File: estimator_checks.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (2348 lines) | stat: -rw-r--r-- 92,960 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
from __future__ import print_function

import types
import warnings
import sys
import traceback
import pickle
from copy import deepcopy
from functools import partial

import numpy as np
from scipy import sparse
from scipy.stats import rankdata

from sklearn.externals.six.moves import zip
from sklearn.utils import IS_PYPY, _IS_32BIT
from sklearn.utils import _joblib
from sklearn.utils._joblib import Memory
from sklearn.utils.testing import assert_raises, _get_args
from sklearn.utils.testing import assert_raises_regex
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_in
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_allclose_dense_sparse
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import META_ESTIMATORS
from sklearn.utils.testing import set_random_state
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import SkipTest
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_dict_equal
from sklearn.utils.testing import create_memmap_backed_data
from sklearn.utils import is_scalar_nan
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis


from sklearn.base import (clone, ClusterMixin,
                          BaseEstimator, is_classifier, is_regressor,
                          is_outlier_detector)

from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score

from sklearn.random_projection import BaseRandomProjection
from sklearn.feature_selection import SelectKBest
from sklearn.svm.base import BaseLibSVM
from sklearn.linear_model.stochastic_gradient import BaseSGD
from sklearn.pipeline import make_pipeline
from sklearn.exceptions import DataConversionWarning
from sklearn.exceptions import SkipTestWarning
from sklearn.model_selection import train_test_split
from sklearn.metrics.pairwise import (rbf_kernel, linear_kernel,
                                      pairwise_distances)

from sklearn.utils import shuffle
from sklearn.utils.fixes import signature
from sklearn.utils.validation import (has_fit_parameter, _num_samples,
                                      LARGE_SPARSE_SUPPORTED)
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris, load_boston, make_blobs


BOSTON = None
CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']
MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet',
                'ExtraTreeRegressor', 'ExtraTreesRegressor',
                'GaussianProcessRegressor', 'TransformedTargetRegressor',
                'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso',
                'LassoLars', 'LinearRegression', 'MultiTaskElasticNet',
                'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV',
                'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression',
                'RANSACRegressor', 'RadiusNeighborsRegressor',
                'RandomForestRegressor', 'Ridge', 'RidgeCV']

ALLOW_NAN = ['Imputer', 'SimpleImputer', 'MissingIndicator',
             'MaxAbsScaler', 'MinMaxScaler', 'RobustScaler', 'StandardScaler',
             'PowerTransformer', 'QuantileTransformer']


def _yield_non_meta_checks(name, estimator):
    yield check_estimators_dtypes
    yield check_fit_score_takes_y
    yield check_dtype_object
    yield check_sample_weights_pandas_series
    yield check_sample_weights_list
    yield check_sample_weights_invariance
    yield check_estimators_fit_returns_self
    yield partial(check_estimators_fit_returns_self, readonly_memmap=True)
    yield check_complex_data

    # Check that all estimator yield informative messages when
    # trained on empty datasets
    yield check_estimators_empty_data_messages

    if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']:
        # SpectralEmbedding is non-deterministic,
        # see issue #4236
        # cross-decomposition's "transform" returns X and Y
        yield check_pipeline_consistency

    if name not in ALLOW_NAN:
        # Test that all estimators check their input for NaN's and infs
        yield check_estimators_nan_inf

    yield check_estimators_overwrite_params

    if hasattr(estimator, 'sparsify'):
        yield check_sparsify_coefficients

    yield check_estimator_sparse_data

    # Test that estimators can be pickled, and once pickled
    # give the same answer as before.
    yield check_estimators_pickle


def _yield_classifier_checks(name, classifier):
    # test classifiers can handle non-array data
    yield check_classifier_data_not_an_array
    # test classifiers trained on a single label always return this label
    yield check_classifiers_one_label
    yield check_classifiers_classes
    yield check_estimators_partial_fit_n_features
    # basic consistency testing
    yield check_classifiers_train
    yield partial(check_classifiers_train, readonly_memmap=True)
    yield check_classifiers_regression_target
    if (name not in ["MultinomialNB", "ComplementNB", "LabelPropagation",
                     "LabelSpreading"] and
        # TODO some complication with -1 label
            name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]):
        # We don't raise a warning in these classifiers, as
        # the column y interface is used by the forests.

        yield check_supervised_y_2d
    yield check_supervised_y_no_nan
    yield check_estimators_unfitted
    if 'class_weight' in classifier.get_params().keys():
        yield check_class_weight_classifiers

    yield check_non_transformer_estimators_n_iter
    # test if predict_proba is a monotonic transformation of decision_function
    yield check_decision_proba_consistency


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_supervised_y_no_nan(name, estimator_orig):
    # Checks that the Estimator targets are not NaN.
    estimator = clone(estimator_orig)
    rng = np.random.RandomState(888)
    X = rng.randn(10, 5)
    y = np.full(10, np.inf)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    errmsg = "Input contains NaN, infinity or a value too large for " \
             "dtype('float64')."
    try:
        estimator.fit(X, y)
    except ValueError as e:
        if str(e) != errmsg:
            raise ValueError("Estimator {0} raised error as expected, but "
                             "does not match expected error message"
                             .format(name))
    else:
        raise ValueError("Estimator {0} should have raised error on fitting "
                         "array y with NaN value.".format(name))


def _yield_regressor_checks(name, regressor):
    # TODO: test with intercept
    # TODO: test with multiple responses
    # basic testing
    yield check_regressors_train
    yield partial(check_regressors_train, readonly_memmap=True)
    yield check_regressor_data_not_an_array
    yield check_estimators_partial_fit_n_features
    yield check_regressors_no_decision_function
    yield check_supervised_y_2d
    yield check_supervised_y_no_nan
    if name != 'CCA':
        # check that the regressor handles int input
        yield check_regressors_int
    if name != "GaussianProcessRegressor":
        # test if NotFittedError is raised
        yield check_estimators_unfitted
    yield check_non_transformer_estimators_n_iter


def _yield_transformer_checks(name, transformer):
    # All transformers should either deal with sparse data or raise an
    # exception with type TypeError and an intelligible error message
    if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer',
                    'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']:
        yield check_transformer_data_not_an_array
    # these don't actually fit the data, so don't raise errors
    if name not in ['AdditiveChi2Sampler', 'Binarizer',
                    'FunctionTransformer', 'Normalizer']:
        # basic tests
        yield check_transformer_general
        yield partial(check_transformer_general, readonly_memmap=True)
        yield check_transformers_unfitted
    # Dependent on external solvers and hence accessing the iter
    # param is non-trivial.
    external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding',
                       'RandomizedLasso', 'LogisticRegressionCV']
    if name not in external_solver:
        yield check_transformer_n_iter


def _yield_clustering_checks(name, clusterer):
    yield check_clusterer_compute_labels_predict
    if name not in ('WardAgglomeration', "FeatureAgglomeration"):
        # this is clustering on the features
        # let's not test that here.
        yield check_clustering
        yield partial(check_clustering, readonly_memmap=True)
        yield check_estimators_partial_fit_n_features
    yield check_non_transformer_estimators_n_iter


def _yield_outliers_checks(name, estimator):

    # checks for outlier detectors that have a fit_predict method
    if hasattr(estimator, 'fit_predict'):
        yield check_outliers_fit_predict

    # checks for estimators that can be used on a test set
    if hasattr(estimator, 'predict'):
        yield check_outliers_train
        yield partial(check_outliers_train, readonly_memmap=True)
        # test outlier detectors can handle non-array data
        yield check_classifier_data_not_an_array
        # test if NotFittedError is raised
        yield check_estimators_unfitted


def _yield_all_checks(name, estimator):
    for check in _yield_non_meta_checks(name, estimator):
        yield check
    if is_classifier(estimator):
        for check in _yield_classifier_checks(name, estimator):
            yield check
    if is_regressor(estimator):
        for check in _yield_regressor_checks(name, estimator):
            yield check
    if hasattr(estimator, 'transform'):
        for check in _yield_transformer_checks(name, estimator):
            yield check
    if isinstance(estimator, ClusterMixin):
        for check in _yield_clustering_checks(name, estimator):
            yield check
    if is_outlier_detector(estimator):
        for check in _yield_outliers_checks(name, estimator):
            yield check
    yield check_fit2d_predict1d
    yield check_methods_subset_invariance
    yield check_fit2d_1sample
    yield check_fit2d_1feature
    yield check_fit1d
    yield check_get_params_invariance
    yield check_set_params
    yield check_dict_unchanged
    yield check_dont_overwrite_parameters


def check_estimator(Estimator):
    """Check if estimator adheres to scikit-learn conventions.

    This estimator will run an extensive test-suite for input validation,
    shapes, etc.
    Additional tests for classifiers, regressors, clustering or transformers
    will be run if the Estimator class inherits from the corresponding mixin
    from sklearn.base.

    This test can be applied to classes or instances.
    Classes currently have some additional tests that related to construction,
    while passing instances allows the testing of multiple options.

    Parameters
    ----------
    estimator : estimator object or class
        Estimator to check. Estimator is a class object or instance.

