File: libsvm.pyx

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (577 lines) | stat: -rw-r--r-- 19,656 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
"""
Binding for libsvm_skl
----------------------

These are the bindings for libsvm_skl, which is a fork of libsvm[1]
that adds to libsvm some capabilities, like index of support vectors
and efficient representation of dense matrices.

These are low-level routines, but can be used for flexibility or
performance reasons. See sklearn.svm for a higher-level API.

Low-level memory management is done in libsvm_helper.c. If we happen
to run out of memory a MemoryError will be raised. In practice this is
not very helpful since hight changes are malloc fails inside svm.cpp,
where no sort of memory checks are done.

[1] https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Notes
-----
Maybe we could speed it a bit further by decorating functions with
@cython.boundscheck(False), but probably it is not worth since all
work is done in lisvm_helper.c
Also, the signature mode='c' is somewhat superficial, since we already
check that arrays are C-contiguous in svm.py

Authors
-------
2010: Fabian Pedregosa <fabian.pedregosa@inria.fr>
      Gael Varoquaux <gael.varoquaux@normalesup.org>
"""

import warnings
import  numpy as np
cimport numpy as np
cimport libsvm
from libc.stdlib cimport free

cdef extern from *:
    ctypedef struct svm_parameter:
        pass

np.import_array()


################################################################################
# Internal variables
LIBSVM_KERNEL_TYPES = ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed']


################################################################################
# Wrapper functions

def fit(
    np.ndarray[np.float64_t, ndim=2, mode='c'] X,
    np.ndarray[np.float64_t, ndim=1, mode='c'] Y,
    int svm_type=0, kernel='rbf', int degree=3,
    double gamma=0.1, double coef0=0., double tol=1e-3,
    double C=1., double nu=0.5, double epsilon=0.1,
    np.ndarray[np.float64_t, ndim=1, mode='c']
        class_weight=np.empty(0),
    np.ndarray[np.float64_t, ndim=1, mode='c']
        sample_weight=np.empty(0),
    int shrinking=1, int probability=0,
    double cache_size=100.,
    int max_iter=-1,
    int random_seed=0):
    """
    Train the model using libsvm (low-level method)

    Parameters
    ----------
    X : array-like, dtype=float64, size=[n_samples, n_features]

    Y : array, dtype=float64, size=[n_samples]
        target vector

    svm_type : {0, 1, 2, 3, 4}, optional
        Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
        respectively. 0 by default.

    kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, optional
        Kernel to use in the model: linear, polynomial, RBF, sigmoid
        or precomputed. 'rbf' by default.

    degree : int32, optional
        Degree of the polynomial kernel (only relevant if kernel is
        set to polynomial), 3 by default.

    gamma : float64, optional
        Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
        kernels. 0.1 by default.

    coef0 : float64, optional
        Independent parameter in poly/sigmoid kernel. 0 by default.

    tol : float64, optional
        Numeric stopping criterion (WRITEME). 1e-3 by default.

    C : float64, optional
        C parameter in C-Support Vector Classification. 1 by default.

    nu : float64, optional
        0.5 by default.

    epsilon : double, optional
        0.1 by default.

    class_weight : array, dtype float64, shape (n_classes,), optional
        np.empty(0) by default.

    sample_weight : array, dtype float64, shape (n_samples,), optional
        np.empty(0) by default.

    shrinking : int, optional
        1 by default.

    probability : int, optional
        0 by default.

    cache_size : float64, optional
        Cache size for gram matrix columns (in megabytes). 100 by default.

    max_iter : int (-1 for no limit), optional.
        Stop solver after this many iterations regardless of accuracy
        (XXX Currently there is no API to know whether this kicked in.)
        -1 by default.

    random_seed : int, optional
        Seed for the random number generator used for probability estimates.
        0 by default.

