1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
|
from __future__ import print_function
import types
import warnings
import sys
import traceback
import pickle
from copy import deepcopy
from functools import partial
import numpy as np
from scipy import sparse
from scipy.stats import rankdata
from sklearn.externals.six.moves import zip
from sklearn.utils import IS_PYPY, _IS_32BIT
from sklearn.utils import _joblib
from sklearn.utils._joblib import Memory
from sklearn.utils.testing import assert_raises, _get_args
from sklearn.utils.testing import assert_raises_regex
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_in
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_allclose_dense_sparse
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import META_ESTIMATORS
from sklearn.utils.testing import set_random_state
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import SkipTest
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_dict_equal
from sklearn.utils.testing import create_memmap_backed_data
from sklearn.utils import is_scalar_nan
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.base import (clone, ClusterMixin,
BaseEstimator, is_classifier, is_regressor,
is_outlier_detector)
from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score
from sklearn.random_projection import BaseRandomProjection
from sklearn.feature_selection import SelectKBest
from sklearn.svm.base import BaseLibSVM
from sklearn.linear_model.stochastic_gradient import BaseSGD
from sklearn.pipeline import make_pipeline
from sklearn.exceptions import DataConversionWarning
from sklearn.exceptions import SkipTestWarning
from sklearn.model_selection import train_test_split
from sklearn.metrics.pairwise import (rbf_kernel, linear_kernel,
pairwise_distances)
from sklearn.utils import shuffle
from sklearn.utils.fixes import signature
from sklearn.utils.validation import (has_fit_parameter, _num_samples,
LARGE_SPARSE_SUPPORTED)
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris, load_boston, make_blobs
BOSTON = None
CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']
MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet',
'ExtraTreeRegressor', 'ExtraTreesRegressor',
'GaussianProcessRegressor', 'TransformedTargetRegressor',
'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso',
'LassoLars', 'LinearRegression', 'MultiTaskElasticNet',
'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV',
'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression',
'RANSACRegressor', 'RadiusNeighborsRegressor',
'RandomForestRegressor', 'Ridge', 'RidgeCV']
ALLOW_NAN = ['Imputer', 'SimpleImputer', 'MissingIndicator',
'MaxAbsScaler', 'MinMaxScaler', 'RobustScaler', 'StandardScaler',
'PowerTransformer', 'QuantileTransformer']
def _yield_non_meta_checks(name, estimator):
yield check_estimators_dtypes
yield check_fit_score_takes_y
yield check_dtype_object
yield check_sample_weights_pandas_series
yield check_sample_weights_list
yield check_sample_weights_invariance
yield check_estimators_fit_returns_self
yield partial(check_estimators_fit_returns_self, readonly_memmap=True)
yield check_complex_data
# Check that all estimator yield informative messages when
# trained on empty datasets
yield check_estimators_empty_data_messages
if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']:
# SpectralEmbedding is non-deterministic,
# see issue #4236
# cross-decomposition's "transform" returns X and Y
yield check_pipeline_consistency
if name not in ALLOW_NAN:
# Test that all estimators check their input for NaN's and infs
yield check_estimators_nan_inf
yield check_estimators_overwrite_params
if hasattr(estimator, 'sparsify'):
yield check_sparsify_coefficients
yield check_estimator_sparse_data
# Test that estimators can be pickled, and once pickled
# give the same answer as before.
yield check_estimators_pickle
def _yield_classifier_checks(name, classifier):
# test classifiers can handle non-array data
yield check_classifier_data_not_an_array
# test classifiers trained on a single label always return this label
yield check_classifiers_one_label
yield check_classifiers_classes
yield check_estimators_partial_fit_n_features
# basic consistency testing
yield check_classifiers_train
yield partial(check_classifiers_train, readonly_memmap=True)
yield check_classifiers_regression_target
if (name not in ["MultinomialNB", "ComplementNB", "LabelPropagation",
"LabelSpreading"] and
# TODO some complication with -1 label
name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]):
# We don't raise a warning in these classifiers, as
# the column y interface is used by the forests.
yield check_supervised_y_2d
yield check_supervised_y_no_nan
yield check_estimators_unfitted
if 'class_weight' in classifier.get_params().keys():
yield check_class_weight_classifiers
yield check_non_transformer_estimators_n_iter
# test if predict_proba is a monotonic transformation of decision_function
yield check_decision_proba_consistency
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_supervised_y_no_nan(name, estimator_orig):
# Checks that the Estimator targets are not NaN.
estimator = clone(estimator_orig)
rng = np.random.RandomState(888)
X = rng.randn(10, 5)
y = np.full(10, np.inf)
y = multioutput_estimator_convert_y_2d(estimator, y)
errmsg = "Input contains NaN, infinity or a value too large for " \
"dtype('float64')."
try:
estimator.fit(X, y)
except ValueError as e:
if str(e) != errmsg:
raise ValueError("Estimator {0} raised error as expected, but "
"does not match expected error message"
.format(name))
else:
raise ValueError("Estimator {0} should have raised error on fitting "
"array y with NaN value.".format(name))
def _yield_regressor_checks(name, regressor):
# TODO: test with intercept
# TODO: test with multiple responses
# basic testing
yield check_regressors_train
yield partial(check_regressors_train, readonly_memmap=True)
yield check_regressor_data_not_an_array
yield check_estimators_partial_fit_n_features
yield check_regressors_no_decision_function
yield check_supervised_y_2d
yield check_supervised_y_no_nan
if name != 'CCA':
# check that the regressor handles int input
yield check_regressors_int
if name != "GaussianProcessRegressor":
# test if NotFittedError is raised
yield check_estimators_unfitted
yield check_non_transformer_estimators_n_iter
def _yield_transformer_checks(name, transformer):
# All transformers should either deal with sparse data or raise an
# exception with type TypeError and an intelligible error message
if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer',
'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']:
yield check_transformer_data_not_an_array
# these don't actually fit the data, so don't raise errors
if name not in ['AdditiveChi2Sampler', 'Binarizer',
'FunctionTransformer', 'Normalizer']:
# basic tests
yield check_transformer_general
yield partial(check_transformer_general, readonly_memmap=True)
yield check_transformers_unfitted
# Dependent on external solvers and hence accessing the iter
# param is non-trivial.
external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding',
'RandomizedLasso', 'LogisticRegressionCV']
if name not in external_solver:
yield check_transformer_n_iter
def _yield_clustering_checks(name, clusterer):
yield check_clusterer_compute_labels_predict
if name not in ('WardAgglomeration', "FeatureAgglomeration"):