    """
    if isinstance(Estimator, type):
        # got a class
        name = Estimator.__name__
        estimator = Estimator()
        check_parameters_default_constructible(name, Estimator)
        check_no_attributes_set_in_init(name, estimator)
    else:
        # got an instance
        estimator = Estimator
        name = type(estimator).__name__

    for check in _yield_all_checks(name, estimator):
        try:
            check(name, estimator)
        except SkipTest as exception:
            # the only SkipTest thrown currently results from not
            # being able to import pandas.
            warnings.warn(str(exception), SkipTestWarning)


def _boston_subset(n_samples=200):
    global BOSTON
    if BOSTON is None:
        boston = load_boston()
        X, y = boston.data, boston.target
        X, y = shuffle(X, y, random_state=0)
        X, y = X[:n_samples], y[:n_samples]
        X = StandardScaler().fit_transform(X)
        BOSTON = X, y
    return BOSTON


def set_checking_parameters(estimator):
    # set parameters to speed up some estimators and
    # avoid deprecated behaviour
    params = estimator.get_params()
    if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"
            and not isinstance(estimator, BaseSGD)):
        estimator.set_params(n_iter=5)
    if "max_iter" in params:
        if estimator.max_iter is not None:
            estimator.set_params(max_iter=min(5, estimator.max_iter))
        # LinearSVR, LinearSVC
        if estimator.__class__.__name__ in ['LinearSVR', 'LinearSVC']:
            estimator.set_params(max_iter=20)
        # NMF
        if estimator.__class__.__name__ == 'NMF':
            estimator.set_params(max_iter=100)
        # MLP
        if estimator.__class__.__name__ in ['MLPClassifier', 'MLPRegressor']:
            estimator.set_params(max_iter=100)
    if "n_resampling" in params:
        # randomized lasso
        estimator.set_params(n_resampling=5)
    if "n_estimators" in params:
        # especially gradient boosting with default 100
        # FIXME: The default number of trees was changed and is set to 'warn'
        # for some of the ensemble methods. We need to catch this case to avoid
        # an error during the comparison. To be reverted in 0.22.
        if estimator.n_estimators == 'warn':
            estimator.set_params(n_estimators=5)
        else:
            estimator.set_params(n_estimators=min(5, estimator.n_estimators))
    if "max_trials" in params:
        # RANSAC
        estimator.set_params(max_trials=10)
    if "n_init" in params:
        # K-Means
        estimator.set_params(n_init=2)
    if "decision_function_shape" in params:
        # SVC
        estimator.set_params(decision_function_shape='ovo')

    if estimator.__class__.__name__ == "SelectFdr":
        # be tolerant of noisy datasets (not actually speed)
        estimator.set_params(alpha=.5)

    if estimator.__class__.__name__ == "TheilSenRegressor":
        estimator.max_subpopulation = 100

    if estimator.__class__.__name__ == "IsolationForest":
        # XXX to be removed in 0.22.
        # this is used because the old IsolationForest does not
        # respect the outlier detection API and thus and does not
        # pass the outlier detection common tests.
        estimator.set_params(behaviour='new')

    if isinstance(estimator, BaseRandomProjection):
        # Due to the jl lemma and often very few samples, the number
        # of components of the random matrix projection will be probably
        # greater than the number of features.
        # So we impose a smaller number (avoid "auto" mode)
        estimator.set_params(n_components=2)

    if isinstance(estimator, SelectKBest):
        # SelectKBest has a default of k=10
        # which is more feature than we have in most case.
        estimator.set_params(k=1)


class NotAnArray(object):
    """An object that is convertible to an array

    Parameters
    ----------
    data : array_like
        The data.
    """

    def __init__(self, data):
        self.data = data

    def __array__(self, dtype=None):
        return self.data


def _is_pairwise(estimator):
    """Returns True if estimator has a _pairwise attribute set to True.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if _pairwise is set to True and False otherwise.
    """
    return bool(getattr(estimator, "_pairwise", False))


def _is_pairwise_metric(estimator):
    """Returns True if estimator accepts pairwise metric.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if _pairwise is set to True and False otherwise.
    """
    metric = getattr(estimator, "metric", None)

    return bool(metric == 'precomputed')


def pairwise_estimator_convert_X(X, estimator, kernel=linear_kernel):

    if _is_pairwise_metric(estimator):
        return pairwise_distances(X, metric='euclidean')
    if _is_pairwise(estimator):
        return kernel(X, X)

    return X


def _generate_sparse_matrix(X_csr):
    """Generate sparse matrices with {32,64}bit indices of diverse format

        Parameters
        ----------
        X_csr: CSR Matrix
            Input matrix in CSR format

        Returns
        -------
        out: iter(Matrices)
            In format['dok', 'lil', 'dia', 'bsr', 'csr', 'csc', 'coo',
             'coo_64', 'csc_64', 'csr_64']
    """

    assert X_csr.format == 'csr'
    yield 'csr', X_csr.copy()
    for sparse_format in ['dok', 'lil', 'dia', 'bsr', 'csc', 'coo']:
        yield sparse_format, X_csr.asformat(sparse_format)

    if LARGE_SPARSE_SUPPORTED:
        # Generate large indices matrix only if its supported by scipy
        X_coo = X_csr.asformat('coo')
        X_coo.row = X_coo.row.astype('int64')
        X_coo.col = X_coo.col.astype('int64')
        yield "coo_64", X_coo

        for sparse_format in ['csc', 'csr']:
            X = X_csr.asformat(sparse_format)
            X.indices = X.indices.astype('int64')
            X.indptr = X.indptr.astype('int64')
            yield sparse_format + "_64", X


def check_estimator_sparse_data(name, estimator_orig):

    rng = np.random.RandomState(0)
    X = rng.rand(40, 10)
    X[X < .8] = 0
    X = pairwise_estimator_convert_X(X, estimator_orig)
    X_csr = sparse.csr_matrix(X)
    y = (4 * rng.rand(40)).astype(np.int)
    # catch deprecation warnings
    with ignore_warnings(category=DeprecationWarning):
        estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)
    for matrix_format, X in _generate_sparse_matrix(X_csr):
        # catch deprecation warnings
        with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
            if name in ['Scaler', 'StandardScaler']:
                estimator = clone(estimator).set_params(with_mean=False)
            else:
                estimator = clone(estimator)
        # fit and predict
        try:
            with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
                estimator.fit(X, y)
            if hasattr(estimator, "predict"):
                pred = estimator.predict(X)
                assert_equal(pred.shape, (X.shape[0],))
            if hasattr(estimator, 'predict_proba'):
                probs = estimator.predict_proba(X)
                assert_equal(probs.shape, (X.shape[0], 4))
        except (TypeError, ValueError) as e:
            if 'sparse' not in repr(e).lower():
                if "64" in matrix_format:
                    msg = ("Estimator %s doesn't seem to support %s matrix, "
                           "and is not failing gracefully, e.g. by using "
                           "check_array(X, accept_large_sparse=False)")
                    raise AssertionError(msg % (name, matrix_format))
                else:
                    print("Estimator %s doesn't seem to fail gracefully on "
                          "sparse data: error message state explicitly that "
                          "sparse input is not supported if this is not"
                          " the case." % name)
                    raise
        except Exception as e:
            print("Estimator %s doesn't seem to fail gracefully on "
                  "sparse data: it should raise a TypeError if sparse input "
                  "is explicitly not supported." % name)
            raise


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_sample_weights_pandas_series(name, estimator_orig):
    # check that estimators will accept a 'sample_weight' parameter of
    # type pandas.Series in the 'fit' function.
    estimator = clone(estimator_orig)
    if has_fit_parameter(estimator, "sample_weight"):
        try:
            import pandas as pd
            X = np.array([[1, 1], [1, 2], [1, 3], [1, 4],
                          [2, 1], [2, 2], [2, 3], [2, 4]])
            X = pd.DataFrame(pairwise_estimator_convert_X(X, estimator_orig))
            y = pd.Series([1, 1, 1, 1, 2, 2, 2, 2])
            weights = pd.Series([1] * 8)
            try:
                estimator.fit(X, y, sample_weight=weights)
            except ValueError:
                raise ValueError("Estimator {0} raises error if "
                                 "'sample_weight' parameter is of "
                                 "type pandas.Series".format(name))
        except ImportError:
            raise SkipTest("pandas is not installed: not testing for "
                           "input of type pandas.Series to class weight.")


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_sample_weights_list(name, estimator_orig):
    # check that estimators will accept a 'sample_weight' parameter of
    # type list in the 'fit' function.
    if has_fit_parameter(estimator_orig, "sample_weight"):
        estimator = clone(estimator_orig)
        rnd = np.random.RandomState(0)
        X = pairwise_estimator_convert_X(rnd.uniform(size=(10, 3)),
                                         estimator_orig)
        y = np.arange(10) % 3
        y = multioutput_estimator_convert_y_2d(estimator, y)
        sample_weight = [3] * 10
        # Test that estimators don't raise any exception
        estimator.fit(X, y, sample_weight=sample_weight)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_sample_weights_invariance(name, estimator_orig):
    # check that the estimators yield same results for
    # unit weights and no weights
    if (has_fit_parameter(estimator_orig, "sample_weight") and
            not (hasattr(estimator_orig, "_pairwise")
                 and estimator_orig._pairwise)):
        # We skip pairwise because the data is not pairwise

        estimator1 = clone(estimator_orig)
        estimator2 = clone(estimator_orig)
        set_random_state(estimator1, random_state=0)
        set_random_state(estimator2, random_state=0)

        X = np.array([[1, 3], [1, 3], [1, 3], [1, 3],
                      [2, 1], [2, 1], [2, 1], [2, 1],
                      [3, 3], [3, 3], [3, 3], [3, 3],
                      [4, 1], [4, 1], [4, 1], [4, 1]], dtype=np.dtype('float'))
        y = np.array([1, 1, 1, 1, 2, 2, 2, 2,
                      1, 1, 1, 1, 2, 2, 2, 2], dtype=np.dtype('int'))

        estimator1.fit(X, y=y, sample_weight=np.ones(shape=len(y)))
        estimator2.fit(X, y=y, sample_weight=None)

        for method in ["predict", "transform"]:
            if hasattr(estimator_orig, method):
                X_pred1 = getattr(estimator1, method)(X)
                X_pred2 = getattr(estimator2, method)(X)
                assert_allclose(X_pred1, X_pred2,
                                err_msg="For %s sample_weight=None is not"
                                        " equivalent to sample_weight=ones"
                                        % name)


