File: test_tree.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1834 lines) | stat: -rw-r--r-- 68,979 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
"""
Testing for the tree module (sklearn.tree).
"""
import copy
import pickle
from functools import partial
from itertools import product
import struct

import pytest
import numpy as np
from scipy.sparse import csc_matrix
from scipy.sparse import csr_matrix
from scipy.sparse import coo_matrix

from sklearn.random_projection import sparse_random_matrix

from sklearn.metrics import accuracy_score
from sklearn.metrics import mean_squared_error

from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_in
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_less_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_raise_message

from sklearn.utils.validation import check_random_state

from sklearn.exceptions import NotFittedError

from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import ExtraTreeClassifier
from sklearn.tree import ExtraTreeRegressor

from sklearn import tree
from sklearn.tree._tree import TREE_LEAF
from sklearn.tree.tree import CRITERIA_CLF
from sklearn.tree.tree import CRITERIA_REG
from sklearn import datasets

from sklearn.utils import compute_sample_weight

CLF_CRITERIONS = ("gini", "entropy")
REG_CRITERIONS = ("mse", "mae", "friedman_mse")

CLF_TREES = {
    "DecisionTreeClassifier": DecisionTreeClassifier,
    "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier,
                                              presort=True),
    "ExtraTreeClassifier": ExtraTreeClassifier,
}

REG_TREES = {
    "DecisionTreeRegressor": DecisionTreeRegressor,
    "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor,
                                             presort=True),
    "ExtraTreeRegressor": ExtraTreeRegressor,
}

ALL_TREES = dict()
ALL_TREES.update(CLF_TREES)
ALL_TREES.update(REG_TREES)

SPARSE_TREES = ["DecisionTreeClassifier", "DecisionTreeRegressor",
                "ExtraTreeClassifier", "ExtraTreeRegressor"]


X_small = np.array([
    [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ],
    [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ],
    [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ],
    [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ],
    [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ],
    [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ],
    [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ],
    [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ],
    [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ],
    [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ],
    [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ],
    [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ],
    [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ],
    [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ],
    [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ],
    [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ],
    [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ],
    [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ],
    [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ],
    [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ],
    [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ],
    [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ],
    [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]])

y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
           0, 0]
y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1,
               0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0]

# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]

# also load the iris dataset
# and randomly permute it
iris = datasets.load_iris()
rng = np.random.RandomState(1)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]

# also load the boston dataset
# and randomly permute it
boston = datasets.load_boston()
perm = rng.permutation(boston.target.size)
boston.data = boston.data[perm]
boston.target = boston.target[perm]

digits = datasets.load_digits()
perm = rng.permutation(digits.target.size)
digits.data = digits.data[perm]
digits.target = digits.target[perm]

random_state = check_random_state(0)
X_multilabel, y_multilabel = datasets.make_multilabel_classification(
    random_state=0, n_samples=30, n_features=10)

# NB: despite their names X_sparse_* are numpy arrays (and not sparse matrices)
X_sparse_pos = random_state.uniform(size=(20, 5))
X_sparse_pos[X_sparse_pos <= 0.8] = 0.
y_random = random_state.randint(0, 4, size=(20, ))
X_sparse_mix = sparse_random_matrix(20, 10, density=0.25,
                                    random_state=0).toarray()


DATASETS = {
    "iris": {"X": iris.data, "y": iris.target},
    "boston": {"X": boston.data, "y": boston.target},
    "digits": {"X": digits.data, "y": digits.target},
    "toy": {"X": X, "y": y},
    "clf_small": {"X": X_small, "y": y_small},
    "reg_small": {"X": X_small, "y": y_small_reg},
    "multilabel": {"X": X_multilabel, "y": y_multilabel},
    "sparse-pos": {"X": X_sparse_pos, "y": y_random},
    "sparse-neg": {"X": - X_sparse_pos, "y": y_random},
    "sparse-mix": {"X": X_sparse_mix, "y": y_random},
    "zeros": {"X": np.zeros((20, 3)), "y": y_random}
}

for name in DATASETS:
    DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"])


def assert_tree_equal(d, s, message):
    assert_equal(s.node_count, d.node_count,
                 "{0}: inequal number of node ({1} != {2})"
                 "".format(message, s.node_count, d.node_count))

    assert_array_equal(d.children_right, s.children_right,
                       message + ": inequal children_right")
    assert_array_equal(d.children_left, s.children_left,
                       message + ": inequal children_left")

    external = d.children_right == TREE_LEAF
    internal = np.logical_not(external)

    assert_array_equal(d.feature[internal], s.feature[internal],
                       message + ": inequal features")
    assert_array_equal(d.threshold[internal], s.threshold[internal],
                       message + ": inequal threshold")
    assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(),
                       message + ": inequal sum(n_node_samples)")
    assert_array_equal(d.n_node_samples, s.n_node_samples,
                       message + ": inequal n_node_samples")

    assert_almost_equal(d.impurity, s.impurity,
                        err_msg=message + ": inequal impurity")

    assert_array_almost_equal(d.value[external], s.value[external],
                              err_msg=message + ": inequal value")


def test_classification_toy():
    # Check classification on a toy dataset.
    for name, Tree in CLF_TREES.items():
        clf = Tree(random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(T), true_result,
                           "Failed with {0}".format(name))

        clf = Tree(max_features=1, random_state=1)
        clf.fit(X, y)
        assert_array_equal(clf.predict(T), true_result,
                           "Failed with {0}".format(name))


def test_weighted_classification_toy():
    # Check classification on a weighted toy dataset.
    for name, Tree in CLF_TREES.items():
        clf = Tree(random_state=0)

        clf.fit(X, y, sample_weight=np.ones(len(X)))
        assert_array_equal(clf.predict(T), true_result,
                           "Failed with {0}".format(name))

        clf.fit(X, y, sample_weight=np.full(len(X), 0.5))
        assert_array_equal(clf.predict(T), true_result,
                           "Failed with {0}".format(name))


def test_regression_toy():
    # Check regression on a toy dataset.
    for name, Tree in REG_TREES.items():
        reg = Tree(random_state=1)
        reg.fit(X, y)
        assert_almost_equal(reg.predict(T), true_result,
                            err_msg="Failed with {0}".format(name))

        clf = Tree(max_features=1, random_state=1)
        clf.fit(X, y)
        assert_almost_equal(reg.predict(T), true_result,
                            err_msg="Failed with {0}".format(name))


def test_xor():
    # Check on a XOR problem
    y = np.zeros((10, 10))
    y[:5, :5] = 1
    y[5:, 5:] = 1

    gridx, gridy = np.indices(y.shape)

    X = np.vstack([gridx.ravel(), gridy.ravel()]).T
    y = y.ravel()

    for name, Tree in CLF_TREES.items():
        clf = Tree(random_state=0)
        clf.fit(X, y)
        assert_equal(clf.score(X, y), 1.0,
                     "Failed with {0}".format(name))

        clf = Tree(random_state=0, max_features=1)
        clf.fit(X, y)
        assert_equal(clf.score(X, y), 1.0,
                     "Failed with {0}".format(name))


def test_iris():
    # Check consistency on dataset iris.
    for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS):
        clf = Tree(criterion=criterion, random_state=0)
        clf.fit(iris.data, iris.target)
        score = accuracy_score(clf.predict(iris.data), iris.target)
        assert_greater(score, 0.9,
                       "Failed with {0}, criterion = {1} and score = {2}"
                       "".format(name, criterion, score))

        clf = Tree(criterion=criterion, max_features=2, random_state=0)
        clf.fit(iris.data, iris.target)
        score = accuracy_score(clf.predict(iris.data), iris.target)
        assert_greater(score, 0.5,
                       "Failed with {0}, criterion = {1} and score = {2}"
                       "".format(name, criterion, score))


def test_boston():
    # Check consistency on dataset boston house prices.

