File: classes.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1231 lines) | stat: -rw-r--r-- 48,285 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
import warnings
import numpy as np

from .base import _fit_liblinear, BaseSVC, BaseLibSVM
from ..base import BaseEstimator, RegressorMixin, OutlierMixin
from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \
    LinearModel
from ..utils import check_X_y
from ..utils.validation import _num_samples
from ..utils.multiclass import check_classification_targets


class LinearSVC(BaseEstimator, LinearClassifierMixin,
                SparseCoefMixin):
    """Linear Support Vector Classification.

    Similar to SVC with parameter kernel='linear', but implemented in terms of
    liblinear rather than libsvm, so it has more flexibility in the choice of
    penalties and loss functions and should scale better to large numbers of
    samples.

    This class supports both dense and sparse input and the multiclass support
    is handled according to a one-vs-the-rest scheme.

    Read more in the :ref:`User Guide <svm_classification>`.

    Parameters
    ----------
    penalty : string, 'l1' or 'l2' (default='l2')
        Specifies the norm used in the penalization. The 'l2'
        penalty is the standard used in SVC. The 'l1' leads to ``coef_``
        vectors that are sparse.

    loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge')
        Specifies the loss function. 'hinge' is the standard SVM loss
        (used e.g. by the SVC class) while 'squared_hinge' is the
        square of the hinge loss.

    dual : bool, (default=True)
        Select the algorithm to either solve the dual or primal
        optimization problem. Prefer dual=False when n_samples > n_features.

    tol : float, optional (default=1e-4)
        Tolerance for stopping criteria.

    C : float, optional (default=1.0)
        Penalty parameter C of the error term.

    multi_class : string, 'ovr' or 'crammer_singer' (default='ovr')
        Determines the multi-class strategy if `y` contains more than
        two classes.
        ``"ovr"`` trains n_classes one-vs-rest classifiers, while
        ``"crammer_singer"`` optimizes a joint objective over all classes.
        While `crammer_singer` is interesting from a theoretical perspective
        as it is consistent, it is seldom used in practice as it rarely leads
        to better accuracy and is more expensive to compute.
        If ``"crammer_singer"`` is chosen, the options loss, penalty and dual
        will be ignored.

    fit_intercept : boolean, optional (default=True)
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be already centered).

    intercept_scaling : float, optional (default=1)
        When self.fit_intercept is True, instance vector x becomes
        ``[x, self.intercept_scaling]``,
        i.e. a "synthetic" feature with constant value equals to
        intercept_scaling is appended to the instance vector.
        The intercept becomes intercept_scaling * synthetic feature weight
        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    class_weight : {dict, 'balanced'}, optional
        Set the parameter C of class i to ``class_weight[i]*C`` for
        SVC. If not given, all classes are supposed to have
        weight one.
        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    verbose : int, (default=0)
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in liblinear that, if enabled, may not work
        properly in a multithreaded context.

    random_state : int, RandomState instance or None, optional (default=None)
        The seed of the pseudo random number generator to use when shuffling
        the data for the dual coordinate descent (if ``dual=True``). When
        ``dual=False`` the underlying implementation of :class:`LinearSVC`
        is not random and ``random_state`` has no effect on the results. If
        int, random_state is the seed used by the random number generator; If
        RandomState instance, random_state is the random number generator; If
        None, the random number generator is the RandomState instance used by
        `np.random`.

    max_iter : int, (default=1000)
        The maximum number of iterations to be run.

    Attributes
    ----------
    coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        ``coef_`` is a readonly property derived from ``raw_coef_`` that
        follows the internal memory layout of liblinear.

    intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
        Constants in decision function.

    Examples
    --------
    >>> from sklearn.svm import LinearSVC
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_features=4, random_state=0)
    >>> clf = LinearSVC(random_state=0, tol=1e-5)
    >>> clf.fit(X, y)
    LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
         intercept_scaling=1, loss='squared_hinge', max_iter=1000,
         multi_class='ovr', penalty='l2', random_state=0, tol=1e-05, verbose=0)
    >>> print(clf.coef_)
    [[0.085... 0.394... 0.498... 0.375...]]
    >>> print(clf.intercept_)
    [0.284...]
    >>> print(clf.predict([[0, 0, 0, 0]]))
    [1]

    Notes
    -----
    The underlying C implementation uses a random number generator to
    select features when fitting the model. It is thus not uncommon
    to have slightly different results for the same input data. If
    that happens, try with a smaller ``tol`` parameter.