@ignore_warnings(category=(DeprecationWarning, FutureWarning, UserWarning))
def check_dtype_object(name, estimator_orig):
    # check that estimators treat dtype object as numeric if possible
    rng = np.random.RandomState(0)
    X = pairwise_estimator_convert_X(rng.rand(40, 10), estimator_orig)
    X = X.astype(object)
    y = (X[:, 0] * 4).astype(np.int)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    estimator.fit(X, y)
    if hasattr(estimator, "predict"):
        estimator.predict(X)

    if hasattr(estimator, "transform"):
        estimator.transform(X)

    try:
        estimator.fit(X, y.astype(object))
    except Exception as e:
        if "Unknown label type" not in str(e):
            raise

    X[0, 0] = {'foo': 'bar'}
    msg = "argument must be a string or a number"
    assert_raises_regex(TypeError, msg, estimator.fit, X, y)


def check_complex_data(name, estimator_orig):
    # check that estimators raise an exception on providing complex data
    X = np.random.sample(10) + 1j * np.random.sample(10)
    X = X.reshape(-1, 1)
    y = np.random.sample(10) + 1j * np.random.sample(10)
    estimator = clone(estimator_orig)
    assert_raises_regex(ValueError, "Complex data not supported",
                        estimator.fit, X, y)


@ignore_warnings
def check_dict_unchanged(name, estimator_orig):
    # this estimator raises
    # ValueError: Found array with 0 feature(s) (shape=(23, 0))
    # while a minimum of 1 is required.
    # error
    if name in ['SpectralCoclustering']:
        return
    rnd = np.random.RandomState(0)
    if name in ['RANSACRegressor']:
        X = 3 * rnd.uniform(size=(20, 3))
    else:
        X = 2 * rnd.uniform(size=(20, 3))

    X = pairwise_estimator_convert_X(X, estimator_orig)

    y = X[:, 0].astype(np.int)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)
    if hasattr(estimator, "n_components"):
        estimator.n_components = 1

    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    if hasattr(estimator, "n_best"):
        estimator.n_best = 1

    set_random_state(estimator, 1)

    estimator.fit(X, y)
    for method in ["predict", "transform", "decision_function",
                   "predict_proba"]:
        if hasattr(estimator, method):
            dict_before = estimator.__dict__.copy()
            getattr(estimator, method)(X)
            assert_dict_equal(estimator.__dict__, dict_before,
                              'Estimator changes __dict__ during %s' % method)


def is_public_parameter(attr):
    return not (attr.startswith('_') or attr.endswith('_'))


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_dont_overwrite_parameters(name, estimator_orig):
    # check that fit method only changes or sets private attributes
    if hasattr(estimator_orig.__init__, "deprecated_original"):
        # to not check deprecated classes
        return
    estimator = clone(estimator_orig)
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20, 3))
    X = pairwise_estimator_convert_X(X, estimator_orig)
    y = X[:, 0].astype(np.int)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)
    dict_before_fit = estimator.__dict__.copy()
    estimator.fit(X, y)

    dict_after_fit = estimator.__dict__

    public_keys_after_fit = [key for key in dict_after_fit.keys()
                             if is_public_parameter(key)]

    attrs_added_by_fit = [key for key in public_keys_after_fit
                          if key not in dict_before_fit.keys()]

    # check that fit doesn't add any public attribute
    assert_true(not attrs_added_by_fit,
                ('Estimator adds public attribute(s) during'
                 ' the fit method.'
                 ' Estimators are only allowed to add private attributes'
                 ' either started with _ or ended'
                 ' with _ but %s added' % ', '.join(attrs_added_by_fit)))

    # check that fit doesn't change any public attribute
    attrs_changed_by_fit = [key for key in public_keys_after_fit
                            if (dict_before_fit[key]
                                is not dict_after_fit[key])]

    assert_true(not attrs_changed_by_fit,
                ('Estimator changes public attribute(s) during'
                 ' the fit method. Estimators are only allowed'
                 ' to change attributes started'
                 ' or ended with _, but'
                 ' %s changed' % ', '.join(attrs_changed_by_fit)))


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_fit2d_predict1d(name, estimator_orig):
    # check by fitting a 2d array and predicting with a 1d array
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20, 3))
    X = pairwise_estimator_convert_X(X, estimator_orig)
    y = X[:, 0].astype(np.int)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)
    estimator.fit(X, y)

    for method in ["predict", "transform", "decision_function",
                   "predict_proba"]:
        if hasattr(estimator, method):
            assert_raise_message(ValueError, "Reshape your data",
                                 getattr(estimator, method), X[0])


def _apply_on_subsets(func, X):
    # apply function on the whole set and on mini batches
    result_full = func(X)
    n_features = X.shape[1]
    result_by_batch = [func(batch.reshape(1, n_features))
                       for batch in X]
    # func can output tuple (e.g. score_samples)
    if type(result_full) == tuple:
        result_full = result_full[0]
        result_by_batch = list(map(lambda x: x[0], result_by_batch))

    if sparse.issparse(result_full):
        result_full = result_full.A
        result_by_batch = [x.A for x in result_by_batch]
    return np.ravel(result_full), np.ravel(result_by_batch)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_methods_subset_invariance(name, estimator_orig):
    # check that method gives invariant results if applied
    # on mini bathes or the whole set
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20, 3))
    X = pairwise_estimator_convert_X(X, estimator_orig)
    y = X[:, 0].astype(np.int)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)
    estimator.fit(X, y)

    for method in ["predict", "transform", "decision_function",
                   "score_samples", "predict_proba"]:

        msg = ("{method} of {name} is not invariant when applied "
               "to a subset.").format(method=method, name=name)
        # TODO remove cases when corrected
        if (name, method) in [('SVC', 'decision_function'),
                              ('SparsePCA', 'transform'),
                              ('MiniBatchSparsePCA', 'transform'),
                              ('BernoulliRBM', 'score_samples')]:
            raise SkipTest(msg)

        if hasattr(estimator, method):
            result_full, result_by_batch = _apply_on_subsets(
                getattr(estimator, method), X)
            assert_allclose(result_full, result_by_batch,
                            atol=1e-7, err_msg=msg)


@ignore_warnings
def check_fit2d_1sample(name, estimator_orig):
    # Check that fitting a 2d array with only one sample either works or
    # returns an informative message. The error message should either mention
    # the number of samples or the number of classes.
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(1, 10))
    y = X[:, 0].astype(np.int)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)

    msgs = ["1 sample", "n_samples = 1", "n_samples=1", "one sample",
            "1 class", "one class"]

    try:
        estimator.fit(X, y)
    except ValueError as e:
        if all(msg not in repr(e) for msg in msgs):
            raise e


@ignore_warnings
def check_fit2d_1feature(name, estimator_orig):
    # check fitting a 2d array with only 1 feature either works or returns
    # informative message
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(10, 1))
    X = pairwise_estimator_convert_X(X, estimator_orig)
    y = X[:, 0].astype(np.int)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1
    # ensure two labels in subsample for RandomizedLogisticRegression
    if name == 'RandomizedLogisticRegression':
        estimator.sample_fraction = 1
    # ensure non skipped trials for RANSACRegressor
    if name == 'RANSACRegressor':
        estimator.residual_threshold = 0.5

    y = multioutput_estimator_convert_y_2d(estimator, y)
    set_random_state(estimator, 1)

    msgs = ["1 feature(s)", "n_features = 1", "n_features=1"]

    try:
        estimator.fit(X, y)
    except ValueError as e:
        if all(msg not in repr(e) for msg in msgs):
            raise e


@ignore_warnings
def check_fit1d(name, estimator_orig):
    # check fitting 1d X array raises a ValueError
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20))
    y = X.astype(np.int)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)
    assert_raises(ValueError, estimator.fit, X, y)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_transformer_general(name, transformer, readonly_memmap=False):
    X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
                      random_state=0, n_features=2, cluster_std=0.1)
    X = StandardScaler().fit_transform(X)
    X -= X.min()

    if readonly_memmap:
        X, y = create_memmap_backed_data([X, y])

    _check_transformer(name, transformer, X, y)
    _check_transformer(name, transformer, X.tolist(), y.tolist())


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_transformer_data_not_an_array(name, transformer):
    X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
                      random_state=0, n_features=2, cluster_std=0.1)
    X = StandardScaler().fit_transform(X)
    # We need to make sure that we have non negative data, for things
    # like NMF
    X -= X.min() - .1
    this_X = NotAnArray(X)
    this_y = NotAnArray(np.asarray(y))
    _check_transformer(name, transformer, this_X, this_y)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_transformers_unfitted(name, transformer):
    X, y = _boston_subset()

    transformer = clone(transformer)
    with assert_raises((AttributeError, ValueError), msg="The unfitted "
                       "transformer {} does not raise an error when "
                       "transform is called. Perhaps use "
                       "check_is_fitted in transform.".format(name)):
        transformer.transform(X)


def _check_transformer(name, transformer_orig, X, y):
    if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _IS_32BIT:
        # Those transformers yield non-deterministic output when executed on
        # a 32bit Python. The same transformers are stable on 64bit Python.
        # FIXME: try to isolate a minimalistic reproduction case only depending
        # on numpy & scipy and/or maybe generate a test dataset that does not
        # cause such unstable behaviors.
        msg = name + ' is non deterministic on 32bit Python'
        raise SkipTest(msg)
    n_samples, n_features = np.asarray(X).shape
    transformer = clone(transformer_orig)
    set_random_state(transformer)

