1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
import warnings
import numpy as np
cimport numpy as np
from scipy import sparse
from ..exceptions import ConvergenceWarning
cdef extern from *:
ctypedef char* const_char_p "const char*"
################################################################################
# Includes
cdef extern from "svm.h":
cdef struct svm_csr_node
cdef struct svm_csr_model
cdef struct svm_parameter
cdef struct svm_csr_problem
char *svm_csr_check_parameter(svm_csr_problem *, svm_parameter *)
svm_csr_model *svm_csr_train(svm_csr_problem *, svm_parameter *, int *) nogil
void svm_csr_free_and_destroy_model(svm_csr_model** model_ptr_ptr)
cdef extern from "libsvm_sparse_helper.c":
# this file contains methods for accessing libsvm 'hidden' fields
svm_csr_problem * csr_set_problem (char *, np.npy_intp *,
char *, np.npy_intp *, char *, char *, char *, int )
svm_csr_model *csr_set_model(svm_parameter *param, int nr_class,
char *SV_data, np.npy_intp *SV_indices_dims,
char *SV_indices, np.npy_intp *SV_intptr_dims,
char *SV_intptr,
char *sv_coef, char *rho, char *nSV,
char *probA, char *probB)
svm_parameter *set_parameter (int , int , int , double, double ,
double , double , double , double,
double, int, int, int, char *, char *, int,
int)
void copy_sv_coef (char *, svm_csr_model *)
void copy_support (char *, svm_csr_model *)
void copy_intercept (char *, svm_csr_model *, np.npy_intp *)
int copy_predict (char *, svm_csr_model *, np.npy_intp *, char *)
int csr_copy_predict_values (np.npy_intp *data_size, char *data, np.npy_intp *index_size,
char *index, np.npy_intp *intptr_size, char *size,
svm_csr_model *model, char *dec_values, int nr_class)
int csr_copy_predict (np.npy_intp *data_size, char *data, np.npy_intp *index_size,
char *index, np.npy_intp *intptr_size, char *size,
svm_csr_model *model, char *dec_values) nogil
int csr_copy_predict_proba (np.npy_intp *data_size, char *data, np.npy_intp *index_size,
char *index, np.npy_intp *intptr_size, char *size,
svm_csr_model *model, char *dec_values) nogil
int copy_predict_values(char *, svm_csr_model *, np.npy_intp *, char *, int)
int csr_copy_SV (char *values, np.npy_intp *n_indices,
char *indices, np.npy_intp *n_indptr, char *indptr,
svm_csr_model *model, int n_features)
np.npy_intp get_nonzero_SV ( svm_csr_model *)
void copy_nSV (char *, svm_csr_model *)
void copy_probA (char *, svm_csr_model *, np.npy_intp *)
void copy_probB (char *, svm_csr_model *, np.npy_intp *)
np.npy_intp get_l (svm_csr_model *)
np.npy_intp get_nr (svm_csr_model *)
int free_problem (svm_csr_problem *)
int free_model (svm_csr_model *)
int free_param (svm_parameter *)
int free_model_SV(svm_csr_model *model)
void set_verbosity(int)
np.import_array()
def libsvm_sparse_train ( int n_features,
np.ndarray[np.float64_t, ndim=1, mode='c'] values,
np.ndarray[np.int32_t, ndim=1, mode='c'] indices,
np.ndarray[np.int32_t, ndim=1, mode='c'] indptr,
np.ndarray[np.float64_t, ndim=1, mode='c'] Y,
int svm_type, int kernel_type, int degree, double gamma,
double coef0, double eps, double C,
np.ndarray[np.float64_t, ndim=1, mode='c'] class_weight,
np.ndarray[np.float64_t, ndim=1, mode='c'] sample_weight,
double nu, double cache_size, double p, int
shrinking, int probability, int max_iter,
int random_seed):
"""
Wrap svm_train from libsvm using a scipy.sparse.csr matrix
Work in progress.
Parameters
----------
n_features : number of features.
XXX: can we retrieve this from any other parameter ?