    The underlying implementation, liblinear, uses a sparse internal
    representation for the data that will incur a memory copy.

    Predict output may not match that of standalone liblinear in certain
    cases. See :ref:`differences from liblinear <liblinear_differences>`
    in the narrative documentation.

    References
    ----------
    `LIBLINEAR: A Library for Large Linear Classification
    <https://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__

    See also
    --------
    SVC
        Implementation of Support Vector Machine classifier using libsvm:
        the kernel can be non-linear but its SMO algorithm does not
        scale to large number of samples as LinearSVC does.

        Furthermore SVC multi-class mode is implemented using one
        vs one scheme while LinearSVC uses one vs the rest. It is
        possible to implement one vs the rest with SVC by using the
        :class:`sklearn.multiclass.OneVsRestClassifier` wrapper.

        Finally SVC can fit dense data without memory copy if the input
        is C-contiguous. Sparse data will still incur memory copy though.

    sklearn.linear_model.SGDClassifier
        SGDClassifier can optimize the same cost function as LinearSVC
        by adjusting the penalty and loss parameters. In addition it requires
        less memory, allows incremental (online) learning, and implements
        various loss functions and regularization regimes.

    """

    def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=1e-4,
                 C=1.0, multi_class='ovr', fit_intercept=True,
                 intercept_scaling=1, class_weight=None, verbose=0,
                 random_state=None, max_iter=1000):
        self.dual = dual
        self.tol = tol
        self.C = C
        self.multi_class = multi_class
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.class_weight = class_weight
        self.verbose = verbose
        self.random_state = random_state
        self.max_iter = max_iter
        self.penalty = penalty
        self.loss = loss

    def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target vector relative to X

        sample_weight : array-like, shape = [n_samples], optional
            Array of weights that are assigned to individual
            samples. If not provided,
            then each sample is given unit weight.

        Returns
        -------
        self : object
        """
        # FIXME Remove l1/l2 support in 1.0 -----------------------------------
        msg = ("loss='%s' has been deprecated in favor of "
               "loss='%s' as of 0.16. Backward compatibility"
               " for the loss='%s' will be removed in %s")

        if self.loss in ('l1', 'l2'):
            old_loss = self.loss
            self.loss = {'l1': 'hinge', 'l2': 'squared_hinge'}.get(self.loss)
            warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'),
                          DeprecationWarning)
        # ---------------------------------------------------------------------

        if self.C < 0:
            raise ValueError("Penalty term must be positive; got (C=%r)"
                             % self.C)

        X, y = check_X_y(X, y, accept_sparse='csr',
                         dtype=np.float64, order="C",
                         accept_large_sparse=False)
        check_classification_targets(y)
        self.classes_ = np.unique(y)

        self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear(
            X, y, self.C, self.fit_intercept, self.intercept_scaling,
            self.class_weight, self.penalty, self.dual, self.verbose,
            self.max_iter, self.tol, self.random_state, self.multi_class,
            self.loss, sample_weight=sample_weight)

        if self.multi_class == "crammer_singer" and len(self.classes_) == 2:
            self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1)
            if self.fit_intercept:
                intercept = self.intercept_[1] - self.intercept_[0]
                self.intercept_ = np.array([intercept])

        return self


class LinearSVR(LinearModel, RegressorMixin):
    """Linear Support Vector Regression.

    Similar to SVR with parameter kernel='linear', but implemented in terms of
    liblinear rather than libsvm, so it has more flexibility in the choice of
    penalties and loss functions and should scale better to large numbers of
    samples.

    This class supports both dense and sparse input.

    Read more in the :ref:`User Guide <svm_regression>`.

    Parameters
    ----------
    epsilon : float, optional (default=0.1)
        Epsilon parameter in the epsilon-insensitive loss function. Note
        that the value of this parameter depends on the scale of the target
        variable y. If unsure, set ``epsilon=0``.

    tol : float, optional (default=1e-4)
        Tolerance for stopping criteria.