    for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS):
        reg = Tree(criterion=criterion, random_state=0)
        reg.fit(boston.data, boston.target)
        score = mean_squared_error(boston.target, reg.predict(boston.data))
        assert_less(score, 1,
                    "Failed with {0}, criterion = {1} and score = {2}"
                    "".format(name, criterion, score))

        # using fewer features reduces the learning ability of this tree,
        # but reduces training time.
        reg = Tree(criterion=criterion, max_features=6, random_state=0)
        reg.fit(boston.data, boston.target)
        score = mean_squared_error(boston.target, reg.predict(boston.data))
        assert_less(score, 2,
                    "Failed with {0}, criterion = {1} and score = {2}"
                    "".format(name, criterion, score))


def test_probability():
    # Predict probabilities using DecisionTreeClassifier.

    for name, Tree in CLF_TREES.items():
        clf = Tree(max_depth=1, max_features=1, random_state=42)
        clf.fit(iris.data, iris.target)

        prob_predict = clf.predict_proba(iris.data)
        assert_array_almost_equal(np.sum(prob_predict, 1),
                                  np.ones(iris.data.shape[0]),
                                  err_msg="Failed with {0}".format(name))
        assert_array_equal(np.argmax(prob_predict, 1),
                           clf.predict(iris.data),
                           err_msg="Failed with {0}".format(name))
        assert_almost_equal(clf.predict_proba(iris.data),
                            np.exp(clf.predict_log_proba(iris.data)), 8,
                            err_msg="Failed with {0}".format(name))


def test_arrayrepr():
    # Check the array representation.
    # Check resize
    X = np.arange(10000)[:, np.newaxis]
    y = np.arange(10000)

    for name, Tree in REG_TREES.items():
        reg = Tree(max_depth=None, random_state=0)
        reg.fit(X, y)


def test_pure_set():
    # Check when y is pure.
    X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
    y = [1, 1, 1, 1, 1, 1]

    for name, TreeClassifier in CLF_TREES.items():
        clf = TreeClassifier(random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(X), y,
                           err_msg="Failed with {0}".format(name))

    for name, TreeRegressor in REG_TREES.items():
        reg = TreeRegressor(random_state=0)
        reg.fit(X, y)
        assert_almost_equal(reg.predict(X), y,
                            err_msg="Failed with {0}".format(name))


def test_numerical_stability():
    # Check numerical stability.
    X = np.array([
        [152.08097839, 140.40744019, 129.75102234, 159.90493774],
        [142.50700378, 135.81935120, 117.82884979, 162.75781250],
        [127.28772736, 140.40744019, 129.75102234, 159.90493774],
        [132.37025452, 143.71923828, 138.35694885, 157.84558105],
        [103.10237122, 143.71928406, 138.35696411, 157.84559631],
        [127.71276855, 143.71923828, 138.35694885, 157.84558105],
        [120.91514587, 140.40744019, 129.75102234, 159.90493774]])

    y = np.array(
        [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521])

    with np.errstate(all="raise"):
        for name, Tree in REG_TREES.items():
            reg = Tree(random_state=0)
            reg.fit(X, y)
            reg.fit(X, -y)
            reg.fit(-X, y)
            reg.fit(-X, -y)


def test_importances():
    # Check variable importances.
    X, y = datasets.make_classification(n_samples=5000,
                                        n_features=10,
                                        n_informative=3,
                                        n_redundant=0,
                                        n_repeated=0,
                                        shuffle=False,
                                        random_state=0)

    for name, Tree in CLF_TREES.items():
        clf = Tree(random_state=0)

        clf.fit(X, y)
        importances = clf.feature_importances_
        n_important = np.sum(importances > 0.1)

        assert_equal(importances.shape[0], 10, "Failed with {0}".format(name))
        assert_equal(n_important, 3, "Failed with {0}".format(name))

    # Check on iris that importances are the same for all builders
    clf = DecisionTreeClassifier(random_state=0)
    clf.fit(iris.data, iris.target)
    clf2 = DecisionTreeClassifier(random_state=0,
                                  max_leaf_nodes=len(iris.data))
    clf2.fit(iris.data, iris.target)

    assert_array_equal(clf.feature_importances_,
                       clf2.feature_importances_)


def test_importances_raises():
    # Check if variable importance before fit raises ValueError.
    clf = DecisionTreeClassifier()
    assert_raises(ValueError, getattr, clf, 'feature_importances_')


def test_importances_gini_equal_mse():
    # Check that gini is equivalent to mse for binary output variable

    X, y = datasets.make_classification(n_samples=2000,
                                        n_features=10,
                                        n_informative=3,
                                        n_redundant=0,
                                        n_repeated=0,
                                        shuffle=False,
                                        random_state=0)

    # The gini index and the mean square error (variance) might differ due
    # to numerical instability. Since those instabilities mainly occurs at
    # high tree depth, we restrict this maximal depth.
    clf = DecisionTreeClassifier(criterion="gini", max_depth=5,
                                 random_state=0).fit(X, y)
    reg = DecisionTreeRegressor(criterion="mse", max_depth=5,
                                random_state=0).fit(X, y)

    assert_almost_equal(clf.feature_importances_, reg.feature_importances_)
    assert_array_equal(clf.tree_.feature, reg.tree_.feature)
    assert_array_equal(clf.tree_.children_left, reg.tree_.children_left)
    assert_array_equal(clf.tree_.children_right, reg.tree_.children_right)
    assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples)


def test_max_features():
    # Check max_features.
    for name, TreeRegressor in REG_TREES.items():
        reg = TreeRegressor(max_features="auto")
        reg.fit(boston.data, boston.target)
        assert_equal(reg.max_features_, boston.data.shape[1])

    for name, TreeClassifier in CLF_TREES.items():
        clf = TreeClassifier(max_features="auto")
        clf.fit(iris.data, iris.target)
        assert_equal(clf.max_features_, 2)

    for name, TreeEstimator in ALL_TREES.items():
        est = TreeEstimator(max_features="sqrt")
        est.fit(iris.data, iris.target)
        assert_equal(est.max_features_,
                     int(np.sqrt(iris.data.shape[1])))

        est = TreeEstimator(max_features="log2")
        est.fit(iris.data, iris.target)
        assert_equal(est.max_features_,
                     int(np.log2(iris.data.shape[1])))

        est = TreeEstimator(max_features=1)
        est.fit(iris.data, iris.target)
        assert_equal(est.max_features_, 1)

        est = TreeEstimator(max_features=3)
        est.fit(iris.data, iris.target)
        assert_equal(est.max_features_, 3)

        est = TreeEstimator(max_features=0.01)
        est.fit(iris.data, iris.target)
        assert_equal(est.max_features_, 1)

        est = TreeEstimator(max_features=0.5)
        est.fit(iris.data, iris.target)
        assert_equal(est.max_features_,
                     int(0.5 * iris.data.shape[1]))

        est = TreeEstimator(max_features=1.0)
        est.fit(iris.data, iris.target)
        assert_equal(est.max_features_, iris.data.shape[1])

        est = TreeEstimator(max_features=None)
        est.fit(iris.data, iris.target)
        assert_equal(est.max_features_, iris.data.shape[1])