    Returns
    -------
    support : array, shape=[n_support]
        index of support vectors

    support_vectors : array, shape=[n_support, n_features]
        support vectors (equivalent to X[support]). Will return an
        empty array in the case of precomputed kernel.

    n_class_SV : array
        number of support vectors in each class.

    sv_coef : array
        coefficients of support vectors in decision function.

    intercept : array
        intercept in decision function

    probA, probB : array
        probability estimates, empty array for probability=False
    """

    cdef svm_parameter param
    cdef svm_problem problem
    cdef svm_model *model
    cdef const char *error_msg
    cdef np.npy_intp SV_len
    cdef np.npy_intp nr


    if len(sample_weight) == 0:
        sample_weight = np.ones(X.shape[0], dtype=np.float64)
    else:
        assert sample_weight.shape[0] == X.shape[0], \
               "sample_weight and X have incompatible shapes: " + \
               "sample_weight has %s samples while X has %s" % \
               (sample_weight.shape[0], X.shape[0])

    kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)
    set_problem(
        &problem, X.data, Y.data, sample_weight.data, X.shape, kernel_index)
    if problem.x == NULL:
        raise MemoryError("Seems we've run out of memory")
    cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
        class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)
    set_parameter(
        &param, svm_type, kernel_index, degree, gamma, coef0, nu, cache_size,
        C, tol, epsilon, shrinking, probability, <int> class_weight.shape[0],
        class_weight_label.data, class_weight.data, max_iter, random_seed)

    error_msg = svm_check_parameter(&problem, &param)
    if error_msg:
        # for SVR: epsilon is called p in libsvm
        error_repl = error_msg.decode('utf-8').replace("p < 0", "epsilon < 0")
        raise ValueError(error_repl)

    # this does the real work
    cdef int fit_status = 0
    with nogil:
        model = svm_train(&problem, &param, &fit_status)

    # from here until the end, we just copy the data returned by
    # svm_train
    SV_len  = get_l(model)
    n_class = get_nr(model)

    cdef np.ndarray[np.float64_t, ndim=2, mode='c'] sv_coef
    sv_coef = np.empty((n_class-1, SV_len), dtype=np.float64)
    copy_sv_coef (sv_coef.data, model)

    # the intercept is just model.rho but with sign changed
    cdef np.ndarray[np.float64_t, ndim=1, mode='c'] intercept
    intercept = np.empty(int((n_class*(n_class-1))/2), dtype=np.float64)
    copy_intercept (intercept.data, model, intercept.shape)

    cdef np.ndarray[np.int32_t, ndim=1, mode='c'] support
    support = np.empty (SV_len, dtype=np.int32)
    copy_support (support.data, model)

    # copy model.SV
    cdef np.ndarray[np.float64_t, ndim=2, mode='c'] support_vectors
    if kernel_index == 4:
        # precomputed kernel
        support_vectors = np.empty((0, 0), dtype=np.float64)
    else:
        support_vectors = np.empty((SV_len, X.shape[1]), dtype=np.float64)
        copy_SV(support_vectors.data, model, support_vectors.shape)

    # TODO: do only in classification
    cdef np.ndarray[np.int32_t, ndim=1, mode='c'] n_class_SV
    n_class_SV = np.empty(n_class, dtype=np.int32)
    copy_nSV(n_class_SV.data, model)

    cdef np.ndarray[np.float64_t, ndim=1, mode='c'] probA
    cdef np.ndarray[np.float64_t, ndim=1, mode='c'] probB
    if probability != 0:
        if svm_type < 2: # SVC and NuSVC
            probA = np.empty(int(n_class*(n_class-1)/2), dtype=np.float64)
            probB = np.empty(int(n_class*(n_class-1)/2), dtype=np.float64)
            copy_probB(probB.data, model, probB.shape)
        else:
            probA = np.empty(1, dtype=np.float64)
            probB = np.empty(0, dtype=np.float64)
        copy_probA(probA.data, model, probA.shape)
    else:
        probA = np.empty(0, dtype=np.float64)
        probB = np.empty(0, dtype=np.float64)

    svm_free_and_destroy_model(&model)
    free(problem.x)

    return (support, support_vectors, n_class_SV, sv_coef, intercept,
           probA, probB, fit_status)


cdef void set_predict_params(
    svm_parameter *param, int svm_type, kernel, int degree, double gamma,
    double coef0, double cache_size, int probability, int nr_weight,
    char *weight_label, char *weight) except *:
    """Fill param with prediction time-only parameters."""

