold=0.0, copy=True):
        self.threshold = threshold
        self.copy = copy

    def fit(self, X, y=None):
        """Do nothing and return the estimator unchanged

        This method is just there to implement the usual API and hence
        work in pipelines.

        Parameters
        ----------
        X : array-like
        """
        check_array(X, accept_sparse='csr')
        return self

    def transform(self, X, y='deprecated', copy=None):
        """Binarize each element of X

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape [n_samples, n_features]
            The data to binarize, element by element.
            scipy.sparse matrices should be in CSR format to avoid an
            un-necessary copy.
        y : (ignored)
            .. deprecated:: 0.19
               This parameter will be removed in 0.21.
        copy : bool
            Copy the input X or not.
        """
        if not isinstance(y, string_types) or y != 'deprecated':
            warnings.warn("The parameter y on transform() is "
                          "deprecated since 0.19 and will be removed in 0.21",
                          DeprecationWarning)

        copy = copy if copy is not None else self.copy
        return binarize(X, threshold=self.threshold, copy=copy)


class KernelCenterer(BaseEstimator, TransformerMixin):
    """Center a kernel matrix

    Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a
    function mapping x to a Hilbert space. KernelCenterer centers (i.e.,
    normalize to have zero mean) the data without explicitly computing phi(x).
    It is equivalent to centering phi(x) with
    sklearn.preprocessing.StandardScaler(with_std=False).

    Read more in the :ref:`User Guide <kernel_centering>`.

    Examples
    --------
    >>> from sklearn.preprocessing import KernelCenterer
    >>> from sklearn.metrics.pairwise import pairwise_kernels
    >>> X = [[ 1., -2.,  2.],
    ...      [ -2.,  1.,  3.],
    ...      [ 4.,  1., -2.]]
    >>> K = pairwise_kernels(X, metric='linear')
    >>> K
    array([[  9.,   2.,  -2.],
           [  2.,  14., -13.],
           [ -2., -13.,  21.]])
    >>> transformer = KernelCenterer().fit(K)
    >>> transformer
    KernelCenterer()
    >>> transformer.transform(K)
    array([[  5.,   0.,  -5.],
           [  0.,  14., -14.],
           [ -5., -14.,  19.]])
    """

    def __init__(self):
        # Needed for backported inspect.signature compatibility with PyPy
        pass

    def fit(self, K, y=None):
        """Fit KernelCenterer

        Parameters
        ----------
        K : numpy array of shape [n_samples, n_samples]
            Kernel matrix.

        Returns
        -------
        self : returns an instance of self.
        """
        K = check_array(K, dtype=FLOAT_DTYPES)
        n_samples = K.shape[0]
        self.K_fit_rows_ = np.sum(K, axis=0) / n_samples
        self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples
        return self

    def transform(self, K, y='deprecated', copy=True):
        """Center kernel matrix.

        Parameters
        ----------
        K : numpy array of shape [n_samples1, n_samples2]
            Kernel matrix.
        y : (ignored)
            .. deprecated:: 0.19
               This parameter will be removed in 0.21.
        copy : boolean, optional, default True
            Set to False to perform inplace computation.

        Returns
        -------
        K_new : numpy array of shape [n_samples1, n_samples2]
        """
        if not isinstance(y, string_types) or y != 'deprecated':
            warnings.warn("The parameter y on transform() is "
                          "deprecated since 0.19 and will be removed in 0.21",
                          DeprecationWarning)

        check_is_fitted(self, 'K_fit_all_')

        K = check_array(K, copy=copy, dtype=FLOAT_DTYPES)

        K_pred_cols = (np.sum(K, axis=1) /
                       self.K_fit_rows_.shape[0])[:, np.newaxis]

        K -= self.K_fit_rows_
        K -= K_pred_cols
        K += self.K_fit_all_

        return K

    @property
    def _pairwise(self):
        return True


def add_dummy_feature(X, value=1.0):
    """Augment dataset with an additional dummy feature.

    This is useful for fitting an intercept term with implementations which
    cannot otherwise fit it directly.

    Parameters
    ----------
    X : {array-like, sparse matrix}, shape [n_samples, n_features]
        Data.

    value : float
        Value to use for the dummy feature.

    Returns
    -------

    X : {array, sparse matrix}, shape [n_samples, n_features + 1]
        Same data with dummy feature added as first column.