X : array-like, dtype=float, size=[N, D]
Y : array, dtype=float, size=[N]
target vector
...
Notes
-------------------
See sklearn.svm.predict for a complete list of parameters.
"""
cdef svm_parameter *param
cdef svm_csr_problem *problem
cdef svm_csr_model *model
cdef const_char_p error_msg
if len(sample_weight) == 0:
sample_weight = np.ones(Y.shape[0], dtype=np.float64)
else:
assert sample_weight.shape[0] == indptr.shape[0] - 1, \
"sample_weight and X have incompatible shapes: " + \
"sample_weight has %s samples while X has %s" % \
(sample_weight.shape[0], indptr.shape[0] - 1)
# we should never end up here with a precomputed kernel matrix,
# as this is always dense.
assert(kernel_type != 4)
# set libsvm problem
problem = csr_set_problem(values.data, indices.shape, indices.data,
indptr.shape, indptr.data, Y.data,
sample_weight.data, kernel_type)
cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)
# set parameters
param = set_parameter(svm_type, kernel_type, degree, gamma, coef0,
nu, cache_size, C, eps, p, shrinking,
probability, <int> class_weight.shape[0],
class_weight_label.data, class_weight.data, max_iter,
random_seed)
# check parameters
if (param == NULL or problem == NULL):
raise MemoryError("Seems we've run out of memory")
error_msg = svm_csr_check_parameter(problem, param);
if error_msg:
free_problem(problem)
free_param(param)
raise ValueError(error_msg)
# call svm_train, this does the real work
cdef int fit_status = 0
with nogil:
model = svm_csr_train(problem, param, &fit_status)
cdef np.npy_intp SV_len = get_l(model)
cdef np.npy_intp n_class = get_nr(model)
# copy model.sv_coef
# we create a new array instead of resizing, otherwise
# it would not erase previous information
cdef np.ndarray sv_coef_data
sv_coef_data = np.empty((n_class-1)*SV_len, dtype=np.float64)
copy_sv_coef (sv_coef_data.data, model)
cdef np.ndarray[np.int32_t, ndim=1, mode='c'] support
support = np.empty(SV_len, dtype=np.int32)
copy_support(support.data, model)
# copy model.rho into the intercept
# the intercept is just model.rho but with sign changed
cdef np.ndarray intercept
intercept = np.empty(n_class*(n_class-1)/2, dtype=np.float64)
copy_intercept (intercept.data, model, intercept.shape)
# copy model.SV
# we erase any previous information in SV
# TODO: custom kernel
cdef np.npy_intp nonzero_SV
nonzero_SV = get_nonzero_SV (model)
cdef np.ndarray SV_data, SV_indices, SV_indptr
SV_data = np.empty(nonzero_SV, dtype=np.float64)
SV_indices = np.empty(nonzero_SV, dtype=np.int32)
SV_indptr = np.empty(<np.npy_intp>SV_len + 1, dtype=np.int32)
csr_copy_SV(SV_data.data, SV_indices.shape, SV_indices.data,
SV_indptr.shape, SV_indptr.data, model, n_features)
support_vectors_ = sparse.csr_matrix(
(SV_data, SV_indices, SV_indptr), (SV_len, n_features))
# copy model.nSV
# TODO: do only in classification
cdef np.ndarray n_class_SV
n_class_SV = np.empty(n_class, dtype=np.int32)
copy_nSV(n_class_SV.data, model)
# # copy probabilities
cdef np.ndarray probA, probB
if probability != 0:
if svm_type < 2: # SVC and NuSVC
probA = np.empty(n_class*(n_class-1)/2, dtype=np.float64)
probB = np.empty(n_class*(n_class-1)/2, dtype=np.float64)
copy_probB(probB.data, model, probB.shape)
else:
probA = np.empty(1, dtype=np.float64)
probB = np.empty(0, dtype=np.float64)
copy_probA(probA.data, model, probA.shape)