        # use values of max_features that are invalid
        est = TreeEstimator(max_features=10)
        assert_raises(ValueError, est.fit, X, y)

        est = TreeEstimator(max_features=-1)
        assert_raises(ValueError, est.fit, X, y)

        est = TreeEstimator(max_features=0.0)
        assert_raises(ValueError, est.fit, X, y)

        est = TreeEstimator(max_features=1.5)
        assert_raises(ValueError, est.fit, X, y)

        est = TreeEstimator(max_features="foobar")
        assert_raises(ValueError, est.fit, X, y)


def test_error():
    # Test that it gives proper exception on deficient input.
    for name, TreeEstimator in CLF_TREES.items():
        # predict before fit
        est = TreeEstimator()
        assert_raises(NotFittedError, est.predict_proba, X)

        est.fit(X, y)
        X2 = [[-2, -1, 1]]  # wrong feature shape for sample
        assert_raises(ValueError, est.predict_proba, X2)

    for name, TreeEstimator in ALL_TREES.items():
        assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y)
        assert_raises(ValueError, TreeEstimator(min_samples_leaf=.6).fit, X, y)
        assert_raises(ValueError, TreeEstimator(min_samples_leaf=0.).fit, X, y)
        assert_raises(ValueError, TreeEstimator(min_samples_leaf=3.).fit, X, y)
        assert_raises(ValueError,
                      TreeEstimator(min_weight_fraction_leaf=-1).fit,
                      X, y)
        assert_raises(ValueError,
                      TreeEstimator(min_weight_fraction_leaf=0.51).fit,
                      X, y)
        assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit,
                      X, y)
        assert_raises(ValueError, TreeEstimator(min_samples_split=0.0).fit,
                      X, y)
        assert_raises(ValueError, TreeEstimator(min_samples_split=1.1).fit,
                      X, y)
        assert_raises(ValueError, TreeEstimator(min_samples_split=2.5).fit,
                      X, y)
        assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y)
        assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y)
        # min_impurity_split warning
        with ignore_warnings(category=DeprecationWarning):
            assert_raises(ValueError,
                          TreeEstimator(min_impurity_split=-1.0).fit, X, y)
        assert_raises(ValueError,
                      TreeEstimator(min_impurity_decrease=-1.0).fit, X, y)

        # Wrong dimensions
        est = TreeEstimator()
        y2 = y[:-1]
        assert_raises(ValueError, est.fit, X, y2)

        # Test with arrays that are non-contiguous.
        Xf = np.asfortranarray(X)
        est = TreeEstimator()
        est.fit(Xf, y)
        assert_almost_equal(est.predict(T), true_result)

        # predict before fitting
        est = TreeEstimator()
        assert_raises(NotFittedError, est.predict, T)

        # predict on vector with different dims
        est.fit(X, y)
        t = np.asarray(T)
        assert_raises(ValueError, est.predict, t[:, 1:])

        # wrong sample shape
        Xt = np.array(X).T

        est = TreeEstimator()
        est.fit(np.dot(X, Xt), y)
        assert_raises(ValueError, est.predict, X)
        assert_raises(ValueError, est.apply, X)

        clf = TreeEstimator()
        clf.fit(X, y)
        assert_raises(ValueError, clf.predict, Xt)
        assert_raises(ValueError, clf.apply, Xt)

        # apply before fitting
        est = TreeEstimator()
        assert_raises(NotFittedError, est.apply, T)


def test_min_samples_split():
    """Test min_samples_split parameter"""
    X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE)
    y = iris.target

    # test both DepthFirstTreeBuilder and BestFirstTreeBuilder
    # by setting max_leaf_nodes
    for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()):
        TreeEstimator = ALL_TREES[name]

        # test for integer parameter
        est = TreeEstimator(min_samples_split=10,
                            max_leaf_nodes=max_leaf_nodes,
                            random_state=0)
        est.fit(X, y)
        # count samples on nodes, -1 means it is a leaf
        node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1]

        assert_greater(np.min(node_samples), 9,
                       "Failed with {0}".format(name))

        # test for float parameter
        est = TreeEstimator(min_samples_split=0.2,
                            max_leaf_nodes=max_leaf_nodes,
                            random_state=0)
        est.fit(X, y)
        # count samples on nodes, -1 means it is a leaf
        node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1]

        assert_greater(np.min(node_samples), 9,
                       "Failed with {0}".format(name))


def test_min_samples_leaf():
    # Test if leaves contain more than leaf_count training examples
    X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE)
    y = iris.target

    # test both DepthFirstTreeBuilder and BestFirstTreeBuilder
    # by setting max_leaf_nodes
    for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()):
        TreeEstimator = ALL_TREES[name]

        # test integer parameter
        est = TreeEstimator(min_samples_leaf=5,
                            max_leaf_nodes=max_leaf_nodes,
                            random_state=0)
        est.fit(X, y)
        out = est.tree_.apply(X)
        node_counts = np.bincount(out)
        # drop inner nodes
        leaf_count = node_counts[node_counts != 0]
        assert_greater(np.min(leaf_count), 4,
                       "Failed with {0}".format(name))

        # test float parameter
        est = TreeEstimator(min_samples_leaf=0.1,
                            max_leaf_nodes=max_leaf_nodes,
                            random_state=0)
        est.fit(X, y)
        out = est.tree_.apply(X)
        node_counts = np.bincount(out)
        # drop inner nodes
        leaf_count = node_counts[node_counts != 0]
        assert_greater(np.min(leaf_count), 4,
                       "Failed with {0}".format(name))


def check_min_weight_fraction_leaf(name, datasets, sparse=False):
    """Test if leaves contain at least min_weight_fraction_leaf of the
    training set"""
    if sparse:
        X = DATASETS[datasets]["X_sparse"].astype(np.float32)
    else:
        X = DATASETS[datasets]["X"].astype(np.float32)
    y = DATASETS[datasets]["y"]

    weights = rng.rand(X.shape[0])
    total_weight = np.sum(weights)

    TreeEstimator = ALL_TREES[name]

    # test both DepthFirstTreeBuilder and BestFirstTreeBuilder
    # by setting max_leaf_nodes
    for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)):
        est = TreeEstimator(min_weight_fraction_leaf=frac,
                            max_leaf_nodes=max_leaf_nodes,
                            random_state=0)
        est.fit(X, y, sample_weight=weights)

        if sparse:
            out = est.tree_.apply(X.tocsr())

        else:
            out = est.tree_.apply(X)

        node_weights = np.bincount(out, weights=weights)
        # drop inner nodes
        leaf_weights = node_weights[node_weights != 0]
        assert_greater_equal(
            np.min(leaf_weights),
            total_weight * est.min_weight_fraction_leaf,
            "Failed with {0} "
            "min_weight_fraction_leaf={1}".format(
                name, est.min_weight_fraction_leaf))

    # test case with no weights passed in
    total_weight = X.shape[0]

    for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)):
        est = TreeEstimator(min_weight_fraction_leaf=frac,
                            max_leaf_nodes=max_leaf_nodes,
                            random_state=0)
        est.fit(X, y)

        if sparse:
            out = est.tree_.apply(X.tocsr())
        else:
            out = est.tree_.apply(X)

        node_weights = np.bincount(out)
        # drop inner nodes
        leaf_weights = node_weights[node_weights != 0]
        assert_greater_equal(
            np.min(leaf_weights),
            total_weight * est.min_weight_fraction_leaf,
            "Failed with {0} "
            "min_weight_fraction_leaf={1}".format(
                name, est.min_weight_fraction_leaf))


@pytest.mark.parametrize("name", ALL_TREES)
def test_min_weight_fraction_leaf_on_dense_input(name):
    check_min_weight_fraction_leaf(name, "iris")