    Examples
    --------

    >>> from sklearn.preprocessing import add_dummy_feature
    >>> add_dummy_feature([[0, 1], [1, 0]])
    array([[1., 0., 1.],
           [1., 1., 0.]])
    """
    X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], dtype=FLOAT_DTYPES)
    n_samples, n_features = X.shape
    shape = (n_samples, n_features + 1)
    if sparse.issparse(X):
        if sparse.isspmatrix_coo(X):
            # Shift columns to the right.
            col = X.col + 1
            # Column indices of dummy feature are 0 everywhere.
            col = np.concatenate((np.zeros(n_samples), col))
            # Row indices of dummy feature are 0, ..., n_samples-1.
            row = np.concatenate((np.arange(n_samples), X.row))
            # Prepend the dummy feature n_samples times.
            data = np.concatenate((np.full(n_samples, value), X.data))
            return sparse.coo_matrix((data, (row, col)), shape)
        elif sparse.isspmatrix_csc(X):
            # Shift index pointers since we need to add n_samples elements.
            indptr = X.indptr + n_samples
            # indptr[0] must be 0.
            indptr = np.concatenate((np.array([0]), indptr))
            # Row indices of dummy feature are 0, ..., n_samples-1.
            indices = np.concatenate((np.arange(n_samples), X.indices))
            # Prepend the dummy feature n_samples times.
            data = np.concatenate((np.full(n_samples, value), X.data))
            return sparse.csc_matrix((data, indices, indptr), shape)
        else:
            klass = X.__class__
            return klass(add_dummy_feature(X.tocoo(), value))
    else:
        return np.hstack((np.full((n_samples, 1), value), X))


class QuantileTransformer(BaseEstimator, TransformerMixin):
    """Transform features using quantiles information.

    This method transforms the features to follow a uniform or a normal
    distribution. Therefore, for a given feature, this transformation tends
    to spread out the most frequent values. It also reduces the impact of
    (marginal) outliers: this is therefore a robust preprocessing scheme.

    The transformation is applied on each feature independently.
    The cumulative distribution function of a feature is used to project the
    original values. Features values of new/unseen data that fall below
    or above the fitted range will be mapped to the bounds of the output
    distribution. Note that this transform is non-linear. It may distort linear
    correlations between variables measured at the same scale but renders
    variables measured at different scales more directly comparable.

    Read more in the :ref:`User Guide <preprocessing_transformer>`.

    Parameters
    ----------
    n_quantiles : int, optional (default=1000)
        Number of quantiles to be computed. It corresponds to the number
        of landmarks used to discretize the cumulative distribution function.

    output_distribution : str, optional (default='uniform')
        Marginal distribution for the transformed data. The choices are
        'uniform' (default) or 'normal'.

    ignore_implicit_zeros : bool, optional (default=False)
        Only applies to sparse matrices. If True, the sparse entries of the
        matrix are discarded to compute the quantile statistics. If False,
        these entries are treated as zeros.

    subsample : int, optional (default=1e5)
        Maximum number of samples used to estimate the quantiles for
        computational efficiency. Note that the subsampling procedure may
        differ for value-identical sparse and dense matrices.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by np.random. Note that this is used by subsampling and smoothing
        noise.

    copy : boolean, optional, (default=True)
        Set to False to perform inplace transformation and avoid a copy (if the
        input is already a numpy array).

    Attributes
    ----------
    quantiles_ : ndarray, shape (n_quantiles, n_features)
        The values corresponding the quantiles of reference.

    references_ : ndarray, shape(n_quantiles, )
        Quantiles of references.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.preprocessing import QuantileTransformer
    >>> rng = np.random.RandomState(0)
    >>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0)
    >>> qt = QuantileTransformer(n_quantiles=10, random_state=0)
    >>> qt.fit_transform(X) # doctest: +ELLIPSIS
    array([...])

    See also
    --------
    quantile_transform : Equivalent function without the estimator API.
    PowerTransformer : Perform mapping to a normal distribution using a power
        transform.
    StandardScaler : Perform standardization that is faster, but less robust
        to outliers.
    RobustScaler : Perform robust standardization that removes the influence
        of outliers but does not put outliers and inliers on the same scale.

    Notes
    -----
    NaNs are treated as missing values: disregarded in fit, and maintained in
    transform.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
    """

    def __init__(self, n_quantiles=1000, output_distribution='uniform',
                 ignore_implicit_zeros=False, subsample=int(1e5),
                 random_state=None, copy=True):
        self.n_quantiles = n_quantiles
        self.output_distribution = output_distribution
        self.ignore_implicit_zeros = ignore_implicit_zeros
        self.subsample = subsample
        self.random_state = random_state
        self.copy = copy

    def _dense_fit(self, X, random_state):
        """Compute percentiles for dense matrices.

