1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
import numpy as np
from scipy import sparse
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import ignore_warnings
from sklearn.preprocessing.imputation import Imputer
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn import tree
from sklearn.random_projection import sparse_random_matrix
@ignore_warnings
def _check_statistics(X, X_true,
strategy, statistics, missing_values):
"""Utility function for testing imputation for a given strategy.
Test:
- along the two axes
- with dense and sparse arrays
Check that:
- the statistics (mean, median, mode) are correct
- the missing values are imputed correctly"""
err_msg = "Parameters: strategy = %s, missing_values = %s, " \
"axis = {0}, sparse = {1}" % (strategy, missing_values)
assert_ae = assert_array_equal
if X.dtype.kind == 'f' or X_true.dtype.kind == 'f':
assert_ae = assert_array_almost_equal
# Normal matrix, axis = 0
imputer = Imputer(missing_values, strategy=strategy, axis=0)
X_trans = imputer.fit(X).transform(X.copy())
assert_ae(imputer.statistics_, statistics,
err_msg=err_msg.format(0, False))
assert_ae(X_trans, X_true, err_msg=err_msg.format(0, False))
# Normal matrix, axis = 1
imputer = Imputer(missing_values, strategy=strategy, axis=1)
imputer.fit(X.transpose())
if np.isnan(statistics).any():
assert_raises(ValueError, imputer.transform, X.copy().transpose())
else:
X_trans = imputer.transform(X.copy().transpose())
assert_ae(X_trans, X_true.transpose(),
err_msg=err_msg.format(1, False))
# Sparse matrix, axis = 0
imputer = Imputer(missing_values, strategy=strategy, axis=0)
imputer.fit(sparse.csc_matrix(X))
X_trans = imputer.transform(sparse.csc_matrix(X.copy()))
if sparse.issparse(X_trans):
X_trans = X_trans.toarray()
assert_ae(imputer.statistics_, statistics,
err_msg=err_msg.format(0, True))
assert_ae(X_trans, X_true, err_msg=err_msg.format(0, True))
# Sparse matrix, axis = 1
imputer = Imputer(missing_values, strategy=strategy, axis=1)
imputer.fit(sparse.csc_matrix(X.transpose()))
if np.isnan(statistics).any():
assert_raises(ValueError, imputer.transform,
sparse.csc_matrix(X.copy().transpose()))
else:
X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose()))
if sparse.issparse(X_trans):
X_trans = X_trans.toarray()
assert_ae(X_trans, X_true.transpose(),
err_msg=err_msg.format(1, True))
@ignore_warnings
def test_imputation_shape():
# Verify the shapes of the imputed matrix for different strategies.
X = np.random.randn(10, 2)
X[::2] = np.nan
for strategy in ['mean', 'median', 'most_frequent']:
imputer = Imputer(strategy=strategy)
X_imputed = imputer.fit_transform(X)
assert_equal(X_imputed.shape, (10, 2))
X_imputed = imputer.fit_transform(sparse.csr_matrix(X))
assert_equal(X_imputed.shape, (10, 2))
@ignore_warnings
def test_imputation_mean_median_only_zero():
# Test imputation using the mean and median strategies, when
# missing_values == 0.
X = np.array([
[np.nan, 0, 0, 0, 5],
[np.nan, 1, 0, np.nan, 3],
[np.nan, 2, 0, 0, 0],
[np.nan, 6, 0, 5, 13],
])
X_imputed_mean = np.array([
[3, 5],
[1, 3],
[2, 7],
[6, 13],
])
statistics_mean = [np.nan, 3, np.nan, np.nan, 7]
# Behaviour of median with NaN is undefined, e.g. different results in
# np.median and np.ma.median
X_for_median = X[:, [0, 1, 2, 4]]
X_imputed_median = np.array([
[2, 5],
[1, 3],
[2, 5],
[6, 13],
])
statistics_median = [np.nan, 2, np.nan, 5]
_check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0)
_check_statistics(X_for_median, X_imputed_median, "median",
statistics_median, 0)
def safe_median(arr, *args, **kwargs):
# np.median([]) raises a TypeError for numpy >= 1.10.1
length = arr.size if hasattr(arr, 'size') else len(arr)
return np.nan if length == 0 else np.median(arr, *args, **kwargs)
def safe_mean(arr, *args, **kwargs):
# np.mean([]) raises a RuntimeWarning for numpy >= 1.10.1
length = arr.size if hasattr(arr, 'size') else len(arr)
return np.nan if length == 0 else np.mean(arr, *args, **kwargs)
@ignore_warnings
def test_imputation_mean_median():