# this is clustering on the features
# let's not test that here.
yield check_clustering
yield partial(check_clustering, readonly_memmap=True)
yield check_estimators_partial_fit_n_features
yield check_non_transformer_estimators_n_iter
def _yield_outliers_checks(name, estimator):
# checks for outlier detectors that have a fit_predict method
if hasattr(estimator, 'fit_predict'):
yield check_outliers_fit_predict
# checks for estimators that can be used on a test set
if hasattr(estimator, 'predict'):
yield check_outliers_train
yield partial(check_outliers_train, readonly_memmap=True)
# test outlier detectors can handle non-array data
yield check_classifier_data_not_an_array
# test if NotFittedError is raised
yield check_estimators_unfitted
def _yield_all_checks(name, estimator):
for check in _yield_non_meta_checks(name, estimator):
yield check
if is_classifier(estimator):
for check in _yield_classifier_checks(name, estimator):
yield check
if is_regressor(estimator):
for check in _yield_regressor_checks(name, estimator):
yield check
if hasattr(estimator, 'transform'):
for check in _yield_transformer_checks(name, estimator):
yield check
if isinstance(estimator, ClusterMixin):
for check in _yield_clustering_checks(name, estimator):
yield check
if is_outlier_detector(estimator):
for check in _yield_outliers_checks(name, estimator):
yield check
yield check_fit2d_predict1d
yield check_methods_subset_invariance
yield check_fit2d_1sample
yield check_fit2d_1feature
yield check_fit1d
yield check_get_params_invariance
yield check_set_params
yield check_dict_unchanged
yield check_dont_overwrite_parameters
def check_estimator(Estimator):
"""Check if estimator adheres to scikit-learn conventions.
This estimator will run an extensive test-suite for input validation,
shapes, etc.
Additional tests for classifiers, regressors, clustering or transformers
will be run if the Estimator class inherits from the corresponding mixin
from sklearn.base.
This test can be applied to classes or instances.
Classes currently have some additional tests that related to construction,
while passing instances allows the testing of multiple options.
Parameters
----------
estimator : estimator object or class
Estimator to check. Estimator is a class object or instance.
"""
if isinstance(Estimator, type):
# got a class
name = Estimator.__name__
estimator = Estimator()
check_parameters_default_constructible(name, Estimator)
check_no_attributes_set_in_init(name, estimator)
else:
# got an instance
estimator = Estimator
name = type(estimator).__name__
for check in _yield_all_checks(name, estimator):
try:
check(name, estimator)
except SkipTest as exception:
# the only SkipTest thrown currently results from not
# being able to import pandas.
warnings.warn(str(exception), SkipTestWarning)
def _boston_subset(n_samples=200):
global BOSTON
if BOSTON is None:
boston = load_boston()
X, y = boston.data, boston.target
X, y = shuffle(X, y, random_state=0)
X, y = X[:n_samples], y[:n_samples]
X = StandardScaler().fit_transform(X)
BOSTON = X, y
return BOSTON
def set_checking_parameters(estimator):
# set parameters to speed up some estimators and
# avoid deprecated behaviour
params = estimator.get_params()
if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"
and not isinstance(estimator, BaseSGD)):
estimator.set_params(n_iter=5)
if "max_iter" in params:
if estimator.max_iter is not None:
estimator.set_params(max_iter=min(5, estimator.max_iter))
# LinearSVR, LinearSVC
if estimator.__class__.__name__ in ['LinearSVR', 'LinearSVC']:
estimator.set_params(max_iter=20)
# NMF
if estimator.__class__.__name__ == 'NMF':
estimator.set_params(max_iter=100)
# MLP
if estimator.__class__.__name__ in ['MLPClassifier', 'MLPRegressor']:
estimator.set_params(max_iter=100)
if "n_resampling" in params:
# randomized lasso
estimator.set_params(n_resampling=5)
if "n_estimators" in params:
# especially gradient boosting with default 100
# FIXME: The default number of trees was changed and is set to 'warn'
# for some of the ensemble methods. We need to catch this case to avoid
# an error during the comparison. To be reverted in 0.22.
if estimator.n_estimators == 'warn':
estimator.set_params(n_estimators=5)
else:
estimator.set_params(n_estimators=min(5, estimator.n_estimators))
if "max_trials" in params:
# RANSAC
estimator.set_params(max_trials=10)
if "n_init" in params:
# K-Means
estimator.set_params(n_init=2)
if "decision_function_shape" in params:
# SVC
estimator.set_params(decision_function_shape='ovo')
if estimator.__class__.__name__ == "SelectFdr":
# be tolerant of noisy datasets (not actually speed)
estimator.set_params(alpha=.5)
if estimator.__class__.__name__ == "TheilSenRegressor":
estimator.max_subpopulation = 100
if estimator.__class__.__name__ == "IsolationForest":
# XXX to be removed in 0.22.
# this is used because the old IsolationForest does not
# respect the outlier detection API and thus and does not
# pass the outlier detection common tests.
estimator.set_params(behaviour='new')
if isinstance(estimator, BaseRandomProjection):
# Due to the jl lemma and often very few samples, the number
# of components of the random matrix projection will be probably
# greater than the number of features.
# So we impose a smaller number (avoid "auto" mode)
estimator.set_params(n_components=2)
if isinstance(estimator, SelectKBest):
# SelectKBest has a default of k=10
# which is more feature than we have in most case.
estimator.set_params(k=1)
class NotAnArray(object):
"""An object that is convertible to an array
Parameters
----------
data : array_like
The data.
"""
def __init__(self, data):
self.data = data
def __array__(self, dtype=None):
return self.data
def _is_pairwise(estimator):
"""Returns True if estimator has a _pairwise attribute set to True.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if _pairwise is set to True and False otherwise.
"""
return bool(getattr(estimator, "_pairwise", False))
def _is_pairwise_metric(estimator):
"""Returns True if estimator accepts pairwise metric.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if _pairwise is set to True and False otherwise.