        Parameters
        ----------
        X : ndarray, shape (n_samples, n_features)
            The data used to scale along the features axis.
        """
        if self.ignore_implicit_zeros:
            warnings.warn("'ignore_implicit_zeros' takes effect only with"
                          " sparse matrix. This parameter has no effect.")

        n_samples, n_features = X.shape
        references = self.references_ * 100
        # numpy < 1.9 bug: np.percentile 2nd argument needs to be a list
        if LooseVersion(np.__version__) < '1.9':
            references = references.tolist()

        self.quantiles_ = []
        for col in X.T:
            if self.subsample < n_samples:
                subsample_idx = random_state.choice(n_samples,
                                                    size=self.subsample,
                                                    replace=False)
                col = col.take(subsample_idx, mode='clip')
            self.quantiles_.append(nanpercentile(col, references))
        self.quantiles_ = np.transpose(self.quantiles_)

    def _sparse_fit(self, X, random_state):
        """Compute percentiles for sparse matrices.

        Parameters
        ----------
        X : sparse matrix CSC, shape (n_samples, n_features)
            The data used to scale along the features axis. The sparse matrix
            needs to be nonnegative.
        """
        n_samples, n_features = X.shape
        references = self.references_ * 100
        # numpy < 1.9 bug: np.percentile 2nd argument needs to be a list
        if LooseVersion(np.__version__) < '1.9':
            references = references.tolist()

        self.quantiles_ = []
        for feature_idx in range(n_features):
            column_nnz_data = X.data[X.indptr[feature_idx]:
                                     X.indptr[feature_idx + 1]]
            if len(column_nnz_data) > self.subsample:
                column_subsample = (self.subsample * len(column_nnz_data) //
                                    n_samples)
                if self.ignore_implicit_zeros:
                    column_data = np.zeros(shape=column_subsample,
                                           dtype=X.dtype)
                else:
                    column_data = np.zeros(shape=self.subsample, dtype=X.dtype)
                column_data[:column_subsample] = random_state.choice(
                    column_nnz_data, size=column_subsample, replace=False)
            else:
                if self.ignore_implicit_zeros:
                    column_data = np.zeros(shape=len(column_nnz_data),
                                           dtype=X.dtype)
                else:
                    column_data = np.zeros(shape=n_samples, dtype=X.dtype)
                column_data[:len(column_nnz_data)] = column_nnz_data

            if not column_data.size:
                # if no nnz, an error will be raised for computing the
                # quantiles. Force the quantiles to be zeros.
                self.quantiles_.append([0] * len(references))
            else:
                self.quantiles_.append(nanpercentile(column_data, references))
        self.quantiles_ = np.transpose(self.quantiles_)

    def fit(self, X, y=None):
        """Compute the quantiles used for transforming.

        Parameters
        ----------
        X : ndarray or sparse matrix, shape (n_samples, n_features)
            The data used to scale along the features axis. If a sparse
            matrix is provided, it will be converted into a sparse
            ``csc_matrix``. Additionally, the sparse matrix needs to be
            nonnegative if `ignore_implicit_zeros` is False.

        Returns
        -------
        self : object
        """
        if self.n_quantiles <= 0:
            raise ValueError("Invalid value for 'n_quantiles': %d. "
                             "The number of quantiles must be at least one."
                             % self.n_quantiles)

        if self.subsample <= 0:
            raise ValueError("Invalid value for 'subsample': %d. "
                             "The number of subsamples must be at least one."
                             % self.subsample)

        if self.n_quantiles > self.subsample:
            raise ValueError("The number of quantiles cannot be greater than"
                             " the number of samples used. Got {} quantiles"
                             " and {} samples.".format(self.n_quantiles,
                                                       self.subsample))

        X = self._check_inputs(X)
        rng = check_random_state(self.random_state)

        # Create the quantiles of reference
        self.references_ = np.linspace(0, 1, self.n_quantiles,
                                       endpoint=True)
        if sparse.issparse(X):
            self._sparse_fit(X, rng)
        else:
            self._dense_fit(X, rng)

        return self

    def _transform_col(self, X_col, quantiles, inverse):
        """Private function to transform a single feature"""

        if self.output_distribution == 'normal':
            output_distribution = 'norm'
        else:
            output_distribution = self.output_distribution
        output_distribution = getattr(stats, output_distribution)

        if not inverse:
            lower_bound_x = quantiles[0]
            upper_bound_x = quantiles[-1]
            lower_bound_y = 0
            upper_bound_y = 1
        else:
            lower_bound_x = 0
            upper_bound_x = 1
            lower_bound_y = quantiles[0]
            upper_bound_y = quantiles[-1]
            #  for inverse transform, match a uniform PDF
            with np.errstate(invalid='ignore'):  # hide NaN comparison warnings
                X_col = output_distribution.cdf(X_col)
        # find index for lower and higher bounds
        with np.errstate(invalid='ignore'):  # hide NaN comparison warnings
            lower_bounds_idx = (X_col - BOUNDS_THRESHOLD <
                                lower_bound_x)
            upper_bounds_idx = (X_col + BOUNDS_THRESHOLD >
                                upper_bound_x)