@pytest.mark.parametrize("name", SPARSE_TREES)
def test_min_weight_fraction_leaf_on_sparse_input(name):
    check_min_weight_fraction_leaf(name, "multilabel", True)


def check_min_weight_fraction_leaf_with_min_samples_leaf(name, datasets,
                                                         sparse=False):
    """Test the interaction between min_weight_fraction_leaf and min_samples_leaf
    when sample_weights is not provided in fit."""
    if sparse:
        X = DATASETS[datasets]["X_sparse"].astype(np.float32)
    else:
        X = DATASETS[datasets]["X"].astype(np.float32)
    y = DATASETS[datasets]["y"]

    total_weight = X.shape[0]
    TreeEstimator = ALL_TREES[name]
    for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 3)):
        # test integer min_samples_leaf
        est = TreeEstimator(min_weight_fraction_leaf=frac,
                            max_leaf_nodes=max_leaf_nodes,
                            min_samples_leaf=5,
                            random_state=0)
        est.fit(X, y)

        if sparse:
            out = est.tree_.apply(X.tocsr())
        else:
            out = est.tree_.apply(X)

        node_weights = np.bincount(out)
        # drop inner nodes
        leaf_weights = node_weights[node_weights != 0]
        assert_greater_equal(
            np.min(leaf_weights),
            max((total_weight *
                 est.min_weight_fraction_leaf), 5),
            "Failed with {0} "
            "min_weight_fraction_leaf={1}, "
            "min_samples_leaf={2}".format(name,
                                          est.min_weight_fraction_leaf,
                                          est.min_samples_leaf))
    for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 3)):
        # test float min_samples_leaf
        est = TreeEstimator(min_weight_fraction_leaf=frac,
                            max_leaf_nodes=max_leaf_nodes,
                            min_samples_leaf=.1,
                            random_state=0)
        est.fit(X, y)

        if sparse:
            out = est.tree_.apply(X.tocsr())
        else:
            out = est.tree_.apply(X)

        node_weights = np.bincount(out)
        # drop inner nodes
        leaf_weights = node_weights[node_weights != 0]
        assert_greater_equal(
            np.min(leaf_weights),
            max((total_weight * est.min_weight_fraction_leaf),
                (total_weight * est.min_samples_leaf)),
            "Failed with {0} "
            "min_weight_fraction_leaf={1}, "
            "min_samples_leaf={2}".format(name,
                                          est.min_weight_fraction_leaf,
                                          est.min_samples_leaf))


@pytest.mark.parametrize("name", ALL_TREES)
def test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input(name):
    check_min_weight_fraction_leaf_with_min_samples_leaf(name, "iris")


@pytest.mark.parametrize("name", SPARSE_TREES)
def test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input(name):
    check_min_weight_fraction_leaf_with_min_samples_leaf(
            name, "multilabel", True)


def test_min_impurity_split():
    # test if min_impurity_split creates leaves with impurity
    # [0, min_impurity_split) when min_samples_leaf = 1 and
    # min_samples_split = 2.
    X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE)
    y = iris.target

    # test both DepthFirstTreeBuilder and BestFirstTreeBuilder
    # by setting max_leaf_nodes
    for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()):
        TreeEstimator = ALL_TREES[name]
        min_impurity_split = .5

        # verify leaf nodes without min_impurity_split less than
        # impurity 1e-7
        est = TreeEstimator(max_leaf_nodes=max_leaf_nodes,
                            random_state=0)
        assert_true(est.min_impurity_split is None,
                    "Failed, min_impurity_split = {0} > 1e-7".format(
                        est.min_impurity_split))
        try:
            assert_warns(DeprecationWarning, est.fit, X, y)
        except AssertionError:
            pass
        for node in range(est.tree_.node_count):
            if (est.tree_.children_left[node] == TREE_LEAF or
                    est.tree_.children_right[node] == TREE_LEAF):
                assert_equal(est.tree_.impurity[node], 0.,
                             "Failed with {0} "
                             "min_impurity_split={1}".format(
                                 est.tree_.impurity[node],
                                 est.min_impurity_split))

        # verify leaf nodes have impurity [0,min_impurity_split] when using
        # min_impurity_split
        est = TreeEstimator(max_leaf_nodes=max_leaf_nodes,
                            min_impurity_split=min_impurity_split,
                            random_state=0)
        assert_warns_message(DeprecationWarning,
                             "Use the min_impurity_decrease",
                             est.fit, X, y)
        for node in range(est.tree_.node_count):
            if (est.tree_.children_left[node] == TREE_LEAF or
                    est.tree_.children_right[node] == TREE_LEAF):
                assert_greater_equal(est.tree_.impurity[node], 0,
                                     "Failed with {0}, "
                                     "min_impurity_split={1}".format(
                                         est.tree_.impurity[node],
                                         est.min_impurity_split))
                assert_less_equal(est.tree_.impurity[node], min_impurity_split,
                                  "Failed with {0}, "
                                  "min_impurity_split={1}".format(
                                      est.tree_.impurity[node],
                                      est.min_impurity_split))


def test_min_impurity_decrease():
    # test if min_impurity_decrease ensure that a split is made only if
    # if the impurity decrease is atleast that value
    X, y = datasets.make_classification(n_samples=10000, random_state=42)

    # test both DepthFirstTreeBuilder and BestFirstTreeBuilder
    # by setting max_leaf_nodes
    for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()):
        TreeEstimator = ALL_TREES[name]

        # Check default value of min_impurity_decrease, 1e-7
        est1 = TreeEstimator(max_leaf_nodes=max_leaf_nodes, random_state=0)
        # Check with explicit value of 0.05
        est2 = TreeEstimator(max_leaf_nodes=max_leaf_nodes,
                             min_impurity_decrease=0.05, random_state=0)
        # Check with a much lower value of 0.0001
        est3 = TreeEstimator(max_leaf_nodes=max_leaf_nodes,
                             min_impurity_decrease=0.0001, random_state=0)
        # Check with a much lower value of 0.1
        est4 = TreeEstimator(max_leaf_nodes=max_leaf_nodes,
                             min_impurity_decrease=0.1, random_state=0)

        for est, expected_decrease in ((est1, 1e-7), (est2, 0.05),
                                       (est3, 0.0001), (est4, 0.1)):
            assert_less_equal(est.min_impurity_decrease, expected_decrease,
                              "Failed, min_impurity_decrease = {0} > {1}"
                              .format(est.min_impurity_decrease,
                                      expected_decrease))
            est.fit(X, y)
            for node in range(est.tree_.node_count):
                # If current node is a not leaf node, check if the split was
                # justified w.r.t the min_impurity_decrease
                if est.tree_.children_left[node] != TREE_LEAF:
                    imp_parent = est.tree_.impurity[node]
                    wtd_n_node = est.tree_.weighted_n_node_samples[node]

                    left = est.tree_.children_left[node]
                    wtd_n_left = est.tree_.weighted_n_node_samples[left]
                    imp_left = est.tree_.impurity[left]
                    wtd_imp_left = wtd_n_left * imp_left

                    right = est.tree_.children_right[node]
                    wtd_n_right = est.tree_.weighted_n_node_samples[right]
                    imp_right = est.tree_.impurity[right]
                    wtd_imp_right = wtd_n_right * imp_right

                    wtd_avg_left_right_imp = wtd_imp_right + wtd_imp_left
                    wtd_avg_left_right_imp /= wtd_n_node

                    fractional_node_weight = (
                        est.tree_.weighted_n_node_samples[node] / X.shape[0])

                    actual_decrease = fractional_node_weight * (
                        imp_parent - wtd_avg_left_right_imp)

                    assert_greater_equal(actual_decrease, expected_decrease,
                                         "Failed with {0} "
                                         "expected min_impurity_decrease={1}"
                                         .format(actual_decrease,
                                                 expected_decrease))

    for name, TreeEstimator in ALL_TREES.items():
        if "Classifier" in name:
            X, y = iris.data, iris.target
        else:
            X, y = boston.data, boston.target

        est = TreeEstimator(random_state=0)
        est.fit(X, y)
        score = est.score(X, y)
        fitted_attribute = dict()
        for attribute in ["max_depth", "node_count", "capacity"]:
            fitted_attribute[attribute] = getattr(est.tree_, attribute)

        serialized_object = pickle.dumps(est)
        est2 = pickle.loads(serialized_object)
        assert_equal(type(est2), est.__class__)
        score2 = est2.score(X, y)
        assert_equal(score, score2,
                     "Failed to generate same score  after pickling "
                     "with {0}".format(name))

        for attribute in fitted_attribute:
            assert_equal(getattr(est2.tree_, attribute),
                         fitted_attribute[attribute],
                         "Failed to generate same attribute {0} after "
                         "pickling with {1}".format(attribute, name))


def test_multioutput():
    # Check estimators on multi-output problems.
    X = [[-2, -1],
         [-1, -1],
         [-1, -2],
         [1, 1],
         [1, 2],
         [2, 1],
         [-2, 1],
         [-1, 1],
         [-1, 2],
         [2, -1],
         [1, -1],
         [1, -2]]

    y = [[-1, 0],
         [-1, 0],
         [-1, 0],
         [1, 1],
         [1, 1],
         [1, 1],
         [-1, 2],
         [-1, 2],
         [-1, 2],
         [1, 3],
         [1, 3],
         [1, 3]]

