1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
"""
Testing for export functions of decision trees (sklearn.tree.export).
"""
from re import finditer, search
from numpy.random import RandomState
from sklearn.base import is_classifier
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.tree import export_graphviz
from sklearn.externals.six import StringIO
from sklearn.utils.testing import (assert_in, assert_equal, assert_raises,
assert_less_equal, assert_raises_regex,
assert_raise_message)
from sklearn.exceptions import NotFittedError
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
y2 = [[-1, 1], [-1, 1], [-1, 1], [1, 2], [1, 2], [1, 3]]
w = [1, 1, 1, .5, .5, .5]
y_degraded = [1, 1, 1, 1, 1, 1]
def test_graphviz_toy():
# Check correctness of export_graphviz
clf = DecisionTreeClassifier(max_depth=3,
min_samples_split=2,
criterion="gini",
random_state=2)
clf.fit(X, y)
# Test export code
contents1 = export_graphviz(clf, out_file=None)
contents2 = 'digraph Tree {\n' \
'node [shape=box] ;\n' \
'0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
'value = [3, 3]"] ;\n' \
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \
'0 -> 1 [labeldistance=2.5, labelangle=45, ' \
'headlabel="True"] ;\n' \
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \
'0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
'headlabel="False"] ;\n' \
'}'
assert_equal(contents1, contents2)
# Test with feature_names
contents1 = export_graphviz(clf, feature_names=["feature0", "feature1"],
out_file=None)
contents2 = 'digraph Tree {\n' \
'node [shape=box] ;\n' \
'0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
'value = [3, 3]"] ;\n' \
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \
'0 -> 1 [labeldistance=2.5, labelangle=45, ' \
'headlabel="True"] ;\n' \
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \
'0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
'headlabel="False"] ;\n' \
'}'
assert_equal(contents1, contents2)
# Test with class_names
contents1 = export_graphviz(clf, class_names=["yes", "no"], out_file=None)
contents2 = 'digraph Tree {\n' \
'node [shape=box] ;\n' \
'0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
'value = [3, 3]\\nclass = yes"] ;\n' \
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \
'class = yes"] ;\n' \
'0 -> 1 [labeldistance=2.5, labelangle=45, ' \
'headlabel="True"] ;\n' \
'2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \
'class = no"] ;\n' \
'0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
'headlabel="False"] ;\n' \
'}'
assert_equal(contents1, contents2)
# Test plot_options
contents1 = export_graphviz(clf, filled=True, impurity=False,
proportion=True, special_characters=True,
rounded=True, out_file=None)
contents2 = 'digraph Tree {\n' \
'node [shape=box, style="filled, rounded", color="black", ' \
'fontname=helvetica] ;\n' \
'edge [fontname=helvetica] ;\n' \
'0 [label=<X<SUB>0</SUB> ≤ 0.0<br/>samples = 100.0%<br/>' \
'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \
'1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \
'fillcolor="#e58139ff"] ;\n' \
'0 -> 1 [labeldistance=2.5, labelangle=45, ' \
'headlabel="True"] ;\n' \
'2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \
'fillcolor="#399de5ff"] ;\n' \
'0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
'headlabel="False"] ;\n' \
'}'
assert_equal(contents1, contents2)
# Test max_depth
contents1 = export_graphviz(clf, max_depth=0,
class_names=True, out_file=None)
contents2 = 'digraph Tree {\n' \
'node [shape=box] ;\n' \
'0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
'value = [3, 3]\\nclass = y[0]"] ;\n' \
'1 [label="(...)"] ;\n' \
'0 -> 1 ;\n' \
'2 [label="(...)"] ;\n' \
'0 -> 2 ;\n' \
'}'
assert_equal(contents1, contents2)
# Test max_depth with plot_options
contents1 = export_graphviz(clf, max_depth=0, filled=True,
out_file=None, node_ids=True)
contents2 = 'digraph Tree {\n' \
'node [shape=box, style="filled", color="black"] ;\n' \
'0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \
'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \
'1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \
'0 -> 1 ;\n' \
'2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \
'0 -> 2 ;\n' \
'}'
assert_equal(contents1, contents2)
# Test multi-output with weighted samples
clf = DecisionTreeClassifier(max_depth=2,
min_samples_split=2,
criterion="gini",
random_state=2)
clf = clf.fit(X, y2, sample_weight=w)
contents1 = export_graphviz(clf, filled=True,
impurity=False, out_file=None)
contents2 = 'digraph Tree {\n' \
'node [shape=box, style="filled", color="black"] ;\n' \
'0 [label="X[0] <= 0.0\\nsamples = 6\\n' \
'value = [[3.0, 1.5, 0.0]\\n' \
'[3.0, 1.0, 0.5]]", fillcolor="#e5813900"] ;\n' \
'1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n' \
'[3, 0, 0]]", fillcolor="#e58139ff"] ;\n' \
'0 -> 1 [labeldistance=2.5, labelangle=45, ' \