        isfinite_mask = ~np.isnan(X_col)
        X_col_finite = X_col[isfinite_mask]
        if not inverse:
            # Interpolate in one direction and in the other and take the
            # mean. This is in case of repeated values in the features
            # and hence repeated quantiles
            #
            # If we don't do this, only one extreme of the duplicated is
            # used (the upper when we do ascending, and the
            # lower for descending). We take the mean of these two
            X_col[isfinite_mask] = .5 * (
                np.interp(X_col_finite, quantiles, self.references_)
                - np.interp(-X_col_finite, -quantiles[::-1],
                            -self.references_[::-1]))
        else:
            X_col[isfinite_mask] = np.interp(X_col_finite,
                                             self.references_, quantiles)

        X_col[upper_bounds_idx] = upper_bound_y
        X_col[lower_bounds_idx] = lower_bound_y
        # for forward transform, match the output PDF
        if not inverse:
            with np.errstate(invalid='ignore'):  # hide NaN comparison warnings
                X_col = output_distribution.ppf(X_col)
            # find the value to clip the data to avoid mapping to
            # infinity. Clip such that the inverse transform will be
            # consistent
            clip_min = output_distribution.ppf(BOUNDS_THRESHOLD -
                                               np.spacing(1))
            clip_max = output_distribution.ppf(1 - (BOUNDS_THRESHOLD -
                                                    np.spacing(1)))
            X_col = np.clip(X_col, clip_min, clip_max)

        return X_col

    def _check_inputs(self, X, accept_sparse_negative=False):
        """Check inputs before fit and transform"""
        X = check_array(X, accept_sparse='csc', copy=self.copy,
                        dtype=FLOAT_DTYPES,
                        force_all_finite='allow-nan')
        # we only accept positive sparse matrix when ignore_implicit_zeros is
        # false and that we call fit or transform.
        with np.errstate(invalid='ignore'):  # hide NaN comparison warnings
            if (not accept_sparse_negative and not self.ignore_implicit_zeros
                    and (sparse.issparse(X) and np.any(X.data < 0))):
                raise ValueError('QuantileTransformer only accepts'
                                 ' non-negative sparse matrices.')

        # check the output PDF
        if self.output_distribution not in ('normal', 'uniform'):
            raise ValueError("'output_distribution' has to be either 'normal'"
                             " or 'uniform'. Got '{}' instead.".format(
                                 self.output_distribution))

        return X

    def _check_is_fitted(self, X):
        """Check the inputs before transforming"""
        check_is_fitted(self, 'quantiles_')
        # check that the dimension of X are adequate with the fitted data
        if X.shape[1] != self.quantiles_.shape[1]:
            raise ValueError('X does not have the same number of features as'
                             ' the previously fitted data. Got {} instead of'
                             ' {}.'.format(X.shape[1],
                                           self.quantiles_.shape[1]))

    def _transform(self, X, inverse=False):
        """Forward and inverse transform.

        Parameters
        ----------
        X : ndarray, shape (n_samples, n_features)
            The data used to scale along the features axis.

        inverse : bool, optional (default=False)
            If False, apply forward transform. If True, apply
            inverse transform.

        Returns
        -------
        X : ndarray, shape (n_samples, n_features)
            Projected data
        """

        if sparse.issparse(X):
            for feature_idx in range(X.shape[1]):
                column_slice = slice(X.indptr[feature_idx],
                                     X.indptr[feature_idx + 1])
                X.data[column_slice] = self._transform_col(
                    X.data[column_slice], self.quantiles_[:, feature_idx],
                    inverse)
        else:
            for feature_idx in range(X.shape[1]):
                X[:, feature_idx] = self._transform_col(
                    X[:, feature_idx], self.quantiles_[:, feature_idx],
                    inverse)

        return X

    def transform(self, X):
        """Feature-wise transformation of the data.

        Parameters
        ----------
        X : ndarray or sparse matrix, shape (n_samples, n_features)
            The data used to scale along the features axis. If a sparse
            matrix is provided, it will be converted into a sparse
            ``csc_matrix``. Additionally, the sparse matrix needs to be
            nonnegative if `ignore_implicit_zeros` is False.

        Returns
        -------
        Xt : ndarray or sparse matrix, shape (n_samples, n_features)
            The projected data.
        """
        X = self._check_inputs(X)
        self._check_is_fitted(X)

        return self._transform(X, inverse=False)

    def inverse_transform(self, X):
        """Back-projection to the original space.