# Test imputation using the mean and median strategies, when
# missing_values != 0.
rng = np.random.RandomState(0)
dim = 10
dec = 10
shape = (dim * dim, dim + dec)
zeros = np.zeros(shape[0])
values = np.arange(1, shape[0] + 1)
values[4::2] = - values[4::2]
tests = [("mean", "NaN", lambda z, v, p: safe_mean(np.hstack((z, v)))),
("mean", 0, lambda z, v, p: np.mean(v)),
("median", "NaN", lambda z, v, p: safe_median(np.hstack((z, v)))),
("median", 0, lambda z, v, p: np.median(v))]
for strategy, test_missing_values, true_value_fun in tests:
X = np.empty(shape)
X_true = np.empty(shape)
true_statistics = np.empty(shape[1])
# Create a matrix X with columns
# - with only zeros,
# - with only missing values
# - with zeros, missing values and values
# And a matrix X_true containing all true values
for j in range(shape[1]):
nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1)
nb_missing_values = max(shape[0] + dec * dec
- (j + dec) * (j + dec), 0)
nb_values = shape[0] - nb_zeros - nb_missing_values
z = zeros[:nb_zeros]
p = np.repeat(test_missing_values, nb_missing_values)
v = values[rng.permutation(len(values))[:nb_values]]
true_statistics[j] = true_value_fun(z, v, p)
# Create the columns
X[:, j] = np.hstack((v, z, p))
if 0 == test_missing_values:
X_true[:, j] = np.hstack((v,
np.repeat(
true_statistics[j],
nb_missing_values + nb_zeros)))
else:
X_true[:, j] = np.hstack((v,
z,
np.repeat(true_statistics[j],
nb_missing_values)))
# Shuffle them the same way
np.random.RandomState(j).shuffle(X[:, j])
np.random.RandomState(j).shuffle(X_true[:, j])
# Mean doesn't support columns containing NaNs, median does
if strategy == "median":
cols_to_keep = ~np.isnan(X_true).any(axis=0)
else:
cols_to_keep = ~np.isnan(X_true).all(axis=0)
X_true = X_true[:, cols_to_keep]
_check_statistics(X, X_true, strategy,
true_statistics, test_missing_values)
@ignore_warnings
def test_imputation_median_special_cases():
# Test median imputation with sparse boundary cases
X = np.array([
[0, np.nan, np.nan], # odd: implicit zero
[5, np.nan, np.nan], # odd: explicit nonzero
[0, 0, np.nan], # even: average two zeros
[-5, 0, np.nan], # even: avg zero and neg
[0, 5, np.nan], # even: avg zero and pos
[4, 5, np.nan], # even: avg nonzeros
[-4, -5, np.nan], # even: avg negatives
[-1, 2, np.nan], # even: crossing neg and pos
]).transpose()
X_imputed_median = np.array([
[0, 0, 0],
[5, 5, 5],
[0, 0, 0],
[-5, 0, -2.5],
[0, 5, 2.5],
[4, 5, 4.5],
[-4, -5, -4.5],
[-1, 2, .5],
]).transpose()
statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5]
_check_statistics(X, X_imputed_median, "median",
statistics_median, 'NaN')
@ignore_warnings
def test_imputation_most_frequent():