    C : float, optional (default=1.0)
        Penalty parameter C of the error term. The penalty is a squared
        l2 penalty. The bigger this parameter, the less regularization is used.

    loss : string, optional (default='epsilon_insensitive')
        Specifies the loss function. The epsilon-insensitive loss
        (standard SVR) is the L1 loss, while the squared epsilon-insensitive
        loss ('squared_epsilon_insensitive') is the L2 loss.

    fit_intercept : boolean, optional (default=True)
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be already centered).

    intercept_scaling : float, optional (default=1)
        When self.fit_intercept is True, instance vector x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equals to
        intercept_scaling is appended to the instance vector.
        The intercept becomes intercept_scaling * synthetic feature weight
        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    dual : bool, (default=True)
        Select the algorithm to either solve the dual or primal
        optimization problem. Prefer dual=False when n_samples > n_features.

    verbose : int, (default=0)
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in liblinear that, if enabled, may not work
        properly in a multithreaded context.

    random_state : int, RandomState instance or None, optional (default=None)
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`.

    max_iter : int, (default=1000)
        The maximum number of iterations to be run.

    Attributes
    ----------
    coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is a readonly property derived from `raw_coef_` that
        follows the internal memory layout of liblinear.

    intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
        Constants in decision function.

    Examples
    --------
    >>> from sklearn.svm import LinearSVR
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_features=4, random_state=0)
    >>> regr = LinearSVR(random_state=0, tol=1e-5)
    >>> regr.fit(X, y)
    LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True,
         intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=1000,
         random_state=0, tol=1e-05, verbose=0)
    >>> print(regr.coef_)
    [16.35... 26.91... 42.30... 60.47...]
    >>> print(regr.intercept_)
    [-4.29...]
    >>> print(regr.predict([[0, 0, 0, 0]]))
    [-4.29...]

    See also
    --------
    LinearSVC
        Implementation of Support Vector Machine classifier using the
        same library as this class (liblinear).

    SVR
        Implementation of Support Vector Machine regression using libsvm:
        the kernel can be non-linear but its SMO algorithm does not
        scale to large number of samples as LinearSVC does.

    sklearn.linear_model.SGDRegressor
        SGDRegressor can optimize the same cost function as LinearSVR
        by adjusting the penalty and loss parameters. In addition it requires
        less memory, allows incremental (online) learning, and implements
        various loss functions and regularization regimes.
    """

    def __init__(self, epsilon=0.0, tol=1e-4, C=1.0,
                 loss='epsilon_insensitive', fit_intercept=True,
                 intercept_scaling=1., dual=True, verbose=0,
                 random_state=None, max_iter=1000):
        self.tol = tol
        self.C = C
        self.epsilon = epsilon
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.verbose = verbose
        self.random_state = random_state
        self.max_iter = max_iter
        self.dual = dual
        self.loss = loss

    def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target vector relative to X

        sample_weight : array-like, shape = [n_samples], optional
            Array of weights that are assigned to individual
            samples. If not provided,
            then each sample is given unit weight.

        Returns
        -------
        self : object
        """
        # FIXME Remove l1/l2 support in 1.0 -----------------------------------
        msg = ("loss='%s' has been deprecated in favor of "
               "loss='%s' as of 0.16. Backward compatibility"
               " for the loss='%s' will be removed in %s")

        if self.loss in ('l1', 'l2'):
            old_loss = self.loss
            self.loss = {'l1': 'epsilon_insensitive',
                         'l2': 'squared_epsilon_insensitive'
                         }.get(self.loss)
            warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'),
                          DeprecationWarning)
        # ---------------------------------------------------------------------

        if self.C < 0:
            raise ValueError("Penalty term must be positive; got (C=%r)"
                             % self.C)

        X, y = check_X_y(X, y, accept_sparse='csr',
                         dtype=np.float64, order="C",
                         accept_large_sparse=False)
        penalty = 'l2'  # SVR only accepts l2 penalty
        self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear(
            X, y, self.C, self.fit_intercept, self.intercept_scaling,
            None, penalty, self.dual, self.verbose,
            self.max_iter, self.tol, self.random_state, loss=self.loss,
            epsilon=self.epsilon, sample_weight=sample_weight)
        self.coef_ = self.coef_.ravel()

        return self


class SVC(BaseSVC):
    """C-Support Vector Classification.

    The implementation is based on libsvm. The fit time complexity
    is more than quadratic with the number of samples which makes it hard
    to scale to dataset with more than a couple of 10000 samples.

    The multiclass support is handled according to a one-vs-one scheme.

    For details on the precise mathematical formulation of the provided
    kernel functions and how `gamma`, `coef0` and `degree` affect each
    other, see the corresponding section in the narrative documentation:
    :ref:`svm_kernels`.

    Read more in the :ref:`User Guide <svm_classification>`.