    # training-time only parameters
    cdef double C = .0
    cdef double epsilon = .1
    cdef int max_iter = 0
    cdef double nu = .5
    cdef int shrinking = 0
    cdef double tol = .1
    cdef int random_seed = -1

    kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)

    set_parameter(param, svm_type, kernel_index, degree, gamma, coef0, nu,
                         cache_size, C, tol, epsilon, shrinking, probability,
                         nr_weight, weight_label, weight, max_iter, random_seed)


def predict(np.ndarray[np.float64_t, ndim=2, mode='c'] X,
            np.ndarray[np.int32_t, ndim=1, mode='c'] support,
            np.ndarray[np.float64_t, ndim=2, mode='c'] SV,
            np.ndarray[np.int32_t, ndim=1, mode='c'] nSV,
            np.ndarray[np.float64_t, ndim=2, mode='c'] sv_coef,
            np.ndarray[np.float64_t, ndim=1, mode='c'] intercept,
            np.ndarray[np.float64_t, ndim=1, mode='c'] probA=np.empty(0),
            np.ndarray[np.float64_t, ndim=1, mode='c'] probB=np.empty(0),
            int svm_type=0, kernel='rbf', int degree=3,
            double gamma=0.1, double coef0=0.,
            np.ndarray[np.float64_t, ndim=1, mode='c']
                class_weight=np.empty(0),
            np.ndarray[np.float64_t, ndim=1, mode='c']
                sample_weight=np.empty(0),
            double cache_size=100.):
    """
    Predict target values of X given a model (low-level method)

    Parameters
    ----------
    X : array-like, dtype=float, size=[n_samples, n_features]
    svm_type : {0, 1, 2, 3, 4}
        Type of SVM: C SVC, nu SVC, one class, epsilon SVR, nu SVR
    kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}
        Type of kernel.
    degree : int
        Degree of the polynomial kernel.
    gamma : float
        Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
        kernels. 0.1 by default.
    coef0 : float
        Independent parameter in poly/sigmoid kernel.

    Returns
    -------
    dec_values : array
        predicted values.
    """
    cdef np.ndarray[np.float64_t, ndim=1, mode='c'] dec_values
    cdef svm_parameter param
    cdef svm_model *model
    cdef int rv

    cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
        class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)

    set_predict_params(&param, svm_type, kernel, degree, gamma, coef0,
                       cache_size, 0, <int>class_weight.shape[0],
                       class_weight_label.data, class_weight.data)
    model = set_model(&param, <int> nSV.shape[0], SV.data, SV.shape,
                      support.data, support.shape, sv_coef.strides,
                      sv_coef.data, intercept.data, nSV.data, probA.data, probB.data)

    #TODO: use check_model
    try:
        dec_values = np.empty(X.shape[0])
        with nogil:
            rv = copy_predict(X.data, model, X.shape, dec_values.data)
        if rv < 0:
            raise MemoryError("We've run out of memory")
    finally:
        free_model(model)