        Parameters
        ----------
        X : ndarray or sparse matrix, shape (n_samples, n_features)
            The data used to scale along the features axis. If a sparse
            matrix is provided, it will be converted into a sparse
            ``csc_matrix``. Additionally, the sparse matrix needs to be
            nonnegative if `ignore_implicit_zeros` is False.

        Returns
        -------
        Xt : ndarray or sparse matrix, shape (n_samples, n_features)
            The projected data.
        """
        X = self._check_inputs(X, accept_sparse_negative=True)
        self._check_is_fitted(X)

        return self._transform(X, inverse=True)


def quantile_transform(X, axis=0, n_quantiles=1000,
                       output_distribution='uniform',
                       ignore_implicit_zeros=False,
                       subsample=int(1e5),
                       random_state=None,
                       copy=False):
    """Transform features using quantiles information.

    This method transforms the features to follow a uniform or a normal
    distribution. Therefore, for a given feature, this transformation tends
    to spread out the most frequent values. It also reduces the impact of
    (marginal) outliers: this is therefore a robust preprocessing scheme.

    The transformation is applied on each feature independently.
    The cumulative distribution function of a feature is used to project the
    original values. Features values of new/unseen data that fall below
    or above the fitted range will be mapped to the bounds of the output
    distribution. Note that this transform is non-linear. It may distort linear
    correlations between variables measured at the same scale but renders
    variables measured at different scales more directly comparable.

    Read more in the :ref:`User Guide <preprocessing_transformer>`.

    Parameters
    ----------
    X : array-like, sparse matrix
        The data to transform.

    axis : int, (default=0)
        Axis used to compute the means and standard deviations along. If 0,
        transform each feature, otherwise (if 1) transform each sample.

    n_quantiles : int, optional (default=1000)
        Number of quantiles to be computed. It corresponds to the number
        of landmarks used to discretize the cumulative distribution function.

    output_distribution : str, optional (default='uniform')
        Marginal distribution for the transformed data. The choices are
        'uniform' (default) or 'normal'.

    ignore_implicit_zeros : bool, optional (default=False)
        Only applies to sparse matrices. If True, the sparse entries of the
        matrix are discarded to compute the quantile statistics. If False,
        these entries are treated as zeros.

    subsample : int, optional (default=1e5)
        Maximum number of samples used to estimate the quantiles for
        computational efficiency. Note that the subsampling procedure may
        differ for value-identical sparse and dense matrices.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by np.random. Note that this is used by subsampling and smoothing
        noise.

    copy : boolean, optional, (default=True)
        Set to False to perform inplace transformation and avoid a copy (if the
        input is already a numpy array).

    Attributes
    ----------
    quantiles_ : ndarray, shape (n_quantiles, n_features)
        The values corresponding the quantiles of reference.

    references_ : ndarray, shape(n_quantiles, )
        Quantiles of references.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.preprocessing import quantile_transform
    >>> rng = np.random.RandomState(0)
    >>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0)
    >>> quantile_transform(X, n_quantiles=10, random_state=0)
    ... # doctest: +ELLIPSIS
    array([...])

    See also
    --------
    QuantileTransformer : Performs quantile-based scaling using the
        ``Transformer`` API (e.g. as part of a preprocessing
        :class:`sklearn.pipeline.Pipeline`).
    power_transform : Maps data to a normal distribution using a
        power transformation.
    scale : Performs standardization that is faster, but less robust
        to outliers.
    robust_scale : Performs robust standardization that removes the influence
        of outliers but does not put outliers and inliers on the same scale.

    Notes
    -----
    NaNs are treated as missing values: disregarded in fit, and maintained in
    transform.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
    """
    n = QuantileTransformer(n_quantiles=n_quantiles,
                            output_distribution=output_distribution,
                            subsample=subsample,
                            ignore_implicit_zeros=ignore_implicit_zeros,
                            random_state=random_state,
                            copy=copy)
    if axis == 0:
        return n.fit_transform(X)
    elif axis == 1:
        return n.fit_transform(X.T).T
    else:
        raise ValueError("axis should be either equal to 0 or 1. Got"
                         " axis={}".format(axis))


class PowerTransformer(BaseEstimator, TransformerMixin):
    """Apply a power transform featurewise to make data more Gaussian-like.

    Power transforms are a family of parametric, monotonic transformations
    that are applied to make data more Gaussian-like. This is useful for
    modeling issues related to heteroscedasticity (non-constant variance),
    or other situations where normality is desired.

    Currently, PowerTransformer supports the Box-Cox transform and the
    Yeo-Johnson transform. The optimal parameter for stabilizing variance and
    minimizing skewness is estimated through maximum likelihood.