    T = [[-1, -1], [1, 1], [-1, 1], [1, -1]]
    y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]]

    # toy classification problem
    for name, TreeClassifier in CLF_TREES.items():
        clf = TreeClassifier(random_state=0)
        y_hat = clf.fit(X, y).predict(T)
        assert_array_equal(y_hat, y_true)
        assert_equal(y_hat.shape, (4, 2))

        proba = clf.predict_proba(T)
        assert_equal(len(proba), 2)
        assert_equal(proba[0].shape, (4, 2))
        assert_equal(proba[1].shape, (4, 4))

        log_proba = clf.predict_log_proba(T)
        assert_equal(len(log_proba), 2)
        assert_equal(log_proba[0].shape, (4, 2))
        assert_equal(log_proba[1].shape, (4, 4))

    # toy regression problem
    for name, TreeRegressor in REG_TREES.items():
        reg = TreeRegressor(random_state=0)
        y_hat = reg.fit(X, y).predict(T)
        assert_almost_equal(y_hat, y_true)
        assert_equal(y_hat.shape, (4, 2))


def test_classes_shape():
    # Test that n_classes_ and classes_ have proper shape.
    for name, TreeClassifier in CLF_TREES.items():
        # Classification, single output
        clf = TreeClassifier(random_state=0)
        clf.fit(X, y)

        assert_equal(clf.n_classes_, 2)
        assert_array_equal(clf.classes_, [-1, 1])

        # Classification, multi-output
        _y = np.vstack((y, np.array(y) * 2)).T
        clf = TreeClassifier(random_state=0)
        clf.fit(X, _y)
        assert_equal(len(clf.n_classes_), 2)
        assert_equal(len(clf.classes_), 2)
        assert_array_equal(clf.n_classes_, [2, 2])
        assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]])


def test_unbalanced_iris():
    # Check class rebalancing.
    unbalanced_X = iris.data[:125]
    unbalanced_y = iris.target[:125]
    sample_weight = compute_sample_weight("balanced", unbalanced_y)

    for name, TreeClassifier in CLF_TREES.items():
        clf = TreeClassifier(random_state=0)
        clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight)
        assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y)


def test_memory_layout():
    # Check that it works no matter the memory layout
    for (name, TreeEstimator), dtype in product(ALL_TREES.items(),
                                                [np.float64, np.float32]):
        est = TreeEstimator(random_state=0)

        # Nothing
        X = np.asarray(iris.data, dtype=dtype)
        y = iris.target
        assert_array_equal(est.fit(X, y).predict(X), y)

        # C-order
        X = np.asarray(iris.data, order="C", dtype=dtype)
        y = iris.target
        assert_array_equal(est.fit(X, y).predict(X), y)

        # F-order
        X = np.asarray(iris.data, order="F", dtype=dtype)
        y = iris.target
        assert_array_equal(est.fit(X, y).predict(X), y)

        # Contiguous
        X = np.ascontiguousarray(iris.data, dtype=dtype)
        y = iris.target
        assert_array_equal(est.fit(X, y).predict(X), y)

        if not est.presort:
            # csr matrix
            X = csr_matrix(iris.data, dtype=dtype)
            y = iris.target
            assert_array_equal(est.fit(X, y).predict(X), y)

            # csc_matrix
            X = csc_matrix(iris.data, dtype=dtype)
            y = iris.target
            assert_array_equal(est.fit(X, y).predict(X), y)

        # Strided
        X = np.asarray(iris.data[::3], dtype=dtype)
        y = iris.target[::3]
        assert_array_equal(est.fit(X, y).predict(X), y)


def test_sample_weight():
    # Check sample weighting.
    # Test that zero-weighted samples are not taken into account
    X = np.arange(100)[:, np.newaxis]
    y = np.ones(100)
    y[:50] = 0.0

    sample_weight = np.ones(100)
    sample_weight[y == 0] = 0.0

    clf = DecisionTreeClassifier(random_state=0)
    clf.fit(X, y, sample_weight=sample_weight)
    assert_array_equal(clf.predict(X), np.ones(100))

    # Test that low weighted samples are not taken into account at low depth
    X = np.arange(200)[:, np.newaxis]
    y = np.zeros(200)
    y[50:100] = 1
    y[100:200] = 2
    X[100:200, 0] = 200

    sample_weight = np.ones(200)

    sample_weight[y == 2] = .51  # Samples of class '2' are still weightier
    clf = DecisionTreeClassifier(max_depth=1, random_state=0)
    clf.fit(X, y, sample_weight=sample_weight)
    assert_equal(clf.tree_.threshold[0], 149.5)

    sample_weight[y == 2] = .5  # Samples of class '2' are no longer weightier
    clf = DecisionTreeClassifier(max_depth=1, random_state=0)
    clf.fit(X, y, sample_weight=sample_weight)
    assert_equal(clf.tree_.threshold[0], 49.5)  # Threshold should have moved

    # Test that sample weighting is the same as having duplicates
    X = iris.data
    y = iris.target

    duplicates = rng.randint(0, X.shape[0], 100)

    clf = DecisionTreeClassifier(random_state=1)
    clf.fit(X[duplicates], y[duplicates])

    sample_weight = np.bincount(duplicates, minlength=X.shape[0])
    clf2 = DecisionTreeClassifier(random_state=1)
    clf2.fit(X, y, sample_weight=sample_weight)

    internal = clf.tree_.children_left != tree._tree.TREE_LEAF
    assert_array_almost_equal(clf.tree_.threshold[internal],
                              clf2.tree_.threshold[internal])


def test_sample_weight_invalid():
    # Check sample weighting raises errors.
    X = np.arange(100)[:, np.newaxis]
    y = np.ones(100)
    y[:50] = 0.0

    clf = DecisionTreeClassifier(random_state=0)

    sample_weight = np.random.rand(100, 1)
    assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight)

    sample_weight = np.array(0)
    assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight)

    sample_weight = np.ones(101)
    assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight)

    sample_weight = np.ones(99)
    assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight)


def check_class_weights(name):
    """Check class_weights resemble sample_weights behavior."""
    TreeClassifier = CLF_TREES[name]

    # Iris is balanced, so no effect expected for using 'balanced' weights
    clf1 = TreeClassifier(random_state=0)
    clf1.fit(iris.data, iris.target)
    clf2 = TreeClassifier(class_weight='balanced', random_state=0)
    clf2.fit(iris.data, iris.target)
    assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)

    # Make a multi-output problem with three copies of Iris
    iris_multi = np.vstack((iris.target, iris.target, iris.target)).T
    # Create user-defined weights that should balance over the outputs
    clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.},
                                        {0: 2., 1: 1., 2: 2.},
                                        {0: 1., 1: 2., 2: 2.}],
                          random_state=0)
    clf3.fit(iris.data, iris_multi)
    assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_)
    # Check against multi-output "auto" which should also have no effect
    clf4 = TreeClassifier(class_weight='balanced', random_state=0)
    clf4.fit(iris.data, iris_multi)
    assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_)