"""
metric = getattr(estimator, "metric", None)
return bool(metric == 'precomputed')
def pairwise_estimator_convert_X(X, estimator, kernel=linear_kernel):
if _is_pairwise_metric(estimator):
return pairwise_distances(X, metric='euclidean')
if _is_pairwise(estimator):
return kernel(X, X)
return X
def _generate_sparse_matrix(X_csr):
"""Generate sparse matrices with {32,64}bit indices of diverse format
Parameters
----------
X_csr: CSR Matrix
Input matrix in CSR format
Returns
-------
out: iter(Matrices)
In format['dok', 'lil', 'dia', 'bsr', 'csr', 'csc', 'coo',
'coo_64', 'csc_64', 'csr_64']
"""
assert X_csr.format == 'csr'
yield 'csr', X_csr.copy()
for sparse_format in ['dok', 'lil', 'dia', 'bsr', 'csc', 'coo']:
yield sparse_format, X_csr.asformat(sparse_format)
if LARGE_SPARSE_SUPPORTED:
# Generate large indices matrix only if its supported by scipy
X_coo = X_csr.asformat('coo')
X_coo.row = X_coo.row.astype('int64')
X_coo.col = X_coo.col.astype('int64')
yield "coo_64", X_coo
for sparse_format in ['csc', 'csr']:
X = X_csr.asformat(sparse_format)
X.indices = X.indices.astype('int64')
X.indptr = X.indptr.astype('int64')
yield sparse_format + "_64", X
def check_estimator_sparse_data(name, estimator_orig):
rng = np.random.RandomState(0)
X = rng.rand(40, 10)
X[X < .8] = 0
X = pairwise_estimator_convert_X(X, estimator_orig)
X_csr = sparse.csr_matrix(X)
y = (4 * rng.rand(40)).astype(np.int)
# catch deprecation warnings
with ignore_warnings(category=DeprecationWarning):
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
for matrix_format, X in _generate_sparse_matrix(X_csr):
# catch deprecation warnings
with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
if name in ['Scaler', 'StandardScaler']:
estimator = clone(estimator).set_params(with_mean=False)
else:
estimator = clone(estimator)
# fit and predict
try:
with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
estimator.fit(X, y)
if hasattr(estimator, "predict"):
pred = estimator.predict(X)
assert_equal(pred.shape, (X.shape[0],))
if hasattr(estimator, 'predict_proba'):
probs = estimator.predict_proba(X)
assert_equal(probs.shape, (X.shape[0], 4))
except (TypeError, ValueError) as e:
if 'sparse' not in repr(e).lower():
if "64" in matrix_format:
msg = ("Estimator %s doesn't seem to support %s matrix, "
"and is not failing gracefully, e.g. by using "
"check_array(X, accept_large_sparse=False)")
raise AssertionError(msg % (name, matrix_format))
else:
print("Estimator %s doesn't seem to fail gracefully on "
"sparse data: error message state explicitly that "
"sparse input is not supported if this is not"
" the case." % name)
raise
except Exception as e:
print("Estimator %s doesn't seem to fail gracefully on "
"sparse data: it should raise a TypeError if sparse input "
"is explicitly not supported." % name)
raise
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_sample_weights_pandas_series(name, estimator_orig):
# check that estimators will accept a 'sample_weight' parameter of
# type pandas.Series in the 'fit' function.
estimator = clone(estimator_orig)
if has_fit_parameter(estimator, "sample_weight"):
try:
import pandas as pd
X = np.array([[1, 1], [1, 2], [1, 3], [1, 4],
[2, 1], [2, 2], [2, 3], [2, 4]])
X = pd.DataFrame(pairwise_estimator_convert_X(X, estimator_orig))
y = pd.Series([1, 1, 1, 1, 2, 2, 2, 2])
weights = pd.Series([1] * 8)
try:
estimator.fit(X, y, sample_weight=weights)
except ValueError:
raise ValueError("Estimator {0} raises error if "
"'sample_weight' parameter is of "
"type pandas.Series".format(name))
except ImportError:
raise SkipTest("pandas is not installed: not testing for "
"input of type pandas.Series to class weight.")
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_sample_weights_list(name, estimator_orig):
# check that estimators will accept a 'sample_weight' parameter of
# type list in the 'fit' function.
if has_fit_parameter(estimator_orig, "sample_weight"):
estimator = clone(estimator_orig)
rnd = np.random.RandomState(0)
X = pairwise_estimator_convert_X(rnd.uniform(size=(10, 3)),
estimator_orig)
y = np.arange(10) % 3
y = multioutput_estimator_convert_y_2d(estimator, y)
sample_weight = [3] * 10
# Test that estimators don't raise any exception
estimator.fit(X, y, sample_weight=sample_weight)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_sample_weights_invariance(name, estimator_orig):
# check that the estimators yield same results for
# unit weights and no weights
if (has_fit_parameter(estimator_orig, "sample_weight") and
not (hasattr(estimator_orig, "_pairwise")
and estimator_orig._pairwise)):
# We skip pairwise because the data is not pairwise
estimator1 = clone(estimator_orig)
estimator2 = clone(estimator_orig)
set_random_state(estimator1, random_state=0)
set_random_state(estimator2, random_state=0)
X = np.array([[1, 3], [1, 3], [1, 3], [1, 3],
[2, 1], [2, 1], [2, 1], [2, 1],
[3, 3], [3, 3], [3, 3], [3, 3],
[4, 1], [4, 1], [4, 1], [4, 1]], dtype=np.dtype('float'))
y = np.array([1, 1, 1, 1, 2, 2, 2, 2,
1, 1, 1, 1, 2, 2, 2, 2], dtype=np.dtype('int'))
estimator1.fit(X, y=y, sample_weight=np.ones(shape=len(y)))
estimator2.fit(X, y=y, sample_weight=None)
for method in ["predict", "transform"]:
if hasattr(estimator_orig, method):
X_pred1 = getattr(estimator1, method)(X)
X_pred2 = getattr(estimator2, method)(X)
assert_allclose(X_pred1, X_pred2,
err_msg="For %s sample_weight=None is not"
" equivalent to sample_weight=ones"
% name)
@ignore_warnings(category=(DeprecationWarning, FutureWarning, UserWarning))
def check_dtype_object(name, estimator_orig):
# check that estimators treat dtype object as numeric if possible
rng = np.random.RandomState(0)
X = pairwise_estimator_convert_X(rng.rand(40, 10), estimator_orig)
X = X.astype(object)
y = (X[:, 0] * 4).astype(np.int)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
estimator.fit(X, y)
if hasattr(estimator, "predict"):
estimator.predict(X)
if hasattr(estimator, "transform"):
estimator.transform(X)
try:
estimator.fit(X, y.astype(object))
except Exception as e:
if "Unknown label type" not in str(e):
raise
X[0, 0] = {'foo': 'bar'}
msg = "argument must be a string or a number"
assert_raises_regex(TypeError, msg, estimator.fit, X, y)
def check_complex_data(name, estimator_orig):
# check that estimators raise an exception on providing complex data
X = np.random.sample(10) + 1j * np.random.sample(10)
X = X.reshape(-1, 1)
y = np.random.sample(10) + 1j * np.random.sample(10)
estimator = clone(estimator_orig)
assert_raises_regex(ValueError, "Complex data not supported",
estimator.fit, X, y)
@ignore_warnings
def check_dict_unchanged(name, estimator_orig):