'headlabel="True"] ;\n' \
'2 [label="X[0] <= 1.5\\nsamples = 3\\n' \
'value = [[0.0, 1.5, 0.0]\\n' \
'[0.0, 1.0, 0.5]]", fillcolor="#e5813986"] ;\n' \
'0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
'headlabel="False"] ;\n' \
'3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n' \
'[0, 1, 0]]", fillcolor="#e58139ff"] ;\n' \
'2 -> 3 ;\n' \
'4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \
'[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \
'2 -> 4 ;\n' \
'}'
assert_equal(contents1, contents2)
# Test regression output with plot_options
clf = DecisionTreeRegressor(max_depth=3,
min_samples_split=2,
criterion="mse",
random_state=2)
clf.fit(X, y)
contents1 = export_graphviz(clf, filled=True, leaves_parallel=True,
out_file=None, rotate=True, rounded=True)
contents2 = 'digraph Tree {\n' \
'node [shape=box, style="filled, rounded", color="black", ' \
'fontname=helvetica] ;\n' \
'graph [ranksep=equally, splines=polyline] ;\n' \
'edge [fontname=helvetica] ;\n' \
'rankdir=LR ;\n' \
'0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \
'value = 0.0", fillcolor="#e5813980"] ;\n' \
'1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \
'fillcolor="#e5813900"] ;\n' \
'0 -> 1 [labeldistance=2.5, labelangle=-45, ' \
'headlabel="True"] ;\n' \
'2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \
'fillcolor="#e58139ff"] ;\n' \
'0 -> 2 [labeldistance=2.5, labelangle=45, ' \
'headlabel="False"] ;\n' \
'{rank=same ; 0} ;\n' \
'{rank=same ; 1; 2} ;\n' \
'}'
assert_equal(contents1, contents2)
# Test classifier with degraded learning set
clf = DecisionTreeClassifier(max_depth=3)
clf.fit(X, y_degraded)
contents1 = export_graphviz(clf, filled=True, out_file=None)
contents2 = 'digraph Tree {\n' \
'node [shape=box, style="filled", color="black"] ;\n' \
'0 [label="gini = 0.0\\nsamples = 6\\nvalue = 6.0", ' \
'fillcolor="#e5813900"] ;\n' \
'}'
def test_graphviz_errors():
# Check for errors of export_graphviz
clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2)
# Check not-fitted decision tree error
out = StringIO()
assert_raises(NotFittedError, export_graphviz, clf, out)
clf.fit(X, y)
# Check if it errors when length of feature_names
# mismatches with number of features
message = ("Length of feature_names, "
"1 does not match number of features, 2")
assert_raise_message(ValueError, message, export_graphviz, clf, None,
feature_names=["a"])
message = ("Length of feature_names, "
"3 does not match number of features, 2")
assert_raise_message(ValueError, message, export_graphviz, clf, None,
feature_names=["a", "b", "c"])
# Check error when argument is not an estimator
message = "is not an estimator instance"
assert_raise_message(TypeError, message,
export_graphviz, clf.fit(X, y).tree_)
# Check class_names error
out = StringIO()
assert_raises(IndexError, export_graphviz, clf, out, class_names=[])
# Check precision error
out = StringIO()
assert_raises_regex(ValueError, "should be greater or equal",
export_graphviz, clf, out, precision=-1)
assert_raises_regex(ValueError, "should be an integer",
export_graphviz, clf, out, precision="1")
def test_friedman_mse_in_graphviz():
clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0)
clf.fit(X, y)
dot_data = StringIO()
export_graphviz(clf, out_file=dot_data)
clf = GradientBoostingClassifier(n_estimators=2, random_state=0)
clf.fit(X, y)
for estimator in clf.estimators_:
export_graphviz(estimator[0], out_file=dot_data)
for finding in finditer(r"\[.*?samples.*?\]", dot_data.getvalue()):
assert_in("friedman_mse", finding.group())
def test_precision():
rng_reg = RandomState(2)
rng_clf = RandomState(8)
for X, y, clf in zip(
(rng_reg.random_sample((5, 2)),
rng_clf.random_sample((1000, 4))),
(rng_reg.random_sample((5, )),
rng_clf.randint(2, size=(1000, ))),
(DecisionTreeRegressor(criterion="friedman_mse", random_state=0,
max_depth=1),
DecisionTreeClassifier(max_depth=1, random_state=0))):
clf.fit(X, y)
for precision in (4, 3):
dot_data = export_graphviz(clf, out_file=None, precision=precision,
proportion=True)
# With the current random state, the impurity and the threshold
# will have the number of precision set in the export_graphviz
# function. We will check the number of precision with a strict
# equality. The value reported will have only 2 precision and
# therefore, only a less equal comparison will be done.
# check value
for finding in finditer(r"value = \d+\.\d+", dot_data):
assert_less_equal(
len(search(r"\.\d+", finding.group()).group()),
precision + 1)
# check impurity
if is_classifier(clf):
pattern = r"gini = \d+\.\d+"
else:
pattern = r"friedman_mse = \d+\.\d+"
# check impurity
for finding in finditer(pattern, dot_data):
assert_equal(len(search(r"\.\d+", finding.group()).group()),
precision + 1)
# check threshold
for finding in finditer(r"<= \d+\.\d+", dot_data):
assert_equal(len(search(r"\.\d+", finding.group()).group()),
precision + 1)
|