    # Inflate importance of class 1, check against user-defined weights
    sample_weight = np.ones(iris.target.shape)
    sample_weight[iris.target == 1] *= 100
    class_weight = {0: 1., 1: 100., 2: 1.}
    clf1 = TreeClassifier(random_state=0)
    clf1.fit(iris.data, iris.target, sample_weight)
    clf2 = TreeClassifier(class_weight=class_weight, random_state=0)
    clf2.fit(iris.data, iris.target)
    assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)

    # Check that sample_weight and class_weight are multiplicative
    clf1 = TreeClassifier(random_state=0)
    clf1.fit(iris.data, iris.target, sample_weight ** 2)
    clf2 = TreeClassifier(class_weight=class_weight, random_state=0)
    clf2.fit(iris.data, iris.target, sample_weight)
    assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)


@pytest.mark.parametrize("name", CLF_TREES)
def test_class_weights(name):
    check_class_weights(name)


def check_class_weight_errors(name):
    # Test if class_weight raises errors and warnings when expected.
    TreeClassifier = CLF_TREES[name]
    _y = np.vstack((y, np.array(y) * 2)).T

    # Invalid preset string
    clf = TreeClassifier(class_weight='the larch', random_state=0)
    assert_raises(ValueError, clf.fit, X, y)
    assert_raises(ValueError, clf.fit, X, _y)

    # Not a list or preset for multi-output
    clf = TreeClassifier(class_weight=1, random_state=0)
    assert_raises(ValueError, clf.fit, X, _y)

    # Incorrect length list for multi-output
    clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0)
    assert_raises(ValueError, clf.fit, X, _y)


@pytest.mark.parametrize("name", CLF_TREES)
def test_class_weight_errors(name):
    check_class_weight_errors(name)


def test_max_leaf_nodes():
    # Test greedy trees with max_depth + 1 leafs.
    from sklearn.tree._tree import TREE_LEAF
    X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    k = 4
    for name, TreeEstimator in ALL_TREES.items():
        est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y)
        tree = est.tree_
        assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1)

        # max_leaf_nodes in (0, 1) should raise ValueError
        est = TreeEstimator(max_depth=None, max_leaf_nodes=0)
        assert_raises(ValueError, est.fit, X, y)
        est = TreeEstimator(max_depth=None, max_leaf_nodes=1)
        assert_raises(ValueError, est.fit, X, y)
        est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1)
        assert_raises(ValueError, est.fit, X, y)


def test_max_leaf_nodes_max_depth():
    # Test precedence of max_leaf_nodes over max_depth.
    X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    k = 4
    for name, TreeEstimator in ALL_TREES.items():
        est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y)
        tree = est.tree_
        assert_greater(tree.max_depth, 1)


def test_arrays_persist():
    # Ensure property arrays' memory stays alive when tree disappears
    # non-regression for #2726
    for attr in ['n_classes', 'value', 'children_left', 'children_right',
                 'threshold', 'impurity', 'feature', 'n_node_samples']:
        value = getattr(DecisionTreeClassifier().fit([[0], [1]],
                                                     [0, 1]).tree_, attr)
        # if pointing to freed memory, contents may be arbitrary
        assert_true(-3 <= value.flat[0] < 3,
                    'Array points to arbitrary memory')


def test_only_constant_features():
    random_state = check_random_state(0)
    X = np.zeros((10, 20))
    y = random_state.randint(0, 2, (10, ))
    for name, TreeEstimator in ALL_TREES.items():
        est = TreeEstimator(random_state=0)
        est.fit(X, y)
        assert_equal(est.tree_.max_depth, 0)


def test_behaviour_constant_feature_after_splits():
    X = np.transpose(np.vstack(([[0, 0, 0, 0, 0, 1, 2, 4, 5, 6, 7]],
                               np.zeros((4, 11)))))
    y = [0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3]
    for name, TreeEstimator in ALL_TREES.items():
        # do not check extra random trees
        if "ExtraTree" not in name:
            est = TreeEstimator(random_state=0, max_features=1)
            est.fit(X, y)
            assert_equal(est.tree_.max_depth, 2)
            assert_equal(est.tree_.node_count, 5)


def test_with_only_one_non_constant_features():
    X = np.hstack([np.array([[1.], [1.], [0.], [0.]]),
                   np.zeros((4, 1000))])

    y = np.array([0., 1., 0., 1.0])
    for name, TreeEstimator in CLF_TREES.items():
        est = TreeEstimator(random_state=0, max_features=1)
        est.fit(X, y)
        assert_equal(est.tree_.max_depth, 1)
        assert_array_equal(est.predict_proba(X), np.full((4, 2), 0.5))

    for name, TreeEstimator in REG_TREES.items():
        est = TreeEstimator(random_state=0, max_features=1)
        est.fit(X, y)
        assert_equal(est.tree_.max_depth, 1)
        assert_array_equal(est.predict(X), np.full((4, ), 0.5))


def test_big_input():
    # Test if the warning for too large inputs is appropriate.
    X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1)
    clf = DecisionTreeClassifier()
    try:
        clf.fit(X, [0, 1, 0, 1])
    except ValueError as e:
        assert_in("float32", str(e))


def test_realloc():
    from sklearn.tree._utils import _realloc_test
    assert_raises(MemoryError, _realloc_test)


def test_huge_allocations():
    n_bits = 8 * struct.calcsize("P")

    X = np.random.randn(10, 2)
    y = np.random.randint(0, 2, 10)

    # Sanity check: we cannot request more memory than the size of the address
    # space. Currently raises OverflowError.
    huge = 2 ** (n_bits + 1)
    clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge)
    assert_raises(Exception, clf.fit, X, y)

    # Non-regression test: MemoryError used to be dropped by Cython
    # because of missing "except *".
    huge = 2 ** (n_bits - 1) - 1
    clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge)
    assert_raises(MemoryError, clf.fit, X, y)


def check_sparse_input(tree, dataset, max_depth=None):
    TreeEstimator = ALL_TREES[tree]
    X = DATASETS[dataset]["X"]
    X_sparse = DATASETS[dataset]["X_sparse"]
    y = DATASETS[dataset]["y"]

    # Gain testing time
    if dataset in ["digits", "boston"]:
        n_samples = X.shape[0] // 5
        X = X[:n_samples]
        X_sparse = X_sparse[:n_samples]
        y = y[:n_samples]

    for sparse_format in (csr_matrix, csc_matrix, coo_matrix):
        X_sparse = sparse_format(X_sparse)

        # Check the default (depth first search)
        d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y)
        s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y)

        assert_tree_equal(d.tree_, s.tree_,
                          "{0} with dense and sparse format gave different "
                          "trees".format(tree))

        y_pred = d.predict(X)
        if tree in CLF_TREES:
            y_proba = d.predict_proba(X)
            y_log_proba = d.predict_log_proba(X)

        for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix):
            X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32)

            assert_array_almost_equal(s.predict(X_sparse_test), y_pred)

            if tree in CLF_TREES:
                assert_array_almost_equal(s.predict_proba(X_sparse_test),
                                          y_proba)
                assert_array_almost_equal(s.predict_log_proba(X_sparse_test),
                                          y_log_proba)


@pytest.mark.parametrize("tree_type", SPARSE_TREES)
@pytest.mark.parametrize(
        "dataset",
        ("clf_small", "toy", "digits", "multilabel",
         "sparse-pos", "sparse-neg", "sparse-mix",
         "zeros")
)
def test_sparse_input(tree_type, dataset):
    max_depth = 3 if dataset == "digits" else None
    check_sparse_input(tree_type, dataset, max_depth)