# Test imputation using the most-frequent strategy.
X = np.array([
[-1, -1, 0, 5],
[-1, 2, -1, 3],
[-1, 1, 3, -1],
[-1, 2, 3, 7],
])
X_true = np.array([
[2, 0, 5],
[2, 3, 3],
[1, 3, 3],
[2, 3, 7],
])
# scipy.stats.mode, used in Imputer, doesn't return the first most
# frequent as promised in the doc but the lowest most frequent. When this
# test will fail after an update of scipy, Imputer will need to be updated
# to be consistent with the new (correct) behaviour
_check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1)
@ignore_warnings
def test_imputation_pipeline_grid_search():
# Test imputation within a pipeline + gridsearch.
pipeline = Pipeline([('imputer', Imputer(missing_values=0)),
('tree', tree.DecisionTreeRegressor(random_state=0))])
parameters = {
'imputer__strategy': ["mean", "median", "most_frequent"],
'imputer__axis': [0, 1]
}
l = 100
X = sparse_random_matrix(l, l, density=0.10)
Y = sparse_random_matrix(l, 1, density=0.10).toarray()
gs = GridSearchCV(pipeline, parameters)
gs.fit(X, Y)
@ignore_warnings
def test_imputation_pickle():
# Test for pickling imputers.
import pickle
l = 100
X = sparse_random_matrix(l, l, density=0.10)
for strategy in ["mean", "median", "most_frequent"]:
imputer = Imputer(missing_values=0, strategy=strategy)
imputer.fit(X)
imputer_pickled = pickle.loads(pickle.dumps(imputer))
assert_array_almost_equal(
imputer.transform(X.copy()),
imputer_pickled.transform(X.copy()),
err_msg="Fail to transform the data after pickling "
"(strategy = %s)" % (strategy)
)
@ignore_warnings
def test_imputation_copy():
# Test imputation with copy
X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0)
# copy=True, dense => copy
X = X_orig.copy().toarray()
imputer = Imputer(missing_values=0, strategy="mean", copy=True)
Xt = imputer.fit(X).transform(X)
Xt[0, 0] = -1
assert_false(np.all(X == Xt))
# copy=True, sparse csr => copy
X = X_orig.copy()
imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True)
Xt = imputer.fit(X).transform(X)
Xt.data[0] = -1
assert_false(np.all(X.data == Xt.data))
# copy=False, dense => no copy
X = X_orig.copy().toarray()
imputer = Imputer(missing_values=0, strategy="mean", copy=False)
Xt = imputer.fit(X).transform(X)
Xt[0, 0] = -1
assert_array_almost_equal(X, Xt)
# copy=False, sparse csr, axis=1 => no copy
X = X_orig.copy()
imputer = Imputer(missing_values=X.data[0], strategy="mean",
copy=False, axis=1)
Xt = imputer.fit(X).transform(X)
Xt.data[0] = -1
assert_array_almost_equal(X.data, Xt.data)
# copy=False, sparse csc, axis=0 => no copy
X = X_orig.copy().tocsc()
imputer = Imputer(missing_values=X.data[0], strategy="mean",
copy=False, axis=0)
Xt = imputer.fit(X).transform(X)
Xt.data[0] = -1
assert_array_almost_equal(X.data, Xt.data)
# copy=False, sparse csr, axis=0 => copy
X = X_orig.copy()
imputer = Imputer(missing_values=X.data[0], strategy="mean",
copy=False, axis=0)
Xt = imputer.fit(X).transform(X)
Xt.data[0] = -1
assert_false(np.all(X.data == Xt.data))
# copy=False, sparse csc, axis=1 => copy
X = X_orig.copy().tocsc()
imputer = Imputer(missing_values=X.data[0], strategy="mean",
copy=False, axis=1)
Xt = imputer.fit(X).transform(X)
Xt.data[0] = -1
assert_false(np.all(X.data == Xt.data))
# copy=False, sparse csr, axis=1, missing_values=0 => copy
X = X_orig.copy()
imputer = Imputer(missing_values=0, strategy="mean",
copy=False, axis=1)
Xt = imputer.fit(X).transform(X)
assert_false(sparse.issparse(Xt))
# Note: If X is sparse and if missing_values=0, then a (dense) copy of X is
# made, even if copy=False.
|