    return dec_values


def predict_proba(
    np.ndarray[np.float64_t, ndim=2, mode='c'] X,
    np.ndarray[np.int32_t, ndim=1, mode='c'] support,
    np.ndarray[np.float64_t, ndim=2, mode='c'] SV,
    np.ndarray[np.int32_t, ndim=1, mode='c'] nSV,
    np.ndarray[np.float64_t, ndim=2, mode='c'] sv_coef,
    np.ndarray[np.float64_t, ndim=1, mode='c'] intercept,
    np.ndarray[np.float64_t, ndim=1, mode='c'] probA=np.empty(0),
    np.ndarray[np.float64_t, ndim=1, mode='c'] probB=np.empty(0),
    int svm_type=0, kernel='rbf', int degree=3,
    double gamma=0.1, double coef0=0.,
    np.ndarray[np.float64_t, ndim=1, mode='c']
        class_weight=np.empty(0),
    np.ndarray[np.float64_t, ndim=1, mode='c']
        sample_weight=np.empty(0),
    double cache_size=100.):
    """
    Predict probabilities

    svm_model stores all parameters needed to predict a given value.

    For speed, all real work is done at the C level in function
    copy_predict (libsvm_helper.c).

    We have to reconstruct model and parameters to make sure we stay
    in sync with the python object.

    See sklearn.svm.predict for a complete list of parameters.

    Parameters
    ----------
    X : array-like, dtype=float
    kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}

    Returns
    -------
    dec_values : array
        predicted values.
    """
    cdef np.ndarray[np.float64_t, ndim=2, mode='c'] dec_values
    cdef svm_parameter param
    cdef svm_model *model
    cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
        class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)
    cdef int rv

    set_predict_params(&param, svm_type, kernel, degree, gamma, coef0,
                       cache_size, 1, <int>class_weight.shape[0],
                       class_weight_label.data, class_weight.data)
    model = set_model(&param, <int> nSV.shape[0], SV.data, SV.shape,
                      support.data, support.shape, sv_coef.strides,
                      sv_coef.data, intercept.data, nSV.data,
                      probA.data, probB.data)

    cdef np.npy_intp n_class = get_nr(model)
    try:
        dec_values = np.empty((X.shape[0], n_class), dtype=np.float64)
        with nogil:
            rv = copy_predict_proba(X.data, model, X.shape, dec_values.data)
        if rv < 0:
            raise MemoryError("We've run out of memory")
    finally:
        free_model(model)

    return dec_values


def decision_function(
    np.ndarray[np.float64_t, ndim=2, mode='c'] X,
    np.ndarray[np.int32_t, ndim=1, mode='c'] support,
    np.ndarray[np.float64_t, ndim=2, mode='c'] SV,
    np.ndarray[np.int32_t, ndim=1, mode='c'] nSV,
    np.ndarray[np.float64_t, ndim=2, mode='c'] sv_coef,
    np.ndarray[np.float64_t, ndim=1, mode='c'] intercept,
    np.ndarray[np.float64_t, ndim=1, mode='c'] probA=np.empty(0),
    np.ndarray[np.float64_t, ndim=1, mode='c'] probB=np.empty(0),
    int svm_type=0, kernel='rbf', int degree=3,
    double gamma=0.1, double coef0=0.,
    np.ndarray[np.float64_t, ndim=1, mode='c']
        class_weight=np.empty(0),
    np.ndarray[np.float64_t, ndim=1, mode='c']
         sample_weight=np.empty(0),
    double cache_size=100.):
    """
    Predict margin (libsvm name for this is predict_values)

    We have to reconstruct model and parameters to make sure we stay
    in sync with the python object.
    """
    cdef np.ndarray[np.float64_t, ndim=2, mode='c'] dec_values
    cdef svm_parameter param
    cdef svm_model *model
    cdef np.npy_intp n_class

    cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
        class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)

    cdef int rv

    set_predict_params(&param, svm_type, kernel, degree, gamma, coef0,
                       cache_size, 0, <int>class_weight.shape[0],
                       class_weight_label.data, class_weight.data)

    model = set_model(&param, <int> nSV.shape[0], SV.data, SV.shape,
                      support.data, support.shape, sv_coef.strides,
                      sv_coef.data, intercept.data, nSV.data,
                      probA.data, probB.data)