@pytest.mark.parametrize("tree_type",
                         set(SPARSE_TREES).intersection(REG_TREES))
@pytest.mark.parametrize("dataset", ["boston", "reg_small"])
def test_sparse_input_reg_trees(tree_type, dataset):
    # Due to numerical instability of MSE and too strict test, we limit the
    # maximal depth
    check_sparse_input(tree_type, dataset, 2)


def check_sparse_parameters(tree, dataset):
    TreeEstimator = ALL_TREES[tree]
    X = DATASETS[dataset]["X"]
    X_sparse = DATASETS[dataset]["X_sparse"]
    y = DATASETS[dataset]["y"]

    # Check max_features
    d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y)
    s = TreeEstimator(random_state=0, max_features=1,
                      max_depth=2).fit(X_sparse, y)
    assert_tree_equal(d.tree_, s.tree_,
                      "{0} with dense and sparse format gave different "
                      "trees".format(tree))
    assert_array_almost_equal(s.predict(X), d.predict(X))

    # Check min_samples_split
    d = TreeEstimator(random_state=0, max_features=1,
                      min_samples_split=10).fit(X, y)
    s = TreeEstimator(random_state=0, max_features=1,
                      min_samples_split=10).fit(X_sparse, y)
    assert_tree_equal(d.tree_, s.tree_,
                      "{0} with dense and sparse format gave different "
                      "trees".format(tree))
    assert_array_almost_equal(s.predict(X), d.predict(X))

    # Check min_samples_leaf
    d = TreeEstimator(random_state=0,
                      min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y)
    s = TreeEstimator(random_state=0,
                      min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y)
    assert_tree_equal(d.tree_, s.tree_,
                      "{0} with dense and sparse format gave different "
                      "trees".format(tree))
    assert_array_almost_equal(s.predict(X), d.predict(X))

    # Check best-first search
    d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y)
    s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y)
    assert_tree_equal(d.tree_, s.tree_,
                      "{0} with dense and sparse format gave different "
                      "trees".format(tree))
    assert_array_almost_equal(s.predict(X), d.predict(X))


def check_sparse_criterion(tree, dataset):
    TreeEstimator = ALL_TREES[tree]
    X = DATASETS[dataset]["X"]
    X_sparse = DATASETS[dataset]["X_sparse"]
    y = DATASETS[dataset]["y"]

    # Check various criterion
    CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS
    for criterion in CRITERIONS:
        d = TreeEstimator(random_state=0, max_depth=3,
                          criterion=criterion).fit(X, y)
        s = TreeEstimator(random_state=0, max_depth=3,
                          criterion=criterion).fit(X_sparse, y)

        assert_tree_equal(d.tree_, s.tree_,
                          "{0} with dense and sparse format gave different "
                          "trees".format(tree))
        assert_array_almost_equal(s.predict(X), d.predict(X))


@pytest.mark.parametrize("tree_type", SPARSE_TREES)
@pytest.mark.parametrize("dataset",
                         ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"])
@pytest.mark.parametrize("check",
                         [check_sparse_parameters, check_sparse_criterion])
def test_sparse(tree_type, dataset, check):
    check(tree_type, dataset)


def check_explicit_sparse_zeros(tree, max_depth=3,
                                n_features=10):
    TreeEstimator = ALL_TREES[tree]

    # n_samples set n_feature to ease construction of a simultaneous
    # construction of a csr and csc matrix
    n_samples = n_features
    samples = np.arange(n_samples)

    # Generate X, y
    random_state = check_random_state(0)
    indices = []
    data = []
    offset = 0
    indptr = [offset]
    for i in range(n_features):
        n_nonzero_i = random_state.binomial(n_samples, 0.5)
        indices_i = random_state.permutation(samples)[:n_nonzero_i]
        indices.append(indices_i)
        data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1
        data.append(data_i)
        offset += n_nonzero_i
        indptr.append(offset)

    indices = np.concatenate(indices)
    data = np.array(np.concatenate(data), dtype=np.float32)
    X_sparse = csc_matrix((data, indices, indptr),
                          shape=(n_samples, n_features))
    X = X_sparse.toarray()
    X_sparse_test = csr_matrix((data, indices, indptr),
                               shape=(n_samples, n_features))
    X_test = X_sparse_test.toarray()
    y = random_state.randint(0, 3, size=(n_samples, ))

    # Ensure that X_sparse_test owns its data, indices and indptr array
    X_sparse_test = X_sparse_test.copy()

    # Ensure that we have explicit zeros
    assert_greater((X_sparse.data == 0.).sum(), 0)
    assert_greater((X_sparse_test.data == 0.).sum(), 0)

    # Perform the comparison
    d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y)
    s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y)

    assert_tree_equal(d.tree_, s.tree_,
                      "{0} with dense and sparse format gave different "
                      "trees".format(tree))

    Xs = (X_test, X_sparse_test)
    for X1, X2 in product(Xs, Xs):
        assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2))
        assert_array_almost_equal(s.apply(X1), d.apply(X2))
        assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1))

        assert_array_almost_equal(s.tree_.decision_path(X1).toarray(),
                                  d.tree_.decision_path(X2).toarray())
        assert_array_almost_equal(s.decision_path(X1).toarray(),
                                  d.decision_path(X2).toarray())
        assert_array_almost_equal(s.decision_path(X1).toarray(),
                                  s.tree_.decision_path(X1).toarray())

        assert_array_almost_equal(s.predict(X1), d.predict(X2))

        if tree in CLF_TREES:
            assert_array_almost_equal(s.predict_proba(X1),
                                      d.predict_proba(X2))


@pytest.mark.parametrize("tree_type", SPARSE_TREES)
def test_explicit_sparse_zeros(tree_type):
    check_explicit_sparse_zeros(tree_type)


@ignore_warnings
def check_raise_error_on_1d_input(name):
    TreeEstimator = ALL_TREES[name]

    X = iris.data[:, 0].ravel()
    X_2d = iris.data[:, 0].reshape((-1, 1))
    y = iris.target

    assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y)

    est = TreeEstimator(random_state=0)
    est.fit(X_2d, y)
    assert_raises(ValueError, est.predict, [X])


@pytest.mark.parametrize("name", ALL_TREES)
def test_1d_input(name):
    with ignore_warnings():
        check_raise_error_on_1d_input(name)


def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight):
    est = TreeEstimator(random_state=0)
    est.fit(X, y, sample_weight=sample_weight)
    assert_equal(est.tree_.max_depth, 1)

    est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4)
    est.fit(X, y, sample_weight=sample_weight)
    assert_equal(est.tree_.max_depth, 0)


def check_min_weight_leaf_split_level(name):
    TreeEstimator = ALL_TREES[name]

    X = np.array([[0], [0], [0], [0], [1]])
    y = [0, 0, 0, 0, 1]
    sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2]
    _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight)

    if not TreeEstimator().presort:
        _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y,
                                           sample_weight)


@pytest.mark.parametrize("name", ALL_TREES)
def test_min_weight_leaf_split_level(name):
    check_min_weight_leaf_split_level(name)


def check_public_apply(name):
    X_small32 = X_small.astype(tree._tree.DTYPE)

    est = ALL_TREES[name]()
    est.fit(X_small, y_small)
    assert_array_equal(est.apply(X_small),
                       est.tree_.apply(X_small32))


def check_public_apply_sparse(name):
    X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE))

    est = ALL_TREES[name]()
    est.fit(X_small, y_small)
    assert_array_equal(est.apply(X_small),
                       est.tree_.apply(X_small32))


@pytest.mark.parametrize("name", ALL_TREES)
def test_public_apply_all_trees(name):
    check_public_apply(name)