    # fit

    if name in CROSS_DECOMPOSITION:
        y_ = np.c_[y, y]
        y_[::2, 1] *= 2
    else:
        y_ = y

    transformer.fit(X, y_)
    # fit_transform method should work on non fitted estimator
    transformer_clone = clone(transformer)
    X_pred = transformer_clone.fit_transform(X, y=y_)

    if isinstance(X_pred, tuple):
        for x_pred in X_pred:
            assert_equal(x_pred.shape[0], n_samples)
    else:
        # check for consistent n_samples
        assert_equal(X_pred.shape[0], n_samples)

    if hasattr(transformer, 'transform'):
        if name in CROSS_DECOMPOSITION:
            X_pred2 = transformer.transform(X, y_)
            X_pred3 = transformer.fit_transform(X, y=y_)
        else:
            X_pred2 = transformer.transform(X)
            X_pred3 = transformer.fit_transform(X, y=y_)
        if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple):
            for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3):
                assert_allclose_dense_sparse(
                    x_pred, x_pred2, atol=1e-2,
                    err_msg="fit_transform and transform outcomes "
                            "not consistent in %s"
                    % transformer)
                assert_allclose_dense_sparse(
                    x_pred, x_pred3, atol=1e-2,
                    err_msg="consecutive fit_transform outcomes "
                            "not consistent in %s"
                    % transformer)
        else:
            assert_allclose_dense_sparse(
                X_pred, X_pred2,
                err_msg="fit_transform and transform outcomes "
                        "not consistent in %s"
                % transformer, atol=1e-2)
            assert_allclose_dense_sparse(
                X_pred, X_pred3, atol=1e-2,
                err_msg="consecutive fit_transform outcomes "
                        "not consistent in %s"
                % transformer)
            assert_equal(_num_samples(X_pred2), n_samples)
            assert_equal(_num_samples(X_pred3), n_samples)

        # raises error on malformed input for transform
        if hasattr(X, 'T'):
            # If it's not an array, it does not have a 'T' property
            with assert_raises(ValueError, msg="The transformer {} does "
                               "not raise an error when the number of "
                               "features in transform is different from"
                               " the number of features in "
                               "fit.".format(name)):
                transformer.transform(X.T)


@ignore_warnings
def check_pipeline_consistency(name, estimator_orig):
    if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _IS_32BIT:
        # Those transformers yield non-deterministic output when executed on
        # a 32bit Python. The same transformers are stable on 64bit Python.
        # FIXME: try to isolate a minimalistic reproduction case only depending
        # scipy and/or maybe generate a test dataset that does not
        # cause such unstable behaviors.
        msg = name + ' is non deterministic on 32bit Python'
        raise SkipTest(msg)

    # check that make_pipeline(est) gives same score as est
    X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
                      random_state=0, n_features=2, cluster_std=0.1)
    X -= X.min()
    X = pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)
    set_random_state(estimator)
    pipeline = make_pipeline(estimator)
    estimator.fit(X, y)
    pipeline.fit(X, y)

    funcs = ["score", "fit_transform"]

    for func_name in funcs:
        func = getattr(estimator, func_name, None)
        if func is not None:
            func_pipeline = getattr(pipeline, func_name)
            result = func(X, y)
            result_pipe = func_pipeline(X, y)
            assert_allclose_dense_sparse(result, result_pipe)


@ignore_warnings
def check_fit_score_takes_y(name, estimator_orig):
    # check that all estimators accept an optional y
    # in fit and score so they can be used in pipelines
    rnd = np.random.RandomState(0)
    X = rnd.uniform(size=(10, 3))
    X = pairwise_estimator_convert_X(X, estimator_orig)
    y = np.arange(10) % 3
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)
    set_random_state(estimator)

    funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"]
    for func_name in funcs:
        func = getattr(estimator, func_name, None)
        if func is not None:
            func(X, y)
            args = [p.name for p in signature(func).parameters.values()]
            if args[0] == "self":
                # if_delegate_has_method makes methods into functions
                # with an explicit "self", so need to shift arguments
                args = args[1:]
            assert_true(args[1] in ["y", "Y"],
                        "Expected y or Y as second argument for method "
                        "%s of %s. Got arguments: %r."
                        % (func_name, type(estimator).__name__, args))


@ignore_warnings
def check_estimators_dtypes(name, estimator_orig):
    rnd = np.random.RandomState(0)
    X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32)
    X_train_32 = pairwise_estimator_convert_X(X_train_32, estimator_orig)
    X_train_64 = X_train_32.astype(np.float64)
    X_train_int_64 = X_train_32.astype(np.int64)
    X_train_int_32 = X_train_32.astype(np.int32)
    y = X_train_int_64[:, 0]
    y = multioutput_estimator_convert_y_2d(estimator_orig, y)

    methods = ["predict", "transform", "decision_function", "predict_proba"]

    for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]:
        estimator = clone(estimator_orig)
        set_random_state(estimator, 1)
        estimator.fit(X_train, y)

        for method in methods:
            if hasattr(estimator, method):
                getattr(estimator, method)(X_train)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_empty_data_messages(name, estimator_orig):
    e = clone(estimator_orig)
    set_random_state(e, 1)

    X_zero_samples = np.empty(0).reshape(0, 3)
    # The precise message can change depending on whether X or y is
    # validated first. Let us test the type of exception only:
    with assert_raises(ValueError, msg="The estimator {} does not"
                       " raise an error when an empty data is used "
                       "to train. Perhaps use "
                       "check_array in train.".format(name)):
        e.fit(X_zero_samples, [])

    X_zero_features = np.empty(0).reshape(3, 0)
    # the following y should be accepted by both classifiers and regressors
    # and ignored by unsupervised models
    y = multioutput_estimator_convert_y_2d(e, np.array([1, 0, 1]))
    msg = (r"0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* "
           "is required.")
    assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y)


@ignore_warnings(category=DeprecationWarning)
def check_estimators_nan_inf(name, estimator_orig):
    # Checks that Estimator X's do not contain NaN or inf.
    rnd = np.random.RandomState(0)
    X_train_finite = pairwise_estimator_convert_X(rnd.uniform(size=(10, 3)),
                                                  estimator_orig)
    X_train_nan = rnd.uniform(size=(10, 3))
    X_train_nan[0, 0] = np.nan
    X_train_inf = rnd.uniform(size=(10, 3))
    X_train_inf[0, 0] = np.inf
    y = np.ones(10)
    y[:5] = 0
    y = multioutput_estimator_convert_y_2d(estimator_orig, y)
    error_string_fit = "Estimator doesn't check for NaN and inf in fit."
    error_string_predict = ("Estimator doesn't check for NaN and inf in"
                            " predict.")
    error_string_transform = ("Estimator doesn't check for NaN and inf in"
                              " transform.")
    for X_train in [X_train_nan, X_train_inf]:
        # catch deprecation warnings
        with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
            estimator = clone(estimator_orig)
            set_random_state(estimator, 1)
            # try to fit
            try:
                estimator.fit(X_train, y)
            except ValueError as e:
                if 'inf' not in repr(e) and 'NaN' not in repr(e):
                    print(error_string_fit, estimator, e)
                    traceback.print_exc(file=sys.stdout)
                    raise e
            except Exception as exc:
                print(error_string_fit, estimator, exc)
                traceback.print_exc(file=sys.stdout)
                raise exc
            else:
                raise AssertionError(error_string_fit, estimator)
            # actually fit
            estimator.fit(X_train_finite, y)

            # predict
            if hasattr(estimator, "predict"):
                try:
                    estimator.predict(X_train)
                except ValueError as e:
                    if 'inf' not in repr(e) and 'NaN' not in repr(e):
                        print(error_string_predict, estimator, e)
                        traceback.print_exc(file=sys.stdout)
                        raise e
                except Exception as exc:
                    print(error_string_predict, estimator, exc)
                    traceback.print_exc(file=sys.stdout)
                else:
                    raise AssertionError(error_string_predict, estimator)

            # transform
            if hasattr(estimator, "transform"):
                try:
                    estimator.transform(X_train)
                except ValueError as e:
                    if 'inf' not in repr(e) and 'NaN' not in repr(e):
                        print(error_string_transform, estimator, e)
                        traceback.print_exc(file=sys.stdout)
                        raise e
                except Exception as exc:
                    print(error_string_transform, estimator, exc)
                    traceback.print_exc(file=sys.stdout)
                else:
                    raise AssertionError(error_string_transform, estimator)


@ignore_warnings
def check_estimators_pickle(name, estimator_orig):
    """Test that we can pickle all estimators"""
    check_methods = ["predict", "transform", "decision_function",
                     "predict_proba"]

    X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
                      random_state=0, n_features=2, cluster_std=0.1)

    # some estimators can't do features less than 0
    X -= X.min()
    X = pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel)

    # include NaN values when the estimator should deal with them
    if name in ALLOW_NAN:
        # set randomly 10 elements to np.nan
        rng = np.random.RandomState(42)
        mask = rng.choice(X.size, 10, replace=False)
        X.reshape(-1)[mask] = np.nan

    estimator = clone(estimator_orig)

    # some estimators only take multioutputs
    y = multioutput_estimator_convert_y_2d(estimator, y)

    set_random_state(estimator)
    estimator.fit(X, y)

    result = dict()
    for method in check_methods:
        if hasattr(estimator, method):
            result[method] = getattr(estimator, method)(X)