    Parameters
    ----------
    C : float, optional (default=1.0)
        Penalty parameter C of the error term.

    kernel : string, optional (default='rbf')
        Specifies the kernel type to be used in the algorithm.
        It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
        a callable.
        If none is given, 'rbf' will be used. If a callable is given it is
        used to pre-compute the kernel matrix from data matrices; that matrix
        should be an array of shape ``(n_samples, n_samples)``.

    degree : int, optional (default=3)
        Degree of the polynomial kernel function ('poly').
        Ignored by all other kernels.

    gamma : float, optional (default='auto')
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        Current default is 'auto' which uses 1 / n_features,
        if ``gamma='scale'`` is passed then it uses 1 / (n_features * X.std())
        as value of gamma. The current default of gamma, 'auto', will change
        to 'scale' in version 0.22. 'auto_deprecated', a deprecated version of
        'auto' is used as a default indicating that no explicit value of gamma
        was passed.

    coef0 : float, optional (default=0.0)
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    shrinking : boolean, optional (default=True)
        Whether to use the shrinking heuristic.

    probability : boolean, optional (default=False)
        Whether to enable probability estimates. This must be enabled prior
        to calling `fit`, and will slow down that method.

    tol : float, optional (default=1e-3)
        Tolerance for stopping criterion.

    cache_size : float, optional
        Specify the size of the kernel cache (in MB).

    class_weight : {dict, 'balanced'}, optional
        Set the parameter C of class i to class_weight[i]*C for
        SVC. If not given, all classes are supposed to have
        weight one.
        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    verbose : bool, default: False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, optional (default=-1)
        Hard limit on iterations within solver, or -1 for no limit.

    decision_function_shape : 'ovo', 'ovr', default='ovr'
        Whether to return a one-vs-rest ('ovr') decision function of shape
        (n_samples, n_classes) as all other classifiers, or the original
        one-vs-one ('ovo') decision function of libsvm which has shape
        (n_samples, n_classes * (n_classes - 1) / 2). However, one-vs-one
        ('ovo') is always used as multi-class strategy.

        .. versionchanged:: 0.19
            decision_function_shape is 'ovr' by default.

        .. versionadded:: 0.17
           *decision_function_shape='ovr'* is recommended.

        .. versionchanged:: 0.17
           Deprecated *decision_function_shape='ovo' and None*.

    random_state : int, RandomState instance or None, optional (default=None)
        The seed of the pseudo random number generator used when shuffling
        the data for probability estimates. If int, random_state is the
        seed used by the random number generator; If RandomState instance,
        random_state is the random number generator; If None, the random
        number generator is the RandomState instance used by `np.random`.

    Attributes
    ----------
    support_ : array-like, shape = [n_SV]
        Indices of support vectors.

    support_vectors_ : array-like, shape = [n_SV, n_features]
        Support vectors.

    n_support_ : array-like, dtype=int32, shape = [n_class]
        Number of support vectors for each class.

    dual_coef_ : array, shape = [n_class-1, n_SV]
        Coefficients of the support vector in the decision function.
        For multiclass, coefficient for all 1-vs-1 classifiers.
        The layout of the coefficients in the multiclass case is somewhat
        non-trivial. See the section about multi-class classification in the
        SVM section of the User Guide for details.

    coef_ : array, shape = [n_class * (n_class-1) / 2, n_features]
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is a readonly property derived from `dual_coef_` and
        `support_vectors_`.

    intercept_ : array, shape = [n_class * (n_class-1) / 2]
        Constants in decision function.

    fit_status_ : int
        0 if correctly fitted, 1 otherwise (will raise warning)

    probA_ : array, shape = [n_class * (n_class-1) / 2]
    probB_ : array, shape = [n_class * (n_class-1) / 2]
        If probability=True, the parameters learned in Platt scaling to
        produce probability estimates from decision values. If
        probability=False, an empty array. Platt scaling uses the logistic
        function
        ``1 / (1 + exp(decision_value * probA_ + probB_))``
        where ``probA_`` and ``probB_`` are learned from the dataset. For more
        information on the multiclass case and training procedure see section
        8 of LIBSVM: A Library for Support Vector Machines (in References)
        for more.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
    >>> y = np.array([1, 1, 2, 2])
    >>> from sklearn.svm import SVC
    >>> clf = SVC(gamma='auto')
    >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE
    SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
        decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
        max_iter=-1, probability=False, random_state=None, shrinking=True,
        tol=0.001, verbose=False)
    >>> print(clf.predict([[-0.8, -1]]))
    [1]

    See also
    --------
    SVR
        Support Vector Machine for Regression implemented using libsvm.