# this estimator raises
# ValueError: Found array with 0 feature(s) (shape=(23, 0))
# while a minimum of 1 is required.
# error
if name in ['SpectralCoclustering']:
return
rnd = np.random.RandomState(0)
if name in ['RANSACRegressor']:
X = 3 * rnd.uniform(size=(20, 3))
else:
X = 2 * rnd.uniform(size=(20, 3))
X = pairwise_estimator_convert_X(X, estimator_orig)
y = X[:, 0].astype(np.int)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
if hasattr(estimator, "n_components"):
estimator.n_components = 1
if hasattr(estimator, "n_clusters"):
estimator.n_clusters = 1
if hasattr(estimator, "n_best"):
estimator.n_best = 1
set_random_state(estimator, 1)
estimator.fit(X, y)
for method in ["predict", "transform", "decision_function",
"predict_proba"]:
if hasattr(estimator, method):
dict_before = estimator.__dict__.copy()
getattr(estimator, method)(X)
assert_dict_equal(estimator.__dict__, dict_before,
'Estimator changes __dict__ during %s' % method)
def is_public_parameter(attr):
return not (attr.startswith('_') or attr.endswith('_'))
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_dont_overwrite_parameters(name, estimator_orig):
# check that fit method only changes or sets private attributes
if hasattr(estimator_orig.__init__, "deprecated_original"):
# to not check deprecated classes
return
estimator = clone(estimator_orig)
rnd = np.random.RandomState(0)
X = 3 * rnd.uniform(size=(20, 3))
X = pairwise_estimator_convert_X(X, estimator_orig)
y = X[:, 0].astype(np.int)
y = multioutput_estimator_convert_y_2d(estimator, y)
if hasattr(estimator, "n_components"):
estimator.n_components = 1
if hasattr(estimator, "n_clusters"):
estimator.n_clusters = 1
set_random_state(estimator, 1)
dict_before_fit = estimator.__dict__.copy()
estimator.fit(X, y)
dict_after_fit = estimator.__dict__
public_keys_after_fit = [key for key in dict_after_fit.keys()
if is_public_parameter(key)]
attrs_added_by_fit = [key for key in public_keys_after_fit
if key not in dict_before_fit.keys()]
# check that fit doesn't add any public attribute
assert_true(not attrs_added_by_fit,
('Estimator adds public attribute(s) during'
' the fit method.'
' Estimators are only allowed to add private attributes'
' either started with _ or ended'
' with _ but %s added' % ', '.join(attrs_added_by_fit)))
# check that fit doesn't change any public attribute
attrs_changed_by_fit = [key for key in public_keys_after_fit
if (dict_before_fit[key]
is not dict_after_fit[key])]
assert_true(not attrs_changed_by_fit,
('Estimator changes public attribute(s) during'
' the fit method. Estimators are only allowed'
' to change attributes started'
' or ended with _, but'
' %s changed' % ', '.join(attrs_changed_by_fit)))
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_fit2d_predict1d(name, estimator_orig):
# check by fitting a 2d array and predicting with a 1d array
rnd = np.random.RandomState(0)
X = 3 * rnd.uniform(size=(20, 3))
X = pairwise_estimator_convert_X(X, estimator_orig)
y = X[:, 0].astype(np.int)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
if hasattr(estimator, "n_components"):
estimator.n_components = 1
if hasattr(estimator, "n_clusters"):
estimator.n_clusters = 1
set_random_state(estimator, 1)
estimator.fit(X, y)
for method in ["predict", "transform", "decision_function",
"predict_proba"]:
if hasattr(estimator, method):
assert_raise_message(ValueError, "Reshape your data",
getattr(estimator, method), X[0])
def _apply_on_subsets(func, X):
# apply function on the whole set and on mini batches
result_full = func(X)
n_features = X.shape[1]
result_by_batch = [func(batch.reshape(1, n_features))
for batch in X]
# func can output tuple (e.g. score_samples)
if type(result_full) == tuple:
result_full = result_full[0]
result_by_batch = list(map(lambda x: x[0], result_by_batch))
if sparse.issparse(result_full):
result_full = result_full.A
result_by_batch = [x.A for x in result_by_batch]
return np.ravel(result_full), np.ravel(result_by_batch)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_methods_subset_invariance(name, estimator_orig):
# check that method gives invariant results if applied
# on mini bathes or the whole set
rnd = np.random.RandomState(0)
X = 3 * rnd.uniform(size=(20, 3))
X = pairwise_estimator_convert_X(X, estimator_orig)
y = X[:, 0].astype(np.int)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
if hasattr(estimator, "n_components"):
estimator.n_components = 1
if hasattr(estimator, "n_clusters"):
estimator.n_clusters = 1
set_random_state(estimator, 1)
estimator.fit(X, y)
for method in ["predict", "transform", "decision_function",
"score_samples", "predict_proba"]:
msg = ("{method} of {name} is not invariant when applied "
"to a subset.").format(method=method, name=name)
# TODO remove cases when corrected
if (name, method) in [('SVC', 'decision_function'),
('SparsePCA', 'transform'),
('MiniBatchSparsePCA', 'transform'),
('BernoulliRBM', 'score_samples')]:
raise SkipTest(msg)
if hasattr(estimator, method):
result_full, result_by_batch = _apply_on_subsets(
getattr(estimator, method), X)
assert_allclose(result_full, result_by_batch,
atol=1e-7, err_msg=msg)
@ignore_warnings
def check_fit2d_1sample(name, estimator_orig):
# Check that fitting a 2d array with only one sample either works or
# returns an informative message. The error message should either mention
# the number of samples or the number of classes.
rnd = np.random.RandomState(0)
X = 3 * rnd.uniform(size=(1, 10))
y = X[:, 0].astype(np.int)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
if hasattr(estimator, "n_components"):
estimator.n_components = 1
if hasattr(estimator, "n_clusters"):
estimator.n_clusters = 1
set_random_state(estimator, 1)
msgs = ["1 sample", "n_samples = 1", "n_samples=1", "one sample",
"1 class", "one class"]
try:
estimator.fit(X, y)
except ValueError as e:
if all(msg not in repr(e) for msg in msgs):
raise e
@ignore_warnings
def check_fit2d_1feature(name, estimator_orig):
# check fitting a 2d array with only 1 feature either works or returns
# informative message
rnd = np.random.RandomState(0)
X = 3 * rnd.uniform(size=(10, 1))
X = pairwise_estimator_convert_X(X, estimator_orig)
y = X[:, 0].astype(np.int)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
if hasattr(estimator, "n_components"):
estimator.n_components = 1
if hasattr(estimator, "n_clusters"):
estimator.n_clusters = 1
# ensure two labels in subsample for RandomizedLogisticRegression
if name == 'RandomizedLogisticRegression':
estimator.sample_fraction = 1
# ensure non skipped trials for RANSACRegressor
if name == 'RANSACRegressor':
estimator.residual_threshold = 0.5
y = multioutput_estimator_convert_y_2d(estimator, y)
set_random_state(estimator, 1)
msgs = ["1 feature(s)", "n_features = 1", "n_features=1"]
try:
estimator.fit(X, y)
except ValueError as e:
if all(msg not in repr(e) for msg in msgs):
raise e
@ignore_warnings
def check_fit1d(name, estimator_orig):
# check fitting 1d X array raises a ValueError
rnd = np.random.RandomState(0)
X = 3 * rnd.uniform(size=(20))
y = X.astype(np.int)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
if hasattr(estimator, "n_components"):
estimator.n_components = 1
if hasattr(estimator, "n_clusters"):
estimator.n_clusters = 1
set_random_state(estimator, 1)
assert_raises(ValueError, estimator.fit, X, y)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_transformer_general(name, transformer, readonly_memmap=False):
X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
random_state=0, n_features=2, cluster_std=0.1)
X = StandardScaler().fit_transform(X)
X -= X.min()
if readonly_memmap:
X, y = create_memmap_backed_data([X, y])
_check_transformer(name, transformer, X, y)
_check_transformer(name, transformer, X.tolist(), y.tolist())
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_transformer_data_not_an_array(name, transformer):
X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
random_state=0, n_features=2, cluster_std=0.1)
X = StandardScaler().fit_transform(X)
# We need to make sure that we have non negative data, for things
# like NMF
X -= X.min() - .1
this_X = NotAnArray(X)
this_y = NotAnArray(np.asarray(y))
_check_transformer(name, transformer, this_X, this_y)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_transformers_unfitted(name, transformer):
X, y = _boston_subset()
transformer = clone(transformer)
with assert_raises((AttributeError, ValueError), msg="The unfitted "
"transformer {} does not raise an error when "
"transform is called. Perhaps use "
"check_is_fitted in transform.".format(name)):
transformer.transform(X)
def _check_transformer(name, transformer_orig, X, y):
if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _IS_32BIT:
# Those transformers yield non-deterministic output when executed on
# a 32bit Python. The same transformers are stable on 64bit Python.
# FIXME: try to isolate a minimalistic reproduction case only depending
# on numpy & scipy and/or maybe generate a test dataset that does not
# cause such unstable behaviors.
msg = name + ' is non deterministic on 32bit Python'
raise SkipTest(msg)
n_samples, n_features = np.asarray(X).shape
transformer = clone(transformer_orig)
set_random_state(transformer)
# fit
if name in CROSS_DECOMPOSITION:
y_ = np.c_[y, y]
y_[::2, 1] *= 2
else:
y_ = y
transformer.fit(X, y_)
# fit_transform method should work on non fitted estimator
transformer_clone = clone(transformer)
X_pred = transformer_clone.fit_transform(X, y=y_)
if isinstance(X_pred, tuple):
for x_pred in X_pred:
assert_equal(x_pred.shape[0], n_samples)
else:
# check for consistent n_samples
assert_equal(X_pred.shape[0], n_samples)
if hasattr(transformer, 'transform'):
if name in CROSS_DECOMPOSITION:
X_pred2 = transformer.transform(X, y_)
X_pred3 = transformer.fit_transform(X, y=y_)
else:
X_pred2 = transformer.transform(X)
X_pred3 = transformer.fit_transform(X, y=y_)
if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple):
for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3):
assert_allclose_dense_sparse(
x_pred, x_pred2, atol=1e-2,
err_msg="fit_transform and transform outcomes "
"not consistent in %s"
% transformer)
assert_allclose_dense_sparse(
x_pred, x_pred3, atol=1e-2,
err_msg="consecutive fit_transform outcomes "
"not consistent in %s"
% transformer)
else:
assert_allclose_dense_sparse(
X_pred, X_pred2,
err_msg="fit_transform and transform outcomes "
"not consistent in %s"
% transformer, atol=1e-2)
assert_allclose_dense_sparse(
X_pred, X_pred3, atol=1e-2,
err_msg="consecutive fit_transform outcomes "
"not consistent in %s"
% transformer)
assert_equal(_num_samples(X_pred2), n_samples)
assert_equal(_num_samples(X_pred3), n_samples)
# raises error on malformed input for transform
if hasattr(X, 'T'):
# If it's not an array, it does not have a 'T' property
with assert_raises(ValueError, msg="The transformer {} does "
"not raise an error when the number of "
"features in transform is different from"
" the number of features in "
"fit.".format(name)):
transformer.transform(X.T)
@ignore_warnings
def check_pipeline_consistency(name, estimator_orig):
if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _IS_32BIT:
# Those transformers yield non-deterministic output when executed on
# a 32bit Python. The same transformers are stable on 64bit Python.
# FIXME: try to isolate a minimalistic reproduction case only depending
# scipy and/or maybe generate a test dataset that does not
# cause such unstable behaviors.
msg = name + ' is non deterministic on 32bit Python'
raise SkipTest(msg)
# check that make_pipeline(est) gives same score as est
X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
random_state=0, n_features=2, cluster_std=0.1)
X -= X.min()
X = pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
set_random_state(estimator)
pipeline = make_pipeline(estimator)
estimator.fit(X, y)
pipeline.fit(X, y)
funcs = ["score", "fit_transform"]
for func_name in funcs:
func = getattr(estimator, func_name, None)
if func is not None:
func_pipeline = getattr(pipeline, func_name)
result = func(X, y)
result_pipe = func_pipeline(X, y)
assert_allclose_dense_sparse(result, result_pipe)
@ignore_warnings
def check_fit_score_takes_y(name, estimator_orig):
# check that all estimators accept an optional y
# in fit and score so they can be used in pipelines
rnd = np.random.RandomState(0)
X = rnd.uniform(size=(10, 3))
X = pairwise_estimator_convert_X(X, estimator_orig)
y = np.arange(10) % 3
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
set_random_state(estimator)
funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"]
for func_name in funcs:
func = getattr(estimator, func_name, None)
if func is not None:
func(X, y)
args = [p.name for p in signature(func).parameters.values()]
if args[0] == "self":
# if_delegate_has_method makes methods into functions
# with an explicit "self", so need to shift arguments
args = args[1:]
assert_true(args[1] in ["y", "Y"],
"Expected y or Y as second argument for method "
"%s of %s. Got arguments: %r."
% (func_name, type(estimator).__name__, args))
@ignore_warnings
def check_estimators_dtypes(name, estimator_orig):
rnd = np.random.RandomState(0)
X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32)
X_train_32 = pairwise_estimator_convert_X(X_train_32, estimator_orig)
X_train_64 = X_train_32.astype(np.float64)
X_train_int_64 = X_train_32.astype(np.int64)
X_train_int_32 = X_train_32.astype(np.int32)
y = X_train_int_64[:, 0]
y = multioutput_estimator_convert_y_2d(estimator_orig, y)
methods = ["predict", "transform", "decision_function", "predict_proba"]
for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]:
estimator = clone(estimator_orig)
set_random_state(estimator, 1)
estimator.fit(X_train, y)
for method in methods:
if hasattr(estimator, method):
getattr(estimator, method)(X_train)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_empty_data_messages(name, estimator_orig):
e = clone(estimator_orig)
set_random_state(e, 1)
X_zero_samples = np.empty(0).reshape(0, 3)
# The precise message can change depending on whether X or y is
# validated first. Let us test the type of exception only:
with assert_raises(ValueError, msg="The estimator {} does not"
" raise an error when an empty data is used "
"to train. Perhaps use "
"check_array in train.".format(name)):
e.fit(X_zero_samples, [])
X_zero_features = np.empty(0).reshape(3, 0)
# the following y should be accepted by both classifiers and regressors
# and ignored by unsupervised models
y = multioutput_estimator_convert_y_2d(e, np.array([1, 0, 1]))
msg = (r"0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* "
"is required.")
assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y)
@ignore_warnings(category=DeprecationWarning)
def check_estimators_nan_inf(name, estimator_orig):
# Checks that Estimator X's do not contain NaN or inf.
rnd = np.random.RandomState(0)
X_train_finite = pairwise_estimator_convert_X(rnd.uniform(size=(10, 3)),
estimator_orig)
X_train_nan = rnd.uniform(size=(10, 3))
X_train_nan[0, 0] = np.nan
X_train_inf = rnd.uniform(size=(10, 3))
X_train_inf[0, 0] = np.inf
y = np.ones(10)
y[:5] = 0
y = multioutput_estimator_convert_y_2d(estimator_orig, y)
error_string_fit = "Estimator doesn't check for NaN and inf in fit."
error_string_predict = ("Estimator doesn't check for NaN and inf in"
" predict.")
error_string_transform = ("Estimator doesn't check for NaN and inf in"
" transform.")
for X_train in [X_train_nan, X_train_inf]:
# catch deprecation warnings
with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
estimator = clone(estimator_orig)
set_random_state(estimator, 1)
# try to fit
try:
estimator.fit(X_train, y)
except ValueError as e:
if 'inf' not in repr(e) and 'NaN' not in repr(e):
print(error_string_fit, estimator, e)
traceback.print_exc(file=sys.stdout)
raise e
except Exception as exc:
print(error_string_fit, estimator, exc)
traceback.print_exc(file=sys.stdout)
raise exc
else:
raise AssertionError(error_string_fit, estimator)
# actually fit
estimator.fit(X_train_finite, y)
# predict
if hasattr(estimator, "predict"):
try:
estimator.predict(X_train)
except ValueError as e:
if 'inf' not in repr(e) and 'NaN' not in repr(e):
print(error_string_predict, estimator, e)
traceback.print_exc(file=sys.stdout)
raise e
except Exception as exc:
print(error_string_predict, estimator, exc)
traceback.print_exc(file=sys.stdout)
else:
raise AssertionError(error_string_predict, estimator)
# transform
if hasattr(estimator, "transform"):
try:
estimator.transform(X_train)
except ValueError as e:
if 'inf' not in repr(e) and 'NaN' not in repr(e):
print(error_string_transform, estimator, e)
traceback.print_exc(file=sys.stdout)
raise e
except Exception as exc:
print(error_string_transform, estimator, exc)
traceback.print_exc(file=sys.stdout)
else:
raise AssertionError(error_string_transform, estimator)
@ignore_warnings
def check_estimators_pickle(name, estimator_orig):
"""Test that we can pickle all estimators"""
check_methods = ["predict", "transform", "decision_function",
"predict_proba"]
X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
random_state=0, n_features=2, cluster_std=0.1)
# some estimators can't do features less than 0
X -= X.min()
X = pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel)
# include NaN values when the estimator should deal with them
if name in ALLOW_NAN:
# set randomly 10 elements to np.nan
rng = np.random.RandomState(42)
mask = rng.choice(X.size, 10, replace=False)
X.reshape(-1)[mask] = np.nan
estimator = clone(estimator_orig)
# some estimators only take multioutputs
y = multioutput_estimator_convert_y_2d(estimator, y)
set_random_state(estimator)
estimator.fit(X, y)
result = dict()
for method in check_methods:
if hasattr(estimator, method):
result[method] = getattr(estimator, method)(X)
# pickle and unpickle!
pickled_estimator = pickle.dumps(estimator)
if estimator.__module__.startswith('sklearn.'):
assert b"version" in pickled_estimator
unpickled_estimator = pickle.loads(pickled_estimator)
result = dict()
for method in check_methods:
if hasattr(estimator, method):
result[method] = getattr(estimator, method)(X)
for method in result:
unpickled_result = getattr(unpickled_estimator, method)(X)
assert_allclose_dense_sparse(result[method], unpickled_result)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_partial_fit_n_features(name, estimator_orig):
# check if number of features changes between calls to partial_fit.
if not hasattr(estimator_orig, 'partial_fit'):
return
estimator = clone(estimator_orig)
X, y = make_blobs(n_samples=50, random_state=1)
X -= X.min()
try:
if is_classifier(estimator):
classes = np.unique(y)
estimator.partial_fit(X, y, classes=classes)
else:
estimator.partial_fit(X, y)
except NotImplementedError:
return
with assert_raises(ValueError,
msg="The estimator {} does not raise an"
" error when the number of features"
" changes between calls to "
"partial_fit.".format(name)):
estimator.partial_fit(X[:, :-1], y)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_clustering(name, clusterer_orig, readonly_memmap=False):
clusterer = clone(clusterer_orig)
X, y = make_blobs(n_samples=50, random_state=1)
X, y = shuffle(X, y, random_state=7)
X = StandardScaler().fit_transform(X)
rng = np.random.RandomState(7)
X_noise = np.concatenate([X, rng.uniform(low=-3, high=3, size=(5, 2))])
if readonly_memmap:
X, y, X_noise = create_memmap_backed_data([X, y, X_noise])
n_samples, n_features = X.shape
# catch deprecation and neighbors warnings
if hasattr(clusterer, "n_clusters"):
clusterer.set_params(n_clusters=3)
set_random_state(clusterer)
if name == 'AffinityPropagation':
clusterer.set_params(preference=-100)
clusterer.set_params(max_iter=100)
# fit
clusterer.fit(X)
# with lists
clusterer.fit(X.tolist())
pred = clusterer.labels_
assert_equal(pred.shape, (n_samples,))
assert_greater(adjusted_rand_score(pred, y), 0.4)
# fit another time with ``fit_predict`` and compare results
if name == 'SpectralClustering':
# there is no way to make Spectral clustering deterministic :(
return
set_random_state(clusterer)
with warnings.catch_warnings(record=True):
pred2 = clusterer.fit_predict(X)
assert_array_equal(pred, pred2)
# fit_predict(X) and labels_ should be of type int
assert_in(pred.dtype, [np.dtype('int32'), np.dtype('int64')])
assert_in(pred2.dtype, [np.dtype('int32'), np.dtype('int64')])
# Add noise to X to test the possible values of the labels
labels = clusterer.fit_predict(X_noise)
# There should be at least one sample in every cluster. Equivalently
# labels_ should contain all the consecutive values between its
# min and its max.
labels_sorted = np.unique(labels)
assert_array_equal(labels_sorted, np.arange(labels_sorted[0],
labels_sorted[-1] + 1))
# Labels are expected to start at 0 (no noise) or -1 (if noise)
assert labels_sorted[0] in [0, -1]
# Labels should be less than n_clusters - 1
if hasattr(clusterer, 'n_clusters'):
n_clusters = getattr(clusterer, 'n_clusters')
assert_greater_equal(n_clusters - 1, labels_sorted[-1])
# else labels should be less than max(labels_) which is necessarily true
@ignore_warnings(category=DeprecationWarning)
def check_clusterer_compute_labels_predict(name, clusterer_orig):
"""Check that predict is invariant of compute_labels"""
X, y = make_blobs(n_samples=20, random_state=0)
clusterer = clone(clusterer_orig)
if hasattr(clusterer, "compute_labels"):
# MiniBatchKMeans
if hasattr(clusterer, "random_state"):
clusterer.set_params(random_state=0)
X_pred1 = clusterer.fit(X).predict(X)
clusterer.set_params(compute_labels=False)
X_pred2 = clusterer.fit(X).predict(X)
assert_array_equal(X_pred1, X_pred2)
@ignore_warnings(category=DeprecationWarning)
def check_classifiers_one_label(name, classifier_orig):
error_string_fit = "Classifier can't train when only one class is present."