    Box-Cox requires input data to be strictly positive, while Yeo-Johnson
    supports both positive or negative data.

    By default, zero-mean, unit-variance normalization is applied to the
    transformed data.

    Read more in the :ref:`User Guide <preprocessing_transformer>`.

    Parameters
    ----------
    method : str, (default='yeo-johnson')
        The power transform method. Available methods are:

        - 'yeo-johnson' [1]_, works with positive and negative values
        - 'box-cox' [2]_, only works with strictly positive values

    standardize : boolean, default=True
        Set to True to apply zero-mean, unit-variance normalization to the
        transformed output.

    copy : boolean, optional, default=True
        Set to False to perform inplace computation during transformation.

    Attributes
    ----------
    lambdas_ : array of float, shape (n_features,)
        The parameters of the power transformation for the selected features.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.preprocessing import PowerTransformer
    >>> pt = PowerTransformer()
    >>> data = [[1, 2], [3, 2], [4, 5]]
    >>> print(pt.fit(data))
    PowerTransformer(copy=True, method='yeo-johnson', standardize=True)
    >>> print(pt.lambdas_)
    [ 1.386... -3.100...]
    >>> print(pt.transform(data))
    [[-1.316... -0.707...]
     [ 0.209... -0.707...]
     [ 1.106...  1.414...]]

    See also
    --------
    power_transform : Equivalent function without the estimator API.

    QuantileTransformer : Maps data to a standard normal distribution with
        the parameter `output_distribution='normal'`.

    Notes
    -----
    NaNs are treated as missing values: disregarded in ``fit``, and maintained
    in ``transform``.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.

    References
    ----------

    .. [1] I.K. Yeo and R.A. Johnson, "A new family of power transformations to
           improve normality or symmetry." Biometrika, 87(4), pp.954-959,
           (2000).

    .. [2] G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal
           of the Royal Statistical Society B, 26, 211-252 (1964).
    """
    def __init__(self, method='yeo-johnson', standardize=True, copy=True):
        self.method = method
        self.standardize = standardize
        self.copy = copy

    def fit(self, X, y=None):
        """Estimate the optimal parameter lambda for each feature.

        The optimal lambda parameter for minimizing skewness is estimated on
        each feature independently using maximum likelihood.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The data used to estimate the optimal transformation parameters.

        y : Ignored

        Returns
        -------
        self : object
        """
        self._fit(X, y=y, force_transform=False)
        return self

    def fit_transform(self, X, y=None):
        return self._fit(X, y, force_transform=True)

    def _fit(self, X, y=None, force_transform=False):
        X = self._check_input(X, check_positive=True, check_method=True)

        if not self.copy and not force_transform:  # if call from fit()
            X = X.copy()  # force copy so that fit does not change X inplace

        optim_function = {'box-cox': self._box_cox_optimize,
                          'yeo-johnson': self._yeo_johnson_optimize
                          }[self.method]
        self.lambdas_ = []
        for col in X.T:
            with np.errstate(invalid='ignore'):  # hide NaN warnings
                lmbda = optim_function(col)
                self.lambdas_.append(lmbda)
        self.lambdas_ = np.array(self.lambdas_)

        if self.standardize or force_transform:
            transform_function = {'box-cox': boxcox,
                                  'yeo-johnson': self._yeo_johnson_transform
                                  }[self.method]
            for i, lmbda in enumerate(self.lambdas_):
                with np.errstate(invalid='ignore'):  # hide NaN warnings
                    X[:, i] = transform_function(X[:, i], lmbda)

        if self.standardize:
            self._scaler = StandardScaler(copy=False)
            if force_transform:
                X = self._scaler.fit_transform(X)
            else:
                self._scaler.fit(X)

        return X

    def transform(self, X):
        """Apply the power transform to each feature using the fitted lambdas.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The data to be transformed using a power transformation.

        Returns
        -------
        X_trans : array-like, shape (n_samples, n_features)
            The transformed data.
        """
        check_is_fitted(self, 'lambdas_')
        X = self._check_input(X, check_positive=True, check_shape=True)

        transform_function = {'box-cox': boxcox,
                              'yeo-johnson': self._yeo_johnson_transform
                              }[self.method]
        for i, lmbda in enumerate(self.lambdas_):
            with np.errstate(invalid='ignore'):  # hide NaN warnings
                X[:, i] = transform_function(X[:, i], lmbda)

        if self.standardize:
            X = self._scaler.transform(X)

        return X

    def inverse_transform(self, X):
        """Apply the inverse power transformation using the fitted lambdas.