    if svm_type > 1:
        n_class = 1
    else:
        n_class = get_nr(model)
        n_class = n_class * (n_class - 1) / 2

    try:
        dec_values = np.empty((X.shape[0], n_class), dtype=np.float64)
        with nogil:
            rv = copy_predict_values(X.data, model, X.shape, dec_values.data, n_class)
        if rv < 0:
            raise MemoryError("We've run out of memory")
    finally:
        free_model(model)

    return dec_values


def cross_validation(
    np.ndarray[np.float64_t, ndim=2, mode='c'] X,
    np.ndarray[np.float64_t, ndim=1, mode='c'] Y,
    int n_fold, svm_type=0, kernel='rbf', int degree=3,
    double gamma=0.1, double coef0=0., double tol=1e-3,
    double C=1., double nu=0.5, double epsilon=0.1,
    np.ndarray[np.float64_t, ndim=1, mode='c']
        class_weight=np.empty(0),
    np.ndarray[np.float64_t, ndim=1, mode='c']
        sample_weight=np.empty(0),
    int shrinking=0, int probability=0, double cache_size=100.,
    int max_iter=-1,
    int random_seed=0):
    """
    Binding of the cross-validation routine (low-level routine)

    Parameters
    ----------

    X : array-like, dtype=float, size=[n_samples, n_features]

    Y : array, dtype=float, size=[n_samples]
        target vector

    svm_type : {0, 1, 2, 3, 4}
        Type of SVM: C SVC, nu SVC, one class, epsilon SVR, nu SVR

    kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}
        Kernel to use in the model: linear, polynomial, RBF, sigmoid
        or precomputed.

    degree : int
        Degree of the polynomial kernel (only relevant if kernel is
        set to polynomial)

    gamma : float
        Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
        kernels. 0.1 by default.

    coef0 : float
        Independent parameter in poly/sigmoid kernel.

    tol : float
        Stopping criteria.

    C : float
        C parameter in C-Support Vector Classification

    nu : float

    cache_size : float

    random_seed : int, optional
        Seed for the random number generator used for probability estimates.
        0 by default.

    Returns
    -------
    target : array, float

    """

    cdef svm_parameter param
    cdef svm_problem problem
    cdef svm_model *model
    cdef const char *error_msg
    cdef np.npy_intp SV_len
    cdef np.npy_intp nr

    if len(sample_weight) == 0:
        sample_weight = np.ones(X.shape[0], dtype=np.float64)
    else:
        assert sample_weight.shape[0] == X.shape[0], \
               "sample_weight and X have incompatible shapes: " + \
               "sample_weight has %s samples while X has %s" % \
               (sample_weight.shape[0], X.shape[0])

    if X.shape[0] < n_fold:
        raise ValueError("Number of samples is less than number of folds")

    # set problem
    kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)
    set_problem(
        &problem, X.data, Y.data, sample_weight.data, X.shape, kernel_index)
    if problem.x == NULL:
        raise MemoryError("Seems we've run out of memory")
    cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
        class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)

    # set parameters
    set_parameter(
        &param, svm_type, kernel_index, degree, gamma, coef0, nu, cache_size,
        C, tol, tol, shrinking, probability, <int>
        class_weight.shape[0], class_weight_label.data,
        class_weight.data, max_iter, random_seed)

    error_msg = svm_check_parameter(&problem, &param);
    if error_msg:
        raise ValueError(error_msg)

    cdef np.ndarray[np.float64_t, ndim=1, mode='c'] target
    try:
        target = np.empty((X.shape[0]), dtype=np.float64)
        with nogil:
            svm_cross_validation(&problem, &param, n_fold, <double *> target.data)
    finally:
        free(problem.x)

    return target


def set_verbosity_wrap(int verbosity):
    """
    Control verbosity of libsvm library
    """
    set_verbosity(verbosity)