    # pickle and unpickle!
    pickled_estimator = pickle.dumps(estimator)
    if estimator.__module__.startswith('sklearn.'):
        assert b"version" in pickled_estimator
    unpickled_estimator = pickle.loads(pickled_estimator)

    result = dict()
    for method in check_methods:
        if hasattr(estimator, method):
            result[method] = getattr(estimator, method)(X)

    for method in result:
        unpickled_result = getattr(unpickled_estimator, method)(X)
        assert_allclose_dense_sparse(result[method], unpickled_result)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_partial_fit_n_features(name, estimator_orig):
    # check if number of features changes between calls to partial_fit.
    if not hasattr(estimator_orig, 'partial_fit'):
        return
    estimator = clone(estimator_orig)
    X, y = make_blobs(n_samples=50, random_state=1)
    X -= X.min()

    try:
        if is_classifier(estimator):
            classes = np.unique(y)
            estimator.partial_fit(X, y, classes=classes)
        else:
            estimator.partial_fit(X, y)
    except NotImplementedError:
        return

    with assert_raises(ValueError,
                       msg="The estimator {} does not raise an"
                           " error when the number of features"
                           " changes between calls to "
                           "partial_fit.".format(name)):
        estimator.partial_fit(X[:, :-1], y)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_clustering(name, clusterer_orig, readonly_memmap=False):
    clusterer = clone(clusterer_orig)
    X, y = make_blobs(n_samples=50, random_state=1)
    X, y = shuffle(X, y, random_state=7)
    X = StandardScaler().fit_transform(X)
    rng = np.random.RandomState(7)
    X_noise = np.concatenate([X, rng.uniform(low=-3, high=3, size=(5, 2))])

    if readonly_memmap:
        X, y, X_noise = create_memmap_backed_data([X, y, X_noise])

    n_samples, n_features = X.shape
    # catch deprecation and neighbors warnings
    if hasattr(clusterer, "n_clusters"):
        clusterer.set_params(n_clusters=3)
    set_random_state(clusterer)
    if name == 'AffinityPropagation':
        clusterer.set_params(preference=-100)
        clusterer.set_params(max_iter=100)

    # fit
    clusterer.fit(X)
    # with lists
    clusterer.fit(X.tolist())

    pred = clusterer.labels_
    assert_equal(pred.shape, (n_samples,))
    assert_greater(adjusted_rand_score(pred, y), 0.4)
    # fit another time with ``fit_predict`` and compare results
    if name == 'SpectralClustering':
        # there is no way to make Spectral clustering deterministic :(
        return
    set_random_state(clusterer)
    with warnings.catch_warnings(record=True):
        pred2 = clusterer.fit_predict(X)
    assert_array_equal(pred, pred2)

    # fit_predict(X) and labels_ should be of type int
    assert_in(pred.dtype, [np.dtype('int32'), np.dtype('int64')])
    assert_in(pred2.dtype, [np.dtype('int32'), np.dtype('int64')])

    # Add noise to X to test the possible values of the labels
    labels = clusterer.fit_predict(X_noise)

    # There should be at least one sample in every cluster. Equivalently
    # labels_ should contain all the consecutive values between its
    # min and its max.
    labels_sorted = np.unique(labels)
    assert_array_equal(labels_sorted, np.arange(labels_sorted[0],
                                                labels_sorted[-1] + 1))

    # Labels are expected to start at 0 (no noise) or -1 (if noise)
    assert labels_sorted[0] in [0, -1]
    # Labels should be less than n_clusters - 1
    if hasattr(clusterer, 'n_clusters'):
        n_clusters = getattr(clusterer, 'n_clusters')
        assert_greater_equal(n_clusters - 1, labels_sorted[-1])
    # else labels should be less than max(labels_) which is necessarily true


@ignore_warnings(category=DeprecationWarning)
def check_clusterer_compute_labels_predict(name, clusterer_orig):
    """Check that predict is invariant of compute_labels"""
    X, y = make_blobs(n_samples=20, random_state=0)
    clusterer = clone(clusterer_orig)

    if hasattr(clusterer, "compute_labels"):
        # MiniBatchKMeans
        if hasattr(clusterer, "random_state"):
            clusterer.set_params(random_state=0)

        X_pred1 = clusterer.fit(X).predict(X)
        clusterer.set_params(compute_labels=False)
        X_pred2 = clusterer.fit(X).predict(X)
        assert_array_equal(X_pred1, X_pred2)


@ignore_warnings(category=DeprecationWarning)
def check_classifiers_one_label(name, classifier_orig):
    error_string_fit = "Classifier can't train when only one class is present."
    error_string_predict = ("Classifier can't predict when only one class is "
                            "present.")
    rnd = np.random.RandomState(0)
    X_train = rnd.uniform(size=(10, 3))
    X_test = rnd.uniform(size=(10, 3))
    y = np.ones(10)
    # catch deprecation warnings
    with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
        classifier = clone(classifier_orig)
        # try to fit
        try:
            classifier.fit(X_train, y)
        except ValueError as e:
            if 'class' not in repr(e):
                print(error_string_fit, classifier, e)
                traceback.print_exc(file=sys.stdout)
                raise e
            else:
                return
        except Exception as exc:
            print(error_string_fit, classifier, exc)
            traceback.print_exc(file=sys.stdout)
            raise exc
        # predict
        try:
            assert_array_equal(classifier.predict(X_test), y)
        except Exception as exc:
            print(error_string_predict, classifier, exc)
            raise exc


@ignore_warnings  # Warnings are raised by decision function
def check_classifiers_train(name, classifier_orig, readonly_memmap=False):
    X_m, y_m = make_blobs(n_samples=300, random_state=0)
    X_m, y_m = shuffle(X_m, y_m, random_state=7)
    X_m = StandardScaler().fit_transform(X_m)
    # generate binary problem from multi-class one
    y_b = y_m[y_m != 2]
    X_b = X_m[y_m != 2]

    if name in ['BernoulliNB', 'MultinomialNB', 'ComplementNB']:
        X_m -= X_m.min()
        X_b -= X_b.min()

    if readonly_memmap:
        X_m, y_m, X_b, y_b = create_memmap_backed_data([X_m, y_m, X_b, y_b])

    for (X, y) in [(X_m, y_m), (X_b, y_b)]:
        classes = np.unique(y)
        n_classes = len(classes)
        n_samples, n_features = X.shape
        classifier = clone(classifier_orig)
        X = pairwise_estimator_convert_X(X, classifier_orig)
        set_random_state(classifier)
        # raises error on malformed input for fit
        with assert_raises(ValueError, msg="The classifier {} does not"
                           " raise an error when incorrect/malformed input "
                           "data for fit is passed. The number of training "
                           "examples is not the same as the number of labels."
                           " Perhaps use check_X_y in fit.".format(name)):
            classifier.fit(X, y[:-1])

        # fit
        classifier.fit(X, y)
        # with lists
        classifier.fit(X.tolist(), y.tolist())
        assert hasattr(classifier, "classes_")
        y_pred = classifier.predict(X)
        assert_equal(y_pred.shape, (n_samples,))
        # training set performance
        if name not in ['BernoulliNB', 'MultinomialNB', 'ComplementNB']:
            assert_greater(accuracy_score(y, y_pred), 0.83)

        # raises error on malformed input for predict
        if _is_pairwise(classifier):
            with assert_raises(ValueError, msg="The classifier {} does not"
                               " raise an error when shape of X"
                               "in predict is not equal to (n_test_samples,"
                               "n_training_samples)".format(name)):
                classifier.predict(X.reshape(-1, 1))
        else:
            with assert_raises(ValueError, msg="The classifier {} does not"
                               " raise an error when the number of features "
                               "in predict is different from the number of"
                               " features in fit.".format(name)):
                classifier.predict(X.T)
        if hasattr(classifier, "decision_function"):
            try:
                # decision_function agrees with predict
                decision = classifier.decision_function(X)
                if n_classes == 2:
                    assert_equal(decision.shape, (n_samples,))
                    dec_pred = (decision.ravel() > 0).astype(np.int)
                    assert_array_equal(dec_pred, y_pred)
                if (n_classes == 3 and
                        # 1on1 of LibSVM works differently
                        not isinstance(classifier, BaseLibSVM)):
                    assert_equal(decision.shape, (n_samples, n_classes))
                    assert_array_equal(np.argmax(decision, axis=1), y_pred)

                # raises error on malformed input for decision_function
                if _is_pairwise(classifier):
                    with assert_raises(ValueError, msg="The classifier {} does"
                                       " not raise an error when the  "
                                       "shape of X in decision_function is "
                                       "not equal to (n_test_samples, "
                                       "n_training_samples) in fit."
                                       .format(name)):
                        classifier.decision_function(X.reshape(-1, 1))
                else:
                    with assert_raises(ValueError, msg="The classifier {} does"
                                       " not raise an error when the number "
                                       "of features in decision_function is "
                                       "different from the number of features"
                                       " in fit.".format(name)):
                        classifier.decision_function(X.T)
            except NotImplementedError:
                pass
        if hasattr(classifier, "predict_proba"):
            # predict_proba agrees with predict
            y_prob = classifier.predict_proba(X)
            assert_equal(y_prob.shape, (n_samples, n_classes))
            assert_array_equal(np.argmax(y_prob, axis=1), y_pred)
            # check that probas for all classes sum to one
            assert_allclose(np.sum(y_prob, axis=1), np.ones(n_samples))
            # raises error on malformed input for predict_proba
            if _is_pairwise(classifier_orig):
                with assert_raises(ValueError, msg="The classifier {} does not"
                                   " raise an error when the shape of X"
                                   "in predict_proba is not equal to "
                                   "(n_test_samples, n_training_samples)."
                                   .format(name)):
                    classifier.predict_proba(X.reshape(-1, 1))
            else:
                with assert_raises(ValueError, msg="The classifier {} does not"
                                   " raise an error when the number of "
                                   "features in predict_proba is different "
                                   "from the number of features in fit."
                                   .format(name)):
                    classifier.predict_proba(X.T)
            if hasattr(classifier, "predict_log_proba"):
                # predict_log_proba is a transformation of predict_proba
                y_log_prob = classifier.predict_log_proba(X)
                assert_allclose(y_log_prob, np.log(y_prob), 8, atol=1e-9)
                assert_array_equal(np.argsort(y_log_prob), np.argsort(y_prob))


def check_outliers_train(name, estimator_orig, readonly_memmap=True):
    X, _ = make_blobs(n_samples=300, random_state=0)
    X = shuffle(X, random_state=7)

    if readonly_memmap:
        X = create_memmap_backed_data(X)

    n_samples, n_features = X.shape
    estimator = clone(estimator_orig)
    set_random_state(estimator)