else:
probA = np.empty(0, dtype=np.float64)
probB = np.empty(0, dtype=np.float64)
svm_csr_free_and_destroy_model (&model)
free_problem(problem)
free_param(param)
return (support, support_vectors_, sv_coef_data, intercept, n_class_SV,
probA, probB, fit_status)
def libsvm_sparse_predict (np.ndarray[np.float64_t, ndim=1, mode='c'] T_data,
np.ndarray[np.int32_t, ndim=1, mode='c'] T_indices,
np.ndarray[np.int32_t, ndim=1, mode='c'] T_indptr,
np.ndarray[np.float64_t, ndim=1, mode='c'] SV_data,
np.ndarray[np.int32_t, ndim=1, mode='c'] SV_indices,
np.ndarray[np.int32_t, ndim=1, mode='c'] SV_indptr,
np.ndarray[np.float64_t, ndim=1, mode='c'] sv_coef,
np.ndarray[np.float64_t, ndim=1, mode='c']
intercept, int svm_type, int kernel_type, int
degree, double gamma, double coef0, double
eps, double C,
np.ndarray[np.float64_t, ndim=1] class_weight,
double nu, double p, int
shrinking, int probability,
np.ndarray[np.int32_t, ndim=1, mode='c'] nSV,
np.ndarray[np.float64_t, ndim=1, mode='c'] probA,
np.ndarray[np.float64_t, ndim=1, mode='c'] probB):
"""
Predict values T given a model.
For speed, all real work is done at the C level in function
copy_predict (libsvm_helper.c).
We have to reconstruct model and parameters to make sure we stay
in sync with the python object.
See sklearn.svm.predict for a complete list of parameters.
Parameters
----------
X : array-like, dtype=float
Y : array
target vector
Returns
-------
dec_values : array
predicted values.
"""
cdef np.ndarray[np.float64_t, ndim=1, mode='c'] dec_values
cdef svm_parameter *param
cdef svm_csr_model *model
cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)
cdef int rv
param = set_parameter(svm_type, kernel_type, degree, gamma,
coef0, nu,
100., # cache size has no effect on predict
C, eps, p, shrinking,
probability, <int> class_weight.shape[0], class_weight_label.data,
class_weight.data, -1,
-1) # random seed has no effect on predict either
model = csr_set_model(param, <int> nSV.shape[0], SV_data.data,
SV_indices.shape, SV_indices.data,
SV_indptr.shape, SV_indptr.data,
sv_coef.data, intercept.data,
nSV.data, probA.data, probB.data)
#TODO: use check_model
dec_values = np.empty(T_indptr.shape[0]-1)
with nogil:
rv = csr_copy_predict(T_data.shape, T_data.data,
T_indices.shape, T_indices.data,
T_indptr.shape, T_indptr.data,
model, dec_values.data)
if rv < 0:
raise MemoryError("We've run out of memory")
# free model and param
free_model_SV(model)
free_model(model)
free_param(param)
return dec_values
def libsvm_sparse_predict_proba(
np.ndarray[np.float64_t, ndim=1, mode='c'] T_data,
np.ndarray[np.int32_t, ndim=1, mode='c'] T_indices,
np.ndarray[np.int32_t, ndim=1, mode='c'] T_indptr,
np.ndarray[np.float64_t, ndim=1, mode='c'] SV_data,
np.ndarray[np.int32_t, ndim=1, mode='c'] SV_indices,
np.ndarray[np.int32_t, ndim=1, mode='c'] SV_indptr,
np.ndarray[np.float64_t, ndim=1, mode='c'] sv_coef,
np.ndarray[np.float64_t, ndim=1, mode='c']
intercept, int svm_type, int kernel_type, int
degree, double gamma, double coef0, double
eps, double C,
np.ndarray[np.float64_t, ndim=1] class_weight,
double nu, double p, int shrinking, int probability,
np.ndarray[np.int32_t, ndim=1, mode='c'] nSV,
np.ndarray[np.float64_t, ndim=1, mode='c'] probA,
np.ndarray[np.float64_t, ndim=1, mode='c'] probB):
"""
Predict values T given a model.