@pytest.mark.parametrize("name", SPARSE_TREES)
def test_public_apply_sparse_trees(name):
    check_public_apply_sparse(name)


def check_presort_sparse(est, X, y):
    assert_raises(ValueError, est.fit, X, y)


def test_presort_sparse():
    ests = (DecisionTreeClassifier(presort=True),
            DecisionTreeRegressor(presort=True))
    sparse_matrices = (csr_matrix, csc_matrix, coo_matrix)

    y, X = datasets.make_multilabel_classification(random_state=0,
                                                   n_samples=50,
                                                   n_features=1,
                                                   n_classes=20)
    y = y[:, 0]

    for est, sparse_matrix in product(ests, sparse_matrices):
        check_presort_sparse(est, sparse_matrix(X), y)


@pytest.mark.parametrize('cls',
                         (DecisionTreeRegressor, DecisionTreeClassifier))
def test_invalid_presort(cls):
    allowed_presort = ('auto', True, False)
    invalid_presort = 'invalid'
    msg = ("'presort' should be in {}. "
           "Got {!r} instead.".format(allowed_presort, invalid_presort))
    est = cls(presort=invalid_presort)
    assert_raise_message(ValueError, msg, est.fit, X, y)


def test_decision_path_hardcoded():
    X = iris.data
    y = iris.target
    est = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y)
    node_indicator = est.decision_path(X[:2]).toarray()
    assert_array_equal(node_indicator, [[1, 1, 0], [1, 0, 1]])


def check_decision_path(name):
    X = iris.data
    y = iris.target
    n_samples = X.shape[0]

    TreeEstimator = ALL_TREES[name]
    est = TreeEstimator(random_state=0, max_depth=2)
    est.fit(X, y)

    node_indicator_csr = est.decision_path(X)
    node_indicator = node_indicator_csr.toarray()
    assert_equal(node_indicator.shape, (n_samples, est.tree_.node_count))

    # Assert that leaves index are correct
    leaves = est.apply(X)
    leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)]
    assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples))

    # Ensure only one leave node per sample
    all_leaves = est.tree_.children_left == TREE_LEAF
    assert_array_almost_equal(np.dot(node_indicator, all_leaves),
                              np.ones(shape=n_samples))

    # Ensure max depth is consistent with sum of indicator
    max_depth = node_indicator.sum(axis=1).max()
    assert_less_equal(est.tree_.max_depth, max_depth)


@pytest.mark.parametrize("name", ALL_TREES)
def test_decision_path(name):
    check_decision_path(name)


def check_no_sparse_y_support(name):
    X, y = X_multilabel, csr_matrix(y_multilabel)
    TreeEstimator = ALL_TREES[name]
    assert_raises(TypeError, TreeEstimator(random_state=0).fit, X, y)


@pytest.mark.parametrize("name", ALL_TREES)
def test_no_sparse_y_support(name):
    # Currently we don't support sparse y
    check_no_sparse_y_support(name)


def test_mae():
    """Check MAE criterion produces correct results on small toy dataset:

    ------------------
    | X | y | weight |
    ------------------
    | 3 | 3 |  0.1   |
    | 5 | 3 |  0.3   |
    | 8 | 4 |  1.0   |
    | 3 | 6 |  0.6   |
    | 5 | 7 |  0.3   |
    ------------------
    |sum wt:|  2.3   |
    ------------------

    Because we are dealing with sample weights, we cannot find the median by
    simply choosing/averaging the centre value(s), instead we consider the
    median where 50% of the cumulative weight is found (in a y sorted data set)
    . Therefore with regards to this test data, the cumulative weight is >= 50%
    when y = 4.  Therefore:
    Median = 4

    For all the samples, we can get the total error by summing:
    Absolute(Median - y) * weight

    I.e., total error = (Absolute(4 - 3) * 0.1)
                      + (Absolute(4 - 3) * 0.3)
                      + (Absolute(4 - 4) * 1.0)
                      + (Absolute(4 - 6) * 0.6)
                      + (Absolute(4 - 7) * 0.3)
                      = 2.5

    Impurity = Total error / total weight
             = 2.5 / 2.3
             = 1.08695652173913
             ------------------

    From this root node, the next best split is between X values of 3 and 5.
    Thus, we have left and right child nodes:

    LEFT                    RIGHT
    ------------------      ------------------
    | X | y | weight |      | X | y | weight |
    ------------------      ------------------
    | 3 | 3 |  0.1   |      | 5 | 3 |  0.3   |
    | 3 | 6 |  0.6   |      | 8 | 4 |  1.0   |
    ------------------      | 5 | 7 |  0.3   |
    |sum wt:|  0.7   |      ------------------
    ------------------      |sum wt:|  1.6   |
                            ------------------

    Impurity is found in the same way:
    Left node Median = 6
    Total error = (Absolute(6 - 3) * 0.1)
                + (Absolute(6 - 6) * 0.6)
                = 0.3

    Left Impurity = Total error / total weight
            = 0.3 / 0.7
            = 0.428571428571429
            -------------------

    Likewise for Right node:
    Right node Median = 4
    Total error = (Absolute(4 - 3) * 0.3)
                + (Absolute(4 - 4) * 1.0)
                + (Absolute(4 - 7) * 0.3)
                = 1.2

    Right Impurity = Total error / total weight
            = 1.2 / 1.6
            = 0.75
            ------
    """
    dt_mae = DecisionTreeRegressor(random_state=0, criterion="mae",
                                   max_leaf_nodes=2)

    # Test MAE where sample weights are non-uniform (as illustrated above):
    dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3],
               sample_weight=[0.6, 0.3, 0.1, 1.0, 0.3])
    assert_allclose(dt_mae.tree_.impurity, [2.5 / 2.3, 0.3 / 0.7, 1.2 / 1.6])
    assert_array_equal(dt_mae.tree_.value.flat, [4.0, 6.0, 4.0])

    # Test MAE where all sample weights are uniform:
    dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3],
               sample_weight=np.ones(5))
    assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0 / 3.0])
    assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0])

    # Test MAE where a `sample_weight` is not explicitly provided.
    # This is equivalent to providing uniform sample weights, though
    # the internal logic is different:
    dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3])
    assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0 / 3.0])
    assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0])


def test_criterion_copy():
    # Let's check whether copy of our criterion has the same type
    # and properties as original
    n_outputs = 3
    n_classes = np.arange(3, dtype=np.intp)
    n_samples = 100

    def _pickle_copy(obj):
        return pickle.loads(pickle.dumps(obj))
    for copy_func in [copy.copy, copy.deepcopy, _pickle_copy]:
        for _, typename in CRITERIA_CLF.items():
            criteria = typename(n_outputs, n_classes)
            result = copy_func(criteria).__reduce__()
            typename_, (n_outputs_, n_classes_), _ = result
            assert_equal(typename, typename_)
            assert_equal(n_outputs, n_outputs_)
            assert_array_equal(n_classes, n_classes_)

        for _, typename in CRITERIA_REG.items():
            criteria = typename(n_outputs, n_samples)
            result = copy_func(criteria).__reduce__()
            typename_, (n_outputs_, n_samples_), _ = result
            assert_equal(typename, typename_)
            assert_equal(n_outputs, n_outputs_)
            assert_equal(n_samples, n_samples_)


def test_empty_leaf_infinite_threshold():
    # try to make empty leaf by using near infinite value.
    data = np.random.RandomState(0).randn(100, 11) * 2e38
    data = np.nan_to_num(data.astype('float32'))
    X_full = data[:, :-1]
    X_sparse = csc_matrix(X_full)
    y = data[:, -1]
    for X in [X_full, X_sparse]:
        tree = DecisionTreeRegressor(random_state=0).fit(X, y)
        terminal_regions = tree.apply(X)
        left_leaf = set(np.where(tree.tree_.children_left == TREE_LEAF)[0])
        empty_leaf = left_leaf.difference(terminal_regions)
        infinite_threshold = np.where(~np.isfinite(tree.tree_.threshold))[0]
        assert len(infinite_threshold) == 0
        assert len(empty_leaf) == 0