error_string_predict = ("Classifier can't predict when only one class is "
"present.")
rnd = np.random.RandomState(0)
X_train = rnd.uniform(size=(10, 3))
X_test = rnd.uniform(size=(10, 3))
y = np.ones(10)
# catch deprecation warnings
with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
classifier = clone(classifier_orig)
# try to fit
try:
classifier.fit(X_train, y)
except ValueError as e:
if 'class' not in repr(e):
print(error_string_fit, classifier, e)
traceback.print_exc(file=sys.stdout)
raise e
else:
return
except Exception as exc:
print(error_string_fit, classifier, exc)
traceback.print_exc(file=sys.stdout)
raise exc
# predict
try:
assert_array_equal(classifier.predict(X_test), y)
except Exception as exc:
print(error_string_predict, classifier, exc)
raise exc
@ignore_warnings # Warnings are raised by decision function
def check_classifiers_train(name, classifier_orig, readonly_memmap=False):
X_m, y_m = make_blobs(n_samples=300, random_state=0)
X_m, y_m = shuffle(X_m, y_m, random_state=7)
X_m = StandardScaler().fit_transform(X_m)
# generate binary problem from multi-class one
y_b = y_m[y_m != 2]
X_b = X_m[y_m != 2]
if name in ['BernoulliNB', 'MultinomialNB', 'ComplementNB']:
X_m -= X_m.min()
X_b -= X_b.min()
if readonly_memmap:
X_m, y_m, X_b, y_b = create_memmap_backed_data([X_m, y_m, X_b, y_b])
for (X, y) in [(X_m, y_m), (X_b, y_b)]:
classes = np.unique(y)
n_classes = len(classes)
n_samples, n_features = X.shape
classifier = clone(classifier_orig)
X = pairwise_estimator_convert_X(X, classifier_orig)
set_random_state(classifier)
# raises error on malformed input for fit
with assert_raises(ValueError, msg="The classifier {} does not"
" raise an error when incorrect/malformed input "
"data for fit is passed. The number of training "
"examples is not the same as the number of labels."
" Perhaps use check_X_y in fit.".format(name)):
classifier.fit(X, y[:-1])
# fit
classifier.fit(X, y)
# with lists
classifier.fit(X.tolist(), y.tolist())
assert hasattr(classifier, "classes_")
y_pred = classifier.predict(X)
assert_equal(y_pred.shape, (n_samples,))
# training set performance
if name not in ['BernoulliNB', 'MultinomialNB', 'ComplementNB']:
assert_greater(accuracy_score(y, y_pred), 0.83)
# raises error on malformed input for predict
if _is_pairwise(classifier):
with assert_raises(ValueError, msg="The classifier {} does not"
" raise an error when shape of X"
"in predict is not equal to (n_test_samples,"
"n_training_samples)".format(name)):
classifier.predict(X.reshape(-1, 1))
else:
with assert_raises(ValueError, msg="The classifier {} does not"
" raise an error when the number of features "
"in predict is different from the number of"
" features in fit.".format(name)):
classifier.predict(X.T)
if hasattr(classifier, "decision_function"):
try:
# decision_function agrees with predict
decision = classifier.decision_function(X)
if n_classes == 2:
assert_equal(decision.shape, (n_samples,))
dec_pred = (decision.ravel() > 0).astype(np.int)
assert_array_equal(dec_pred, y_pred)
if (n_classes == 3 and
# 1on1 of LibSVM works differently
not isinstance(classifier, BaseLibSVM)):
assert_equal(decision.shape, (n_samples, n_classes))
assert_array_equal(np.argmax(decision, axis=1), y_pred)
# raises error on malformed input for decision_function
if _is_pairwise(classifier):
with assert_raises(ValueError, msg="The classifier {} does"
" not raise an error when the "
"shape of X in decision_function is "
"not equal to (n_test_samples, "
"n_training_samples) in fit."
.format(name)):
classifier.decision_function(X.reshape(-1, 1))
else:
with assert_raises(ValueError, msg="The classifier {} does"
" not raise an error when the number "
"of features in decision_function is "
"different from the number of features"
" in fit.".format(name)):
classifier.decision_function(X.T)
except NotImplementedError:
pass
if hasattr(classifier, "predict_proba"):
# predict_proba agrees with predict
y_prob = classifier.predict_proba(X)
assert_equal(y_prob.shape, (n_samples, n_classes))
assert_array_equal(np.argmax(y_prob, axis=1), y_pred)
# check that probas for all classes sum to one
assert_allclose(np.sum(y_prob, axis=1), np.ones(n_samples))
# raises error on malformed input for predict_proba
if _is_pairwise(classifier_orig):
with assert_raises(ValueError, msg="The classifier {} does not"
" raise an error when the shape of X"
"in predict_proba is not equal to "
"(n_test_samples, n_training_samples)."
.format(name)):
classifier.predict_proba(X.reshape(-1, 1))
else:
with assert_raises(ValueError, msg="The classifier {} does not"
" raise an error when the number of "
"features in predict_proba is different "
"from the number of features in fit."