"""
cdef np.ndarray[np.float64_t, ndim=2, mode='c'] dec_values
cdef svm_parameter *param
cdef svm_csr_model *model
cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)
param = set_parameter(svm_type, kernel_type, degree, gamma,
coef0, nu,
100., # cache size has no effect on predict
C, eps, p, shrinking,
probability, <int> class_weight.shape[0], class_weight_label.data,
class_weight.data, -1,
-1) # random seed has no effect on predict either
model = csr_set_model(param, <int> nSV.shape[0], SV_data.data,
SV_indices.shape, SV_indices.data,
SV_indptr.shape, SV_indptr.data,
sv_coef.data, intercept.data,
nSV.data, probA.data, probB.data)
#TODO: use check_model
cdef np.npy_intp n_class = get_nr(model)
cdef int rv
dec_values = np.empty((T_indptr.shape[0]-1, n_class), dtype=np.float64)
with nogil:
rv = csr_copy_predict_proba(T_data.shape, T_data.data,
T_indices.shape, T_indices.data,
T_indptr.shape, T_indptr.data,
model, dec_values.data)
if rv < 0:
raise MemoryError("We've run out of memory")
# free model and param
free_model_SV(model)
free_model(model)
free_param(param)
return dec_values
def libsvm_sparse_decision_function(
np.ndarray[np.float64_t, ndim=1, mode='c'] T_data,
np.ndarray[np.int32_t, ndim=1, mode='c'] T_indices,
np.ndarray[np.int32_t, ndim=1, mode='c'] T_indptr,
np.ndarray[np.float64_t, ndim=1, mode='c'] SV_data,
np.ndarray[np.int32_t, ndim=1, mode='c'] SV_indices,
np.ndarray[np.int32_t, ndim=1, mode='c'] SV_indptr,
np.ndarray[np.float64_t, ndim=1, mode='c'] sv_coef,
np.ndarray[np.float64_t, ndim=1, mode='c']
intercept, int svm_type, int kernel_type, int
degree, double gamma, double coef0, double
eps, double C,
np.ndarray[np.float64_t, ndim=1] class_weight,
double nu, double p, int shrinking, int probability,
np.ndarray[np.int32_t, ndim=1, mode='c'] nSV,
np.ndarray[np.float64_t, ndim=1, mode='c'] probA,
np.ndarray[np.float64_t, ndim=1, mode='c'] probB):
"""
Predict margin (libsvm name for this is predict_values)
We have to reconstruct model and parameters to make sure we stay
in sync with the python object.
"""
cdef np.ndarray[np.float64_t, ndim=2, mode='c'] dec_values
cdef svm_parameter *param
cdef np.npy_intp n_class
cdef svm_csr_model *model
cdef np.ndarray[np.int32_t, ndim=1, mode='c'] \
class_weight_label = np.arange(class_weight.shape[0], dtype=np.int32)
param = set_parameter(svm_type, kernel_type, degree, gamma,
coef0, nu,
100., # cache size has no effect on predict
C, eps, p, shrinking,
probability, <int> class_weight.shape[0],
class_weight_label.data, class_weight.data, -1, -1)
model = csr_set_model(param, <int> nSV.shape[0], SV_data.data,
SV_indices.shape, SV_indices.data,
SV_indptr.shape, SV_indptr.data,
sv_coef.data, intercept.data,
nSV.data, probA.data, probB.data)
if svm_type > 1:
n_class = 1
else:
n_class = get_nr(model)
n_class = n_class * (n_class - 1) / 2
dec_values = np.empty((T_indptr.shape[0] - 1, n_class), dtype=np.float64)
if csr_copy_predict_values(T_data.shape, T_data.data,
T_indices.shape, T_indices.data,
T_indptr.shape, T_indptr.data,
model, dec_values.data, n_class) < 0:
raise MemoryError("We've run out of memory")
# free model and param
free_model_SV(model)
free_model(model)
free_param(param)
return dec_values
def set_verbosity_wrap(int verbosity):
"""
Control verbosity of libsvm library
"""
set_verbosity(verbosity)
|