        The inverse of the Box-Cox transformation is given by::

            if lambda == 0:
                X = exp(X_trans)
            else:
                X = (X_trans * lambda + 1) ** (1 / lambda)

        The inverse of the Yeo-Johnson transformation is given by::

            if X >= 0 and lambda == 0:
                X = exp(X_trans) - 1
            elif X >= 0 and lambda != 0:
                X = (X_trans * lambda + 1) ** (1 / lambda) - 1
            elif X < 0 and lambda != 2:
                X = 1 - (-(2 - lambda) * X_trans + 1) ** (1 / (2 - lambda))
            elif X < 0 and lambda == 2:
                X = 1 - exp(-X_trans)

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The transformed data.

        Returns
        -------
        X : array-like, shape (n_samples, n_features)
            The original data
        """
        check_is_fitted(self, 'lambdas_')
        X = self._check_input(X, check_shape=True)

        if self.standardize:
            X = self._scaler.inverse_transform(X)

        inv_fun = {'box-cox': self._box_cox_inverse_tranform,
                   'yeo-johnson': self._yeo_johnson_inverse_transform
                   }[self.method]
        for i, lmbda in enumerate(self.lambdas_):
            with np.errstate(invalid='ignore'):  # hide NaN warnings
                X[:, i] = inv_fun(X[:, i], lmbda)

        return X

    def _box_cox_inverse_tranform(self, x, lmbda):
        """Return inverse-transformed input x following Box-Cox inverse
        transform with parameter lambda.
        """
        if lmbda == 0:
            x_inv = np.exp(x)
        else:
            x_inv = (x * lmbda + 1) ** (1 / lmbda)

        return x_inv

    def _yeo_johnson_inverse_transform(self, x, lmbda):
        """Return inverse-transformed input x following Yeo-Johnson inverse
        transform with parameter lambda.
        """
        x_inv = np.zeros_like(x)
        pos = x >= 0

        # when x >= 0
        if abs(lmbda) < np.spacing(1.):
            x_inv[pos] = np.exp(x[pos]) - 1
        else:  # lmbda != 0
            x_inv[pos] = np.power(x[pos] * lmbda + 1, 1 / lmbda) - 1

        # when x < 0
        if abs(lmbda - 2) > np.spacing(1.):
            x_inv[~pos] = 1 - np.power(-(2 - lmbda) * x[~pos] + 1,
                                       1 / (2 - lmbda))
        else:  # lmbda == 2
            x_inv[~pos] = 1 - np.exp(-x[~pos])

        return x_inv

    def _yeo_johnson_transform(self, x, lmbda):
        """Return transformed input x following Yeo-Johnson transform with
        parameter lambda.
        """

        out = np.zeros_like(x)
        pos = x >= 0  # binary mask

        # when x >= 0
        if abs(lmbda) < np.spacing(1.):
            out[pos] = np.log1p(x[pos])
        else:  # lmbda != 0
            out[pos] = (np.power(x[pos] + 1, lmbda) - 1) / lmbda

        # when x < 0
        if abs(lmbda - 2) > np.spacing(1.):
            out[~pos] = -(np.power(-x[~pos] + 1, 2 - lmbda) - 1) / (2 - lmbda)
        else:  # lmbda == 2
            out[~pos] = -np.log1p(-x[~pos])

        return out

    def _box_cox_optimize(self, x):
        """Find and return optimal lambda parameter of the Box-Cox transform by
        MLE, for observed data x.

        We here use scipy builtins which uses the brent optimizer.
        """
        # the computation of lambda is influenced by NaNs so we need to
        # get rid of them
        _, lmbda = stats.boxcox(x[~np.isnan(x)], lmbda=None)

        return lmbda

    def _yeo_johnson_optimize(self, x):
        """Find and return optimal lambda parameter of the Yeo-Johnson
        transform by MLE, for observed data x.

        Like for Box-Cox, MLE is done via the brent optimizer.
        """

        def _neg_log_likelihood(lmbda):
            """Return the negative log likelihood of the observed data x as a
            function of lambda."""
            x_trans = self._yeo_johnson_transform(x, lmbda)
            n_samples = x.shape[0]

            loglike = -n_samples / 2 * np.log(x_trans.var())
            loglike += (lmbda - 1) * (np.sign(x) * np.log1p(np.abs(x))).sum()

            return -loglike

        # the computation of lambda is influenced by NaNs so we need to
        # get rid of them
        x = x[~np.isnan(x)]
        # choosing bracket -2, 2 like for boxcox
        return optimize.brent(_neg_log_likelihood, brack=(-2, 2))

    def _check_input(self, X, check_positive=False, check_shape=False,
                     check_method=False):
        """Validate the input before fit and transform.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        check_positive : bool
            If True, check that all data is positive and non-zero (only if
            ``self.method=='box-cox'``).