    # fit
    estimator.fit(X)
    # with lists
    estimator.fit(X.tolist())

    y_pred = estimator.predict(X)
    assert y_pred.shape == (n_samples,)
    assert y_pred.dtype.kind == 'i'
    assert_array_equal(np.unique(y_pred), np.array([-1, 1]))

    decision = estimator.decision_function(X)
    assert decision.dtype == np.dtype('float')

    score = estimator.score_samples(X)
    assert score.dtype == np.dtype('float')

    # raises error on malformed input for predict
    assert_raises(ValueError, estimator.predict, X.T)

    # decision_function agrees with predict
    decision = estimator.decision_function(X)
    assert decision.shape == (n_samples,)
    dec_pred = (decision >= 0).astype(np.int)
    dec_pred[dec_pred == 0] = -1
    assert_array_equal(dec_pred, y_pred)

    # raises error on malformed input for decision_function
    assert_raises(ValueError, estimator.decision_function, X.T)

    # decision_function is a translation of score_samples
    y_scores = estimator.score_samples(X)
    assert y_scores.shape == (n_samples,)
    y_dec = y_scores - estimator.offset_
    assert_allclose(y_dec, decision)

    # raises error on malformed input for score_samples
    assert_raises(ValueError, estimator.score_samples, X.T)

    # contamination parameter (not for OneClassSVM which has the nu parameter)
    if (hasattr(estimator, 'contamination')
            and not hasattr(estimator, 'novelty')):
        # proportion of outliers equal to contamination parameter when not
        # set to 'auto'. This is true for the training set and cannot thus be
        # checked as follows for estimators with a novelty parameter such as
        # LocalOutlierFactor (tested in check_outliers_fit_predict)
        contamination = 0.1
        estimator.set_params(contamination=contamination)
        estimator.fit(X)
        y_pred = estimator.predict(X)
        assert_almost_equal(np.mean(y_pred != 1), contamination)

        # raises error when contamination is a scalar and not in [0,1]
        for contamination in [-0.5, 2.3]:
            estimator.set_params(contamination=contamination)
            assert_raises(ValueError, estimator.fit, X)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_fit_returns_self(name, estimator_orig,
                                      readonly_memmap=False):
    """Check if self is returned when calling fit"""
    X, y = make_blobs(random_state=0, n_samples=9, n_features=4)
    # some want non-negative input
    X -= X.min()
    X = pairwise_estimator_convert_X(X, estimator_orig)

    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    if readonly_memmap:
        X, y = create_memmap_backed_data([X, y])

    set_random_state(estimator)
    assert estimator.fit(X, y) is estimator


@ignore_warnings
def check_estimators_unfitted(name, estimator_orig):
    """Check that predict raises an exception in an unfitted estimator.

    Unfitted estimators should raise either AttributeError or ValueError.
    The specific exception type NotFittedError inherits from both and can
    therefore be adequately raised for that purpose.
    """

    # Common test for Regressors, Classifiers and Outlier detection estimators
    X, y = _boston_subset()

    estimator = clone(estimator_orig)

    msg = "fit"

    if hasattr(estimator, 'predict'):
        assert_raise_message((AttributeError, ValueError), msg,
                             estimator.predict, X)

    if hasattr(estimator, 'decision_function'):
        assert_raise_message((AttributeError, ValueError), msg,
                             estimator.decision_function, X)

    if hasattr(estimator, 'predict_proba'):
        assert_raise_message((AttributeError, ValueError), msg,
                             estimator.predict_proba, X)

    if hasattr(estimator, 'predict_log_proba'):
        assert_raise_message((AttributeError, ValueError), msg,
                             estimator.predict_log_proba, X)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_supervised_y_2d(name, estimator_orig):
    if "MultiTask" in name:
        # These only work on 2d, so this test makes no sense
        return
    rnd = np.random.RandomState(0)
    X = pairwise_estimator_convert_X(rnd.uniform(size=(10, 3)), estimator_orig)
    y = np.arange(10) % 3
    estimator = clone(estimator_orig)
    set_random_state(estimator)
    # fit
    estimator.fit(X, y)
    y_pred = estimator.predict(X)

    set_random_state(estimator)
    # Check that when a 2D y is given, a DataConversionWarning is
    # raised
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", DataConversionWarning)
        warnings.simplefilter("ignore", RuntimeWarning)
        estimator.fit(X, y[:, np.newaxis])
    y_pred_2d = estimator.predict(X)
    msg = "expected 1 DataConversionWarning, got: %s" % (
        ", ".join([str(w_x) for w_x in w]))
    if name not in MULTI_OUTPUT:
        # check that we warned if we don't support multi-output
        assert_greater(len(w), 0, msg)
        assert_true("DataConversionWarning('A column-vector y"
                    " was passed when a 1d array was expected" in msg)
    assert_allclose(y_pred.ravel(), y_pred_2d.ravel())


@ignore_warnings
def check_classifiers_predictions(X, y, name, classifier_orig):
    classes = np.unique(y)
    classifier = clone(classifier_orig)
    if name == 'BernoulliNB':
        X = X > X.mean()
    set_random_state(classifier)

    classifier.fit(X, y)
    y_pred = classifier.predict(X)

    if hasattr(classifier, "decision_function"):
        decision = classifier.decision_function(X)
        n_samples, n_features = X.shape
        assert isinstance(decision, np.ndarray)
        if len(classes) == 2:
            dec_pred = (decision.ravel() > 0).astype(np.int)
            dec_exp = classifier.classes_[dec_pred]
            assert_array_equal(dec_exp, y_pred,
                               err_msg="decision_function does not match "
                               "classifier for %r: expected '%s', got '%s'" %
                               (classifier, ", ".join(map(str, dec_exp)),
                                ", ".join(map(str, y_pred))))
        elif getattr(classifier, 'decision_function_shape', 'ovr') == 'ovr':
            decision_y = np.argmax(decision, axis=1).astype(int)
            y_exp = classifier.classes_[decision_y]
            assert_array_equal(y_exp, y_pred,
                               err_msg="decision_function does not match "
                               "classifier for %r: expected '%s', got '%s'" %
                               (classifier, ", ".join(map(str, y_exp)),
                                ", ".join(map(str, y_pred))))

    # training set performance
    if name != "ComplementNB":
        # This is a pathological data set for ComplementNB.
        # For some specific cases 'ComplementNB' predicts less classes
        # than expected
        assert_array_equal(np.unique(y), np.unique(y_pred))
    assert_array_equal(classes, classifier.classes_,
                       err_msg="Unexpected classes_ attribute for %r: "
                       "expected '%s', got '%s'" %
                       (classifier, ", ".join(map(str, classes)),
                        ", ".join(map(str, classifier.classes_))))


def choose_check_classifiers_labels(name, y, y_names):
    return y if name in ["LabelPropagation", "LabelSpreading"] else y_names


def check_classifiers_classes(name, classifier_orig):
    X_multiclass, y_multiclass = make_blobs(n_samples=30, random_state=0,
                                            cluster_std=0.1)
    X_multiclass, y_multiclass = shuffle(X_multiclass, y_multiclass,
                                         random_state=7)
    X_multiclass = StandardScaler().fit_transform(X_multiclass)
    # We need to make sure that we have non negative data, for things
    # like NMF
    X_multiclass -= X_multiclass.min() - .1

    X_binary = X_multiclass[y_multiclass != 2]
    y_binary = y_multiclass[y_multiclass != 2]

    X_multiclass = pairwise_estimator_convert_X(X_multiclass, classifier_orig)
    X_binary = pairwise_estimator_convert_X(X_binary, classifier_orig)

    labels_multiclass = ["one", "two", "three"]
    labels_binary = ["one", "two"]

    y_names_multiclass = np.take(labels_multiclass, y_multiclass)
    y_names_binary = np.take(labels_binary, y_binary)

    for X, y, y_names in [(X_multiclass, y_multiclass, y_names_multiclass),
                          (X_binary, y_binary, y_names_binary)]:
        for y_names_i in [y_names, y_names.astype('O')]:
            y_ = choose_check_classifiers_labels(name, y, y_names_i)
            check_classifiers_predictions(X, y_, name, classifier_orig)

    labels_binary = [-1, 1]
    y_names_binary = np.take(labels_binary, y_binary)
    y_binary = choose_check_classifiers_labels(name, y_binary, y_names_binary)
    check_classifiers_predictions(X_binary, y_binary, name, classifier_orig)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_regressors_int(name, regressor_orig):
    X, _ = _boston_subset()
    X = pairwise_estimator_convert_X(X[:50], regressor_orig)
    rnd = np.random.RandomState(0)
    y = rnd.randint(3, size=X.shape[0])
    y = multioutput_estimator_convert_y_2d(regressor_orig, y)
    rnd = np.random.RandomState(0)
    # separate estimators to control random seeds
    regressor_1 = clone(regressor_orig)
    regressor_2 = clone(regressor_orig)
    set_random_state(regressor_1)
    set_random_state(regressor_2)

    if name in CROSS_DECOMPOSITION:
        y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
        y_ = y_.T
    else:
        y_ = y