    LinearSVC
        Scalable Linear Support Vector Machine for classification
        implemented using liblinear. Check the See also section of
        LinearSVC for more comparison element.

    Notes
    -----
    **References:**
    `LIBSVM: A Library for Support Vector Machines
    <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`__
    """

    _impl = 'c_svc'

    def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto_deprecated',
                 coef0=0.0, shrinking=True, probability=False,
                 tol=1e-3, cache_size=200, class_weight=None,
                 verbose=False, max_iter=-1, decision_function_shape='ovr',
                 random_state=None):

        super(SVC, self).__init__(
            kernel=kernel, degree=degree, gamma=gamma,
            coef0=coef0, tol=tol, C=C, nu=0., shrinking=shrinking,
            probability=probability, cache_size=cache_size,
            class_weight=class_weight, verbose=verbose, max_iter=max_iter,
            decision_function_shape=decision_function_shape,
            random_state=random_state)


class NuSVC(BaseSVC):
    """Nu-Support Vector Classification.

    Similar to SVC but uses a parameter to control the number of support
    vectors.

    The implementation is based on libsvm.

    Read more in the :ref:`User Guide <svm_classification>`.

    Parameters
    ----------
    nu : float, optional (default=0.5)
        An upper bound on the fraction of training errors and a lower
        bound of the fraction of support vectors. Should be in the
        interval (0, 1].

    kernel : string, optional (default='rbf')
         Specifies the kernel type to be used in the algorithm.
         It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
         a callable.
         If none is given, 'rbf' will be used. If a callable is given it is
         used to precompute the kernel matrix.

    degree : int, optional (default=3)
        Degree of the polynomial kernel function ('poly').
        Ignored by all other kernels.

    gamma : float, optional (default='auto')
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        Current default is 'auto' which uses 1 / n_features,
        if ``gamma='scale'`` is passed then it uses 1 / (n_features * X.std())
        as value of gamma. The current default of gamma, 'auto', will change
        to 'scale' in version 0.22. 'auto_deprecated', a deprecated version of
        'auto' is used as a default indicating that no explicit value of gamma
        was passed.

    coef0 : float, optional (default=0.0)
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    shrinking : boolean, optional (default=True)
        Whether to use the shrinking heuristic.

    probability : boolean, optional (default=False)
        Whether to enable probability estimates. This must be enabled prior
        to calling `fit`, and will slow down that method.

    tol : float, optional (default=1e-3)
        Tolerance for stopping criterion.

    cache_size : float, optional
        Specify the size of the kernel cache (in MB).

    class_weight : {dict, 'balanced'}, optional
        Set the parameter C of class i to class_weight[i]*C for
        SVC. If not given, all classes are supposed to have
        weight one. The "balanced" mode uses the values of y to automatically
        adjust weights inversely proportional to class frequencies as
        ``n_samples / (n_classes * np.bincount(y))``

    verbose : bool, default: False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, optional (default=-1)
        Hard limit on iterations within solver, or -1 for no limit.

    decision_function_shape : 'ovo', 'ovr', default='ovr'
        Whether to return a one-vs-rest ('ovr') decision function of shape
        (n_samples, n_classes) as all other classifiers, or the original
        one-vs-one ('ovo') decision function of libsvm which has shape
        (n_samples, n_classes * (n_classes - 1) / 2).

        .. versionchanged:: 0.19
            decision_function_shape is 'ovr' by default.

        .. versionadded:: 0.17
           *decision_function_shape='ovr'* is recommended.

        .. versionchanged:: 0.17
           Deprecated *decision_function_shape='ovo' and None*.

    random_state : int, RandomState instance or None, optional (default=None)
        The seed of the pseudo random number generator used when shuffling
        the data for probability estimates. If int, random_state is the seed
        used by the random number generator; If RandomState instance,
        random_state is the random number generator; If None, the random
        number generator is the RandomState instance used by `np.random`.