        check_shape : bool
            If True, check that n_features matches the length of self.lambdas_

        check_method : bool
            If True, check that the transformation method is valid.
        """
        X = check_array(X, ensure_2d=True, dtype=FLOAT_DTYPES, copy=self.copy,
                        force_all_finite='allow-nan')

        with np.warnings.catch_warnings():
            np.warnings.filterwarnings(
                'ignore', r'All-NaN (slice|axis) encountered')
            if (check_positive and self.method == 'box-cox' and
                    np.nanmin(X) <= 0):
                raise ValueError("The Box-Cox transformation can only be "
                                 "applied to strictly positive data")

        if check_shape and not X.shape[1] == len(self.lambdas_):
            raise ValueError("Input data has a different number of features "
                             "than fitting data. Should have {n}, data has {m}"
                             .format(n=len(self.lambdas_), m=X.shape[1]))

        valid_methods = ('box-cox', 'yeo-johnson')
        if check_method and self.method not in valid_methods:
            raise ValueError("'method' must be one of {}, "
                             "got {} instead."
                             .format(valid_methods, self.method))

        return X


def power_transform(X, method='warn', standardize=True, copy=True):
    """
    Power transforms are a family of parametric, monotonic transformations
    that are applied to make data more Gaussian-like. This is useful for
    modeling issues related to heteroscedasticity (non-constant variance),
    or other situations where normality is desired.

    Currently, power_transform supports the Box-Cox transform and the
    Yeo-Johnson transform. The optimal parameter for stabilizing variance and
    minimizing skewness is estimated through maximum likelihood.

    Box-Cox requires input data to be strictly positive, while Yeo-Johnson
    supports both positive or negative data.

    By default, zero-mean, unit-variance normalization is applied to the
    transformed data.

    Read more in the :ref:`User Guide <preprocessing_transformer>`.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        The data to be transformed using a power transformation.

    method : str
        The power transform method. Available methods are:

        - 'yeo-johnson' [1]_, works with positive and negative values
        - 'box-cox' [2]_, only works with strictly positive values

        The default method will be changed from 'box-cox' to 'yeo-johnson'
        in version 0.23. To suppress the FutureWarning, explicitly set the
        parameter.

    standardize : boolean, default=True
        Set to True to apply zero-mean, unit-variance normalization to the
        transformed output.

    copy : boolean, optional, default=True
        Set to False to perform inplace computation during transformation.

    Returns
    -------
    X_trans : array-like, shape (n_samples, n_features)
        The transformed data.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.preprocessing import power_transform
    >>> data = [[1, 2], [3, 2], [4, 5]]
    >>> print(power_transform(data, method='box-cox'))  # doctest: +ELLIPSIS
    [[-1.332... -0.707...]
     [ 0.256... -0.707...]
     [ 1.076...  1.414...]]

    See also
    --------
    PowerTransformer : Equivalent transformation with the
        ``Transformer`` API (e.g. as part of a preprocessing
        :class:`sklearn.pipeline.Pipeline`).

    quantile_transform : Maps data to a standard normal distribution with
        the parameter `output_distribution='normal'`.

    Notes
    -----
    NaNs are treated as missing values: disregarded in ``fit``, and maintained
    in ``transform``.

    For a comparison of the different scalers, transformers, and normalizers,
    see :ref:`examples/preprocessing/plot_all_scaling.py
    <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.

    References
    ----------

    .. [1] I.K. Yeo and R.A. Johnson, "A new family of power transformations to
           improve normality or symmetry." Biometrika, 87(4), pp.954-959,
           (2000).

    .. [2] G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal
           of the Royal Statistical Society B, 26, 211-252 (1964).
    """
    if method == 'warn':
        warnings.warn("The default value of 'method' will change from "
                      "'box-cox' to 'yeo-johnson' in version 0.23. Set "
                      "the 'method' argument explicitly to silence this "
                      "warning in the meantime.",
                      FutureWarning)
        method = 'box-cox'
    pt = PowerTransformer(method=method, standardize=standardize, copy=copy)
    return pt.fit_transform(X)


class CategoricalEncoder:
    """
    CategoricalEncoder briefly existed in 0.20dev. Its functionality
    has been rolled into the OneHotEncoder and OrdinalEncoder.
    This stub will be removed in version 0.21.
    """

    def __init__(*args, **kwargs):
        raise RuntimeError(
            "CategoricalEncoder briefly existed in 0.20dev. Its functionality "
            "has been rolled into the OneHotEncoder and OrdinalEncoder. "
            "This stub will be removed in version 0.21.")