    # fit
    regressor_1.fit(X, y_)
    pred1 = regressor_1.predict(X)
    regressor_2.fit(X, y_.astype(np.float))
    pred2 = regressor_2.predict(X)
    assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_regressors_train(name, regressor_orig, readonly_memmap=False):
    X, y = _boston_subset()
    X = pairwise_estimator_convert_X(X, regressor_orig)
    y = StandardScaler().fit_transform(y.reshape(-1, 1))  # X is already scaled
    y = y.ravel()
    regressor = clone(regressor_orig)
    y = multioutput_estimator_convert_y_2d(regressor, y)
    if name in CROSS_DECOMPOSITION:
        rnd = np.random.RandomState(0)
        y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
        y_ = y_.T
    else:
        y_ = y

    if readonly_memmap:
        X, y, y_ = create_memmap_backed_data([X, y, y_])

    if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'):
        # linear regressors need to set alpha, but not generalized CV ones
        regressor.alpha = 0.01
    if name == 'PassiveAggressiveRegressor':
        regressor.C = 0.01

    # raises error on malformed input for fit
    with assert_raises(ValueError, msg="The classifier {} does not"
                       " raise an error when incorrect/malformed input "
                       "data for fit is passed. The number of training "
                       "examples is not the same as the number of "
                       "labels. Perhaps use check_X_y in fit.".format(name)):
        regressor.fit(X, y[:-1])
    # fit
    set_random_state(regressor)
    regressor.fit(X, y_)
    regressor.fit(X.tolist(), y_.tolist())
    y_pred = regressor.predict(X)
    assert_equal(y_pred.shape, y_.shape)

    # TODO: find out why PLS and CCA fail. RANSAC is random
    # and furthermore assumes the presence of outliers, hence
    # skipped
    if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'):
        assert_greater(regressor.score(X, y_), 0.5)


@ignore_warnings
def check_regressors_no_decision_function(name, regressor_orig):
    # checks whether regressors have decision_function or predict_proba
    rng = np.random.RandomState(0)
    X = rng.normal(size=(10, 4))
    regressor = clone(regressor_orig)
    y = multioutput_estimator_convert_y_2d(regressor, X[:, 0])

    if hasattr(regressor, "n_components"):
        # FIXME CCA, PLS is not robust to rank 1 effects
        regressor.n_components = 1

    regressor.fit(X, y)
    funcs = ["decision_function", "predict_proba", "predict_log_proba"]
    for func_name in funcs:
        func = getattr(regressor, func_name, None)
        if func is None:
            # doesn't have function
            continue
        # has function. Should raise deprecation warning
        msg = func_name
        assert_warns_message(DeprecationWarning, msg, func, X)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_class_weight_classifiers(name, classifier_orig):
    if name == "NuSVC":
        # the sparse version has a parameter that doesn't do anything
        raise SkipTest("Not testing NuSVC class weight as it is ignored.")
    if name.endswith("NB"):
        # NaiveBayes classifiers have a somewhat different interface.
        # FIXME SOON!
        raise SkipTest

    for n_centers in [2, 3]:
        # create a very noisy dataset
        X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20)
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,
                                                            random_state=0)

        # can't use gram_if_pairwise() here, setting up gram matrix manually
        if _is_pairwise(classifier_orig):
            X_test = rbf_kernel(X_test, X_train)
            X_train = rbf_kernel(X_train, X_train)

        n_centers = len(np.unique(y_train))

        if n_centers == 2:
            class_weight = {0: 1000, 1: 0.0001}
        else:
            class_weight = {0: 1000, 1: 0.0001, 2: 0.0001}

        classifier = clone(classifier_orig).set_params(
            class_weight=class_weight)
        if hasattr(classifier, "n_iter"):
            classifier.set_params(n_iter=100)
        if hasattr(classifier, "max_iter"):
            classifier.set_params(max_iter=1000)
        if hasattr(classifier, "min_weight_fraction_leaf"):
            classifier.set_params(min_weight_fraction_leaf=0.01)

        set_random_state(classifier)
        classifier.fit(X_train, y_train)
        y_pred = classifier.predict(X_test)
        # XXX: Generally can use 0.89 here. On Windows, LinearSVC gets
        #      0.88 (Issue #9111)
        assert_greater(np.mean(y_pred == 0), 0.87)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_class_weight_balanced_classifiers(name, classifier_orig, X_train,
                                            y_train, X_test, y_test, weights):
    classifier = clone(classifier_orig)
    if hasattr(classifier, "n_iter"):
        classifier.set_params(n_iter=100)
    if hasattr(classifier, "max_iter"):
        classifier.set_params(max_iter=1000)

    set_random_state(classifier)
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)

    classifier.set_params(class_weight='balanced')
    classifier.fit(X_train, y_train)
    y_pred_balanced = classifier.predict(X_test)
    assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'),
                   f1_score(y_test, y_pred, average='weighted'))


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_class_weight_balanced_linear_classifier(name, Classifier):
    """Test class weights with non-contiguous class labels."""
    # this is run on classes, not instances, though this should be changed
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                  [1.0, 1.0], [1.0, 0.0]])
    y = np.array([1, 1, 1, -1, -1])

    classifier = Classifier()

    if hasattr(classifier, "n_iter"):
        # This is a very small dataset, default n_iter are likely to prevent
        # convergence
        classifier.set_params(n_iter=1000)
    if hasattr(classifier, "max_iter"):
        classifier.set_params(max_iter=1000)
    set_random_state(classifier)

    # Let the model compute the class frequencies
    classifier.set_params(class_weight='balanced')
    coef_balanced = classifier.fit(X, y).coef_.copy()

    # Count each label occurrence to reweight manually
    n_samples = len(y)
    n_classes = float(len(np.unique(y)))

    class_weight = {1: n_samples / (np.sum(y == 1) * n_classes),
                    -1: n_samples / (np.sum(y == -1) * n_classes)}
    classifier.set_params(class_weight=class_weight)
    coef_manual = classifier.fit(X, y).coef_.copy()

    assert_allclose(coef_balanced, coef_manual)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_overwrite_params(name, estimator_orig):
    X, y = make_blobs(random_state=0, n_samples=9)
    # some want non-negative input
    X -= X.min()
    X = pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel)
    estimator = clone(estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator, y)

    set_random_state(estimator)

    # Make a physical copy of the original estimator parameters before fitting.
    params = estimator.get_params()
    original_params = deepcopy(params)

    # Fit the model
    estimator.fit(X, y)

    # Compare the state of the model parameters with the original parameters
    new_params = estimator.get_params()
    for param_name, original_value in original_params.items():
        new_value = new_params[param_name]

        # We should never change or mutate the internal state of input
        # parameters by default. To check this we use the joblib.hash function
        # that introspects recursively any subobjects to compute a checksum.
        # The only exception to this rule of immutable constructor parameters
        # is possible RandomState instance but in this check we explicitly
        # fixed the random_state params recursively to be integer seeds.
        assert_equal(_joblib.hash(new_value), _joblib.hash(original_value),
                     "Estimator %s should not change or mutate "
                     " the parameter %s from %s to %s during fit."
                     % (name, param_name, original_value, new_value))


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_no_attributes_set_in_init(name, estimator):
    """Check setting during init. """

    if hasattr(type(estimator).__init__, "deprecated_original"):
        return

    init_params = _get_args(type(estimator).__init__)
    if IS_PYPY:
        # __init__ signature has additional objects in PyPy
        for key in ['obj']:
            if key in init_params:
                init_params.remove(key)
    parents_init_params = [param for params_parent in
                           (_get_args(parent) for parent in
                            type(estimator).__mro__)
                           for param in params_parent]

    # Test for no setting apart from parameters during init
    invalid_attr = (set(vars(estimator)) - set(init_params)
                    - set(parents_init_params))
    assert_false(invalid_attr,
                 "Estimator %s should not set any attribute apart"
                 " from parameters during init. Found attributes %s."
                 % (name, sorted(invalid_attr)))
    # Ensure that each parameter is set in init
    invalid_attr = (set(init_params) - set(vars(estimator))
                    - set(["self"]))
    assert_false(invalid_attr,
                 "Estimator %s should store all parameters"
                 " as an attribute during init. Did not find "
                 "attributes %s." % (name, sorted(invalid_attr)))


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_sparsify_coefficients(name, estimator_orig):
    X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1],
                  [-1, -2], [2, 2], [-2, -2]])
    y = [1, 1, 1, 2, 2, 2, 3, 3, 3]
    est = clone(estimator_orig)

    est.fit(X, y)
    pred_orig = est.predict(X)

    # test sparsify with dense inputs
    est.sparsify()
    assert sparse.issparse(est.coef_)
    pred = est.predict(X)
    assert_array_equal(pred, pred_orig)

    # pickle and unpickle with sparse coef_
    est = pickle.loads(pickle.dumps(est))
    assert sparse.issparse(est.coef_)
    pred = est.predict(X)
    assert_array_equal(pred, pred_orig)


@ignore_warnings(category=DeprecationWarning)
def check_classifier_data_not_an_array(name, estimator_orig):
    X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]])
    X = pairwise_estimator_convert_X(X, estimator_orig)
    y = [1, 1, 1, 2, 2, 2]
    y = multioutput_estimator_convert_y_2d(estimator_orig, y)
    check_estimators_data_not_an_array(name, estimator_orig, X, y)


@ignore_warnings(category=DeprecationWarning)
def check_regressor_data_not_an_array(name, estimator_orig):
    X, y = _boston_subset(n_samples=50)
    X = pairwise_estimator_convert_X(X, estimator_orig)
    y = multioutput_estimator_convert_y_2d(estimator_orig, y)
    check_estimators_data_not_an_array(name, estimator_orig, X, y)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_data_not_an_array(name, estimator_orig, X, y):
    if name in CROSS_DECOMPOSITION:
        raise SkipTest("Skipping check_estimators_data_not_an_array "
                       "for cross decomposition module as estimators "
                       "are not deterministic.")
    # separate estimators to control random seeds
    estimator_1 = clone(estimator_orig)
    estimator_2 = clone(estimator_orig)
    set_random_state(estimator_1)
    set_random_state(estimator_2)

    y_ = NotAnArray(np.asarray(y))
    X_ = NotAnArray(np.asarray(X))

    # fit
    estimator_1.fit(X_, y_)
    pred1 = estimator_1.predict(X_)
    estimator_2.fit(X, y)
    pred2 = estimator_2.predict(X)
    assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)


def check_parameters_default_constructible(name, Estimator):
    # this check works on classes, not instances
    classifier = LinearDiscriminantAnalysis()
    # test default-constructibility
    # get rid of deprecation warnings
    with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
        if name in META_ESTIMATORS:
            estimator = Estimator(classifier)
        else:
            estimator = Estimator()
        # test cloning
        clone(estimator)
        # test __repr__
        repr(estimator)
        # test that set_params returns self
        assert estimator.set_params() is estimator

        # test if init does nothing but set parameters
        # this is important for grid_search etc.
        # We get the default parameters from init and then
        # compare these against the actual values of the attributes.