    Attributes
    ----------
    support_ : array-like, shape = [n_SV]
        Indices of support vectors.

    support_vectors_ : array-like, shape = [n_SV, n_features]
        Support vectors.

    n_support_ : array-like, dtype=int32, shape = [n_class]
        Number of support vectors for each class.

    dual_coef_ : array, shape = [n_class-1, n_SV]
        Coefficients of the support vector in the decision function.
        For multiclass, coefficient for all 1-vs-1 classifiers.
        The layout of the coefficients in the multiclass case is somewhat
        non-trivial. See the section about multi-class classification in
        the SVM section of the User Guide for details.

    coef_ : array, shape = [n_class * (n_class-1) / 2, n_features]
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is readonly property derived from `dual_coef_` and
        `support_vectors_`.

    intercept_ : array, shape = [n_class * (n_class-1) / 2]
        Constants in decision function.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
    >>> y = np.array([1, 1, 2, 2])
    >>> from sklearn.svm import NuSVC
    >>> clf = NuSVC(gamma='scale')
    >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE
    NuSVC(cache_size=200, class_weight=None, coef0=0.0,
          decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
          max_iter=-1, nu=0.5, probability=False, random_state=None,
          shrinking=True, tol=0.001, verbose=False)
    >>> print(clf.predict([[-0.8, -1]]))
    [1]

    See also
    --------
    SVC
        Support Vector Machine for classification using libsvm.

    LinearSVC
        Scalable linear Support Vector Machine for classification using
        liblinear.

    Notes
    -----
    **References:**
    `LIBSVM: A Library for Support Vector Machines
    <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`__
    """

    _impl = 'nu_svc'

    def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma='auto_deprecated',
                 coef0=0.0, shrinking=True, probability=False, tol=1e-3,
                 cache_size=200, class_weight=None, verbose=False, max_iter=-1,
                 decision_function_shape='ovr', random_state=None):

        super(NuSVC, self).__init__(
            kernel=kernel, degree=degree, gamma=gamma,
            coef0=coef0, tol=tol, C=0., nu=nu, shrinking=shrinking,
            probability=probability, cache_size=cache_size,
            class_weight=class_weight, verbose=verbose, max_iter=max_iter,
            decision_function_shape=decision_function_shape,
            random_state=random_state)


class SVR(BaseLibSVM, RegressorMixin):
    """Epsilon-Support Vector Regression.

    The free parameters in the model are C and epsilon.

    The implementation is based on libsvm.

    Read more in the :ref:`User Guide <svm_regression>`.

    Parameters
    ----------
    kernel : string, optional (default='rbf')
         Specifies the kernel type to be used in the algorithm.
         It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
         a callable.
         If none is given, 'rbf' will be used. If a callable is given it is
         used to precompute the kernel matrix.

    degree : int, optional (default=3)
        Degree of the polynomial kernel function ('poly').
        Ignored by all other kernels.

    gamma : float, optional (default='auto')
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        Current default is 'auto' which uses 1 / n_features,
        if ``gamma='scale'`` is passed then it uses 1 / (n_features * X.std())
        as value of gamma. The current default of gamma, 'auto', will change
        to 'scale' in version 0.22. 'auto_deprecated', a deprecated version of
        'auto' is used as a default indicating that no explicit value of gamma
        was passed.

    coef0 : float, optional (default=0.0)
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    tol : float, optional (default=1e-3)
        Tolerance for stopping criterion.

    C : float, optional (default=1.0)
        Penalty parameter C of the error term.

    epsilon : float, optional (default=0.1)
         Epsilon in the epsilon-SVR model. It specifies the epsilon-tube
         within which no penalty is associated in the training loss function
         with points predicted within a distance epsilon from the actual
         value.

    shrinking : boolean, optional (default=True)
        Whether to use the shrinking heuristic.

    cache_size : float, optional
        Specify the size of the kernel cache (in MB).

    verbose : bool, default: False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, optional (default=-1)
        Hard limit on iterations within solver, or -1 for no limit.

    Attributes
    ----------
    support_ : array-like, shape = [n_SV]
        Indices of support vectors.

    support_vectors_ : array-like, shape = [nSV, n_features]
        Support vectors.

    dual_coef_ : array, shape = [1, n_SV]
        Coefficients of the support vector in the decision function.

    coef_ : array, shape = [1, n_features]
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is readonly property derived from `dual_coef_` and
        `support_vectors_`.

    intercept_ : array, shape = [1]
        Constants in decision function.

    Examples
    --------
    >>> from sklearn.svm import SVR
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> np.random.seed(0)
    >>> y = np.random.randn(n_samples)
    >>> X = np.random.randn(n_samples, n_features)
    >>> clf = SVR(gamma='scale', C=1.0, epsilon=0.2)
    >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE
    SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='scale',
        kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

    See also
    --------
    NuSVR
        Support Vector Machine for regression implemented using libsvm
        using a parameter to control the number of support vectors.

    LinearSVR
        Scalable Linear Support Vector Machine for regression
        implemented using liblinear.