        # this comes from getattr. Gets rid of deprecation decorator.
        init = getattr(estimator.__init__, 'deprecated_original',
                       estimator.__init__)

        try:
            def param_filter(p):
                """Identify hyper parameters of an estimator"""
                return (p.name != 'self' and
                        p.kind != p.VAR_KEYWORD and
                        p.kind != p.VAR_POSITIONAL)

            init_params = [p for p in signature(init).parameters.values()
                           if param_filter(p)]

        except (TypeError, ValueError):
            # init is not a python function.
            # true for mixins
            return
        params = estimator.get_params()

        if name in META_ESTIMATORS:
            # they can need a non-default argument
            init_params = init_params[1:]

        for init_param in init_params:
            assert_not_equal(init_param.default, init_param.empty,
                             "parameter %s for %s has no default value"
                             % (init_param.name, type(estimator).__name__))
            assert_in(type(init_param.default),
                      [str, int, float, bool, tuple, type(None),
                       np.float64, types.FunctionType, Memory])
            if init_param.name not in params.keys():
                # deprecated parameter, not in get_params
                assert init_param.default is None
                continue

            if (issubclass(Estimator, BaseSGD) and
                    init_param.name in ['tol', 'max_iter']):
                # To remove in 0.21, when they get their future default values
                continue

            param_value = params[init_param.name]
            if isinstance(param_value, np.ndarray):
                assert_array_equal(param_value, init_param.default)
            else:
                if is_scalar_nan(param_value):
                    # Allows to set default parameters to np.nan
                    assert param_value is init_param.default, init_param.name
                else:
                    assert param_value == init_param.default, init_param.name


def multioutput_estimator_convert_y_2d(estimator, y):
    # Estimators in mono_output_task_error raise ValueError if y is of 1-D
    # Convert into a 2-D y for those estimators.
    if "MultiTask" in estimator.__class__.__name__:
        return np.reshape(y, (-1, 1))
    return y


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_non_transformer_estimators_n_iter(name, estimator_orig):
    # Test that estimators that are not transformers with a parameter
    # max_iter, return the attribute of n_iter_ at least 1.

    # These models are dependent on external solvers like
    # libsvm and accessing the iter parameter is non-trivial.
    not_run_check_n_iter = ['Ridge', 'SVR', 'NuSVR', 'NuSVC',
                            'RidgeClassifier', 'SVC', 'RandomizedLasso',
                            'LogisticRegressionCV', 'LinearSVC',
                            'LogisticRegression']

    # Tested in test_transformer_n_iter
    not_run_check_n_iter += CROSS_DECOMPOSITION
    if name in not_run_check_n_iter:
        return

    # LassoLars stops early for the default alpha=1.0 the iris dataset.
    if name == 'LassoLars':
        estimator = clone(estimator_orig).set_params(alpha=0.)
    else:
        estimator = clone(estimator_orig)
    if hasattr(estimator, 'max_iter'):
        iris = load_iris()
        X, y_ = iris.data, iris.target
        y_ = multioutput_estimator_convert_y_2d(estimator, y_)

        set_random_state(estimator, 0)
        if name == 'AffinityPropagation':
            estimator.fit(X)
        else:
            estimator.fit(X, y_)

        assert estimator.n_iter_ >= 1


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_transformer_n_iter(name, estimator_orig):
    # Test that transformers with a parameter max_iter, return the
    # attribute of n_iter_ at least 1.
    estimator = clone(estimator_orig)
    if hasattr(estimator, "max_iter"):
        if name in CROSS_DECOMPOSITION:
            # Check using default data
            X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]]
            y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]]

        else:
            X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
                               random_state=0, n_features=2, cluster_std=0.1)
            X -= X.min() - 0.1
        set_random_state(estimator, 0)
        estimator.fit(X, y_)

        # These return a n_iter per component.
        if name in CROSS_DECOMPOSITION:
            for iter_ in estimator.n_iter_:
                assert_greater_equal(iter_, 1)
        else:
            assert_greater_equal(estimator.n_iter_, 1)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_get_params_invariance(name, estimator_orig):
    # Checks if get_params(deep=False) is a subset of get_params(deep=True)
    class T(BaseEstimator):
        """Mock classifier
        """

        def __init__(self):
            pass

        def fit(self, X, y):
            return self

        def transform(self, X):
            return X

    e = clone(estimator_orig)

    shallow_params = e.get_params(deep=False)
    deep_params = e.get_params(deep=True)

    assert_true(all(item in deep_params.items() for item in
                    shallow_params.items()))


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_set_params(name, estimator_orig):
    # Check that get_params() returns the same thing
    # before and after set_params() with some fuzz
    estimator = clone(estimator_orig)

    orig_params = estimator.get_params(deep=False)
    msg = ("get_params result does not match what was passed to set_params")

    estimator.set_params(**orig_params)
    curr_params = estimator.get_params(deep=False)
    assert_equal(set(orig_params.keys()), set(curr_params.keys()), msg)
    for k, v in curr_params.items():
        assert orig_params[k] is v, msg

    # some fuzz values
    test_values = [-np.inf, np.inf, None]

    test_params = deepcopy(orig_params)
    for param_name in orig_params.keys():
        default_value = orig_params[param_name]
        for value in test_values:
            test_params[param_name] = value
            try:
                estimator.set_params(**test_params)
            except (TypeError, ValueError) as e:
                e_type = e.__class__.__name__
                # Exception occurred, possibly parameter validation
                warnings.warn("{} occurred during set_params. "
                              "It is recommended to delay parameter "
                              "validation until fit.".format(e_type))

                change_warning_msg = "Estimator's parameters changed after " \
                                     "set_params raised {}".format(e_type)
                params_before_exception = curr_params
                curr_params = estimator.get_params(deep=False)
                try:
                    assert_equal(set(params_before_exception.keys()),
                                 set(curr_params.keys()))
                    for k, v in curr_params.items():
                        assert params_before_exception[k] is v
                except AssertionError:
                    warnings.warn(change_warning_msg)
            else:
                curr_params = estimator.get_params(deep=False)
                assert_equal(set(test_params.keys()),
                             set(curr_params.keys()),
                             msg)
                for k, v in curr_params.items():
                    assert test_params[k] is v, msg
        test_params[param_name] = default_value


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_classifiers_regression_target(name, estimator_orig):
    # Check if classifier throws an exception when fed regression targets

    boston = load_boston()
    X, y = boston.data, boston.target
    e = clone(estimator_orig)
    msg = 'Unknown label type: '
    assert_raises_regex(ValueError, msg, e.fit, X, y)


@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_decision_proba_consistency(name, estimator_orig):
    # Check whether an estimator having both decision_function and
    # predict_proba methods has outputs with perfect rank correlation.

    centers = [(2, 2), (4, 4)]
    X, y = make_blobs(n_samples=100, random_state=0, n_features=4,
                      centers=centers, cluster_std=1.0, shuffle=True)
    X_test = np.random.randn(20, 2) + 4
    estimator = clone(estimator_orig)

    if (hasattr(estimator, "decision_function") and
            hasattr(estimator, "predict_proba")):

        estimator.fit(X, y)
        a = estimator.predict_proba(X_test)[:, 1]
        b = estimator.decision_function(X_test)
        assert_array_equal(rankdata(a), rankdata(b))


def check_outliers_fit_predict(name, estimator_orig):
    # Check fit_predict for outlier detectors.

    X, _ = make_blobs(n_samples=300, random_state=0)
    X = shuffle(X, random_state=7)
    n_samples, n_features = X.shape
    estimator = clone(estimator_orig)

    set_random_state(estimator)

    y_pred = estimator.fit_predict(X)
    assert y_pred.shape == (n_samples,)
    assert y_pred.dtype.kind == 'i'
    assert_array_equal(np.unique(y_pred), np.array([-1, 1]))

    # check fit_predict = fit.predict when the estimator has both a predict and
    # a fit_predict method. recall that it is already assumed here that the
    # estimator has a fit_predict method
    if hasattr(estimator, 'predict'):
        y_pred_2 = estimator.fit(X).predict(X)
        assert_array_equal(y_pred, y_pred_2)

    if hasattr(estimator, "contamination"):
        # proportion of outliers equal to contamination parameter when not
        # set to 'auto'
        contamination = 0.1
        estimator.set_params(contamination=contamination)
        y_pred = estimator.fit_predict(X)
        assert_almost_equal(np.mean(y_pred != 1), contamination)

        # raises error when contamination is a scalar and not in [0,1]
        for contamination in [-0.5, 2.3]:
            estimator.set_params(contamination=contamination)
            assert_raises(ValueError, estimator.fit_predict, X)