    Notes
    -----
    **References:**
    `LIBSVM: A Library for Support Vector Machines
    <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`__
    """

    _impl = 'epsilon_svr'

    def __init__(self, kernel='rbf', degree=3, gamma='auto_deprecated',
                 coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True,
                 cache_size=200, verbose=False, max_iter=-1):

        super(SVR, self).__init__(
            kernel=kernel, degree=degree, gamma=gamma,
            coef0=coef0, tol=tol, C=C, nu=0., epsilon=epsilon, verbose=verbose,
            shrinking=shrinking, probability=False, cache_size=cache_size,
            class_weight=None, max_iter=max_iter, random_state=None)


class NuSVR(BaseLibSVM, RegressorMixin):
    """Nu Support Vector Regression.

    Similar to NuSVC, for regression, uses a parameter nu to control
    the number of support vectors. However, unlike NuSVC, where nu
    replaces C, here nu replaces the parameter epsilon of epsilon-SVR.

    The implementation is based on libsvm.

    Read more in the :ref:`User Guide <svm_regression>`.

    Parameters
    ----------
    nu : float, optional
        An upper bound on the fraction of training errors and a lower bound of
        the fraction of support vectors. Should be in the interval (0, 1].  By
        default 0.5 will be taken.

    C : float, optional (default=1.0)
        Penalty parameter C of the error term.

    kernel : string, optional (default='rbf')
         Specifies the kernel type to be used in the algorithm.
         It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
         a callable.
         If none is given, 'rbf' will be used. If a callable is given it is
         used to precompute the kernel matrix.

    degree : int, optional (default=3)
        Degree of the polynomial kernel function ('poly').
        Ignored by all other kernels.

    gamma : float, optional (default='auto')
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        Current default is 'auto' which uses 1 / n_features,
        if ``gamma='scale'`` is passed then it uses 1 / (n_features * X.std())
        as value of gamma. The current default of gamma, 'auto', will change
        to 'scale' in version 0.22. 'auto_deprecated', a deprecated version of
        'auto' is used as a default indicating that no explicit value of gamma
        was passed.

    coef0 : float, optional (default=0.0)
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    shrinking : boolean, optional (default=True)
        Whether to use the shrinking heuristic.

    tol : float, optional (default=1e-3)
        Tolerance for stopping criterion.

    cache_size : float, optional
        Specify the size of the kernel cache (in MB).

    verbose : bool, default: False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, optional (default=-1)
        Hard limit on iterations within solver, or -1 for no limit.

    Attributes
    ----------
    support_ : array-like, shape = [n_SV]
        Indices of support vectors.

    support_vectors_ : array-like, shape = [nSV, n_features]
        Support vectors.

    dual_coef_ : array, shape = [1, n_SV]
        Coefficients of the support vector in the decision function.

    coef_ : array, shape = [1, n_features]
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is readonly property derived from `dual_coef_` and
        `support_vectors_`.

    intercept_ : array, shape = [1]
        Constants in decision function.

    Examples
    --------
    >>> from sklearn.svm import NuSVR
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> np.random.seed(0)
    >>> y = np.random.randn(n_samples)
    >>> X = np.random.randn(n_samples, n_features)
    >>> clf = NuSVR(gamma='scale', C=1.0, nu=0.1)
    >>> clf.fit(X, y)  #doctest: +NORMALIZE_WHITESPACE
    NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='scale',
          kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
          verbose=False)

    See also
    --------
    NuSVC
        Support Vector Machine for classification implemented with libsvm
        with a parameter to control the number of support vectors.

    SVR
        epsilon Support Vector Machine for regression implemented with libsvm.

    Notes
    -----
    **References:**
    `LIBSVM: A Library for Support Vector Machines
    <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`__
    """

    _impl = 'nu_svr'

    def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3,
                 gamma='auto_deprecated', coef0=0.0, shrinking=True,
                 tol=1e-3, cache_size=200, verbose=False, max_iter=-1):

        super(NuSVR, self).__init__(
            kernel=kernel, degree=degree, gamma=gamma, coef0=coef0,
            tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking,
            probability=False, cache_size=cache_size, class_weight=None,
            verbose=verbose, max_iter=max_iter, random_state=None)


class OneClassSVM(BaseLibSVM, OutlierMixin):
    """Unsupervised Outlier Detection.

    Estimate the support of a high-dimensional distribution.

    The implementation is based on libsvm.

    Read more in the :ref:`User Guide <outlier_detection>`.

    Parameters
    ----------
    kernel : string, optional (default='rbf')
         Specifies the kernel type to be used in the algorithm.
         It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
         a callable.
         If none is given, 'rbf' will be used. If a callable is given it is
         used to precompute the kernel matrix.

    degree : int, optional (default=3)
        Degree of the polynomial kernel function ('poly').
        Ignored by all other kernels.

    gamma : float, optional (default='auto')
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        Current default is 'auto' which uses 1 / n_features,
        if ``gamma='scale'`` is passed then it uses 1 / (n_features * X.std())
        as value of gamma. The current default of gamma, 'auto', will change
        to 'scale' in version 0.22. 'auto_deprecated', a deprecated version of
        'auto' is used as a default indicating that no explicit value of gamma
        was passed.

    coef0 : float, optional (default=0.0)
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    tol : float, optional
        Tolerance for stopping criterion.

    nu : float, optional
        An upper bound on the fraction of training
        errors and a lower bound of the fraction of support
        vectors. Should be in the interval (0, 1]. By default 0.5
        will be taken.

    shrinking : boolean, optional
        Whether to use the shrinking heuristic.

    cache_size : float, optional
        Specify the size of the kernel cache (in MB).

    verbose : bool, default: False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, optional (default=-1)
        Hard limit on iterations within solver, or -1 for no limit.

    random_state : int, RandomState instance or None, optional (default=None)
        Ignored.

        .. deprecated:: 0.20
           ``random_state`` has been deprecated in 0.20 and will be removed in
           0.22.

    Attributes
    ----------
    support_ : array-like, shape = [n_SV]
        Indices of support vectors.

    support_vectors_ : array-like, shape = [nSV, n_features]
        Support vectors.

    dual_coef_ : array, shape = [1, n_SV]
        Coefficients of the support vectors in the decision function.

    coef_ : array, shape = [1, n_features]
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is readonly property derived from `dual_coef_` and
        `support_vectors_`

    intercept_ : array, shape = [1,]
        Constant in the decision function.

    offset_ : float
        Offset used to define the decision function from the raw scores.
        We have the relation: decision_function = score_samples - `offset_`.
        The offset is the opposite of `intercept_` and is provided for
        consistency with other outlier detection algorithms.

    """

    _impl = 'one_class'

    def __init__(self, kernel='rbf', degree=3, gamma='auto_deprecated',
                 coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200,
                 verbose=False, max_iter=-1, random_state=None):

        super(OneClassSVM, self).__init__(
            kernel, degree, gamma, coef0, tol, 0., nu, 0.,
            shrinking, False, cache_size, None, verbose, max_iter,
            random_state)

    def fit(self, X, y=None, sample_weight=None, **params):
        """
        Detects the soft boundary of the set of samples X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Set of samples, where n_samples is the number of samples and
            n_features is the number of features.

        sample_weight : array-like, shape (n_samples,)
            Per-sample weights. Rescale C per sample. Higher weights
            force the classifier to put more emphasis on these points.

        y : Ignored
            not used, present for API consistency by convention.

        Returns
        -------
        self : object

        Notes
        -----
        If X is not a C-ordered contiguous array it is copied.

        """

        if self.random_state is not None:
            warnings.warn("The random_state parameter is deprecated and will"
                          " be removed in version 0.22.", DeprecationWarning)

        super(OneClassSVM, self).fit(X, np.ones(_num_samples(X)),
                                     sample_weight=sample_weight, **params)
        self.offset_ = -self._intercept_
        return self

    def decision_function(self, X):
        """Signed distance to the separating hyperplane.

        Signed distance is positive for an inlier and negative for an outlier.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        dec : array-like, shape (n_samples,)
            Returns the decision function of the samples.
        """
        dec = self._decision_function(X).ravel()
        return dec

    def score_samples(self, X):
        """Raw scoring function of the samples.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        score_samples : array-like, shape (n_samples,)
            Returns the (unshifted) scoring function of the samples.
        """
        return self.decision_function(X) + self.offset_

    def predict(self, X):
        """
        Perform classification on samples in X.

        For an one-class model, +1 or -1 is returned.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            For kernel="precomputed", the expected shape of X is
            [n_samples_test, n_samples_train]

        Returns
        -------
        y_pred : array, shape (n_samples,)
            Class labels for samples in X.
        """
        y = super(OneClassSVM, self).predict(X)
        return np.asarray(y, dtype=np.intp)