.format(name)):
classifier.predict_proba(X.T)
if hasattr(classifier, "predict_log_proba"):
# predict_log_proba is a transformation of predict_proba
y_log_prob = classifier.predict_log_proba(X)
assert_allclose(y_log_prob, np.log(y_prob), 8, atol=1e-9)
assert_array_equal(np.argsort(y_log_prob), np.argsort(y_prob))
def check_outliers_train(name, estimator_orig, readonly_memmap=True):
X, _ = make_blobs(n_samples=300, random_state=0)
X = shuffle(X, random_state=7)
if readonly_memmap:
X = create_memmap_backed_data(X)
n_samples, n_features = X.shape
estimator = clone(estimator_orig)
set_random_state(estimator)
# fit
estimator.fit(X)
# with lists
estimator.fit(X.tolist())
y_pred = estimator.predict(X)
assert y_pred.shape == (n_samples,)
assert y_pred.dtype.kind == 'i'
assert_array_equal(np.unique(y_pred), np.array([-1, 1]))
decision = estimator.decision_function(X)
assert decision.dtype == np.dtype('float')
score = estimator.score_samples(X)
assert score.dtype == np.dtype('float')
# raises error on malformed input for predict
assert_raises(ValueError, estimator.predict, X.T)
# decision_function agrees with predict
decision = estimator.decision_function(X)
assert decision.shape == (n_samples,)
dec_pred = (decision >= 0).astype(np.int)
dec_pred[dec_pred == 0] = -1
assert_array_equal(dec_pred, y_pred)
# raises error on malformed input for decision_function
assert_raises(ValueError, estimator.decision_function, X.T)
# decision_function is a translation of score_samples
y_scores = estimator.score_samples(X)
assert y_scores.shape == (n_samples,)
y_dec = y_scores - estimator.offset_
assert_allclose(y_dec, decision)
# raises error on malformed input for score_samples
assert_raises(ValueError, estimator.score_samples, X.T)
# contamination parameter (not for OneClassSVM which has the nu parameter)
if (hasattr(estimator, 'contamination')
and not hasattr(estimator, 'novelty')):
# proportion of outliers equal to contamination parameter when not
# set to 'auto'. This is true for the training set and cannot thus be
# checked as follows for estimators with a novelty parameter such as
# LocalOutlierFactor (tested in check_outliers_fit_predict)
contamination = 0.1
estimator.set_params(contamination=contamination)
estimator.fit(X)
y_pred = estimator.predict(X)
assert_almost_equal(np.mean(y_pred != 1), contamination)
# raises error when contamination is a scalar and not in [0,1]
for contamination in [-0.5, 2.3]:
estimator.set_params(contamination=contamination)
assert_raises(ValueError, estimator.fit, X)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_fit_returns_self(name, estimator_orig,
readonly_memmap=False):
"""Check if self is returned when calling fit"""
X, y = make_blobs(random_state=0, n_samples=9, n_features=4)
# some want non-negative input
X -= X.min()
X = pairwise_estimator_convert_X(X, estimator_orig)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
if readonly_memmap:
X, y = create_memmap_backed_data([X, y])
set_random_state(estimator)
assert estimator.fit(X, y) is estimator
@ignore_warnings
def check_estimators_unfitted(name, estimator_orig):
"""Check that predict raises an exception in an unfitted estimator.
Unfitted estimators should raise either AttributeError or ValueError.
The specific exception type NotFittedError inherits from both and can
therefore be adequately raised for that purpose.
"""
# Common test for Regressors, Classifiers and Outlier detection estimators
X, y = _boston_subset()
estimator = clone(estimator_orig)
msg = "fit"
if hasattr(estimator, 'predict'):
assert_raise_message((AttributeError, ValueError), msg,
estimator.predict, X)
if hasattr(estimator, 'decision_function'):
assert_raise_message((AttributeError, ValueError), msg,
estimator.decision_function, X)
if hasattr(estimator, 'predict_proba'):
assert_raise_message((AttributeError, ValueError), msg,
estimator.predict_proba, X)
if hasattr(estimator, 'predict_log_proba'):
assert_raise_message((AttributeError, ValueError), msg,
estimator.predict_log_proba, X)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_supervised_y_2d(name, estimator_orig):
if "MultiTask" in name:
# These only work on 2d, so this test makes no sense
return
rnd = np.random.RandomState(0)
X = pairwise_estimator_convert_X(rnd.uniform(size=(10, 3)), estimator_orig)
y = np.arange(10) % 3
estimator = clone(estimator_orig)
set_random_state(estimator)
# fit
estimator.fit(X, y)
y_pred = estimator.predict(X)
set_random_state(estimator)
# Check that when a 2D y is given, a DataConversionWarning is
# raised
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always", DataConversionWarning)
warnings.simplefilter("ignore", RuntimeWarning)
estimator.fit(X, y[:, np.newaxis])
y_pred_2d = estimator.predict(X)
msg = "expected 1 DataConversionWarning, got: %s" % (
", ".join([str(w_x) for w_x in w]))
if name not in MULTI_OUTPUT:
# check that we warned if we don't support multi-output
assert_greater(len(w), 0, msg)
assert_true("DataConversionWarning('A column-vector y"
" was passed when a 1d array was expected" in msg)
assert_allclose(y_pred.ravel(), y_pred_2d.ravel())
@ignore_warnings
def check_classifiers_predictions(X, y, name, classifier_orig):
classes = np.unique(y)
classifier = clone(classifier_orig)
if name == 'BernoulliNB':
X = X > X.mean()
set_random_state(classifier)
classifier.fit(X, y)
y_pred = classifier.predict(X)
if hasattr(classifier, "decision_function"):
decision = classifier.decision_function(X)
n_samples, n_features = X.shape
assert isinstance(decision, np.ndarray)
if len(classes) == 2:
dec_pred = (decision.ravel() > 0).astype(np.int)
dec_exp = classifier.classes_[dec_pred]
assert_array_equal(dec_exp, y_pred,
err_msg="decision_function does not match "
"classifier for %r: expected '%s', got '%s'" %
(classifier, ", ".join(map(str, dec_exp)),
", ".join(map(str, y_pred))))
elif getattr(classifier, 'decision_function_shape', 'ovr') == 'ovr':
decision_y = np.argmax(decision, axis=1).astype(int)
y_exp = classifier.classes_[decision_y]
assert_array_equal(y_exp, y_pred,
err_msg="decision_function does not match "
"classifier for %r: expected '%s', got '%s'" %
(classifier, ", ".join(map(str, y_exp)),
", ".join(map(str, y_pred))))
# training set performance
if name != "ComplementNB":
# This is a pathological data set for ComplementNB.
# For some specific cases 'ComplementNB' predicts less classes
# than expected
assert_array_equal(np.unique(y), np.unique(y_pred))
assert_array_equal(classes, classifier.classes_,
err_msg="Unexpected classes_ attribute for %r: "
"expected '%s', got '%s'" %
(classifier, ", ".join(map(str, classes)),
", ".join(map(str, classifier.classes_))))
def choose_check_classifiers_labels(name, y, y_names):
return y if name in ["LabelPropagation", "LabelSpreading"] else y_names
def check_classifiers_classes(name, classifier_orig):
X_multiclass, y_multiclass = make_blobs(n_samples=30, random_state=0,
cluster_std=0.1)
X_multiclass, y_multiclass = shuffle(X_multiclass, y_multiclass,
random_state=7)
X_multiclass = StandardScaler().fit_transform(X_multiclass)
# We need to make sure that we have non negative data, for things
# like NMF
X_multiclass -= X_multiclass.min() - .1
X_binary = X_multiclass[y_multiclass != 2]
y_binary = y_multiclass[y_multiclass != 2]
X_multiclass = pairwise_estimator_convert_X(X_multiclass, classifier_orig)
X_binary = pairwise_estimator_convert_X(X_binary, classifier_orig)
labels_multiclass = ["one", "two", "three"]
labels_binary = ["one", "two"]
y_names_multiclass = np.take(labels_multiclass, y_multiclass)
y_names_binary = np.take(labels_binary, y_binary)
for X, y, y_names in [(X_multiclass, y_multiclass, y_names_multiclass),
(X_binary, y_binary, y_names_binary)]:
for y_names_i in [y_names, y_names.astype('O')]:
y_ = choose_check_classifiers_labels(name, y, y_names_i)
check_classifiers_predictions(X, y_, name, classifier_orig)
labels_binary = [-1, 1]
y_names_binary = np.take(labels_binary, y_binary)
y_binary = choose_check_classifiers_labels(name, y_binary, y_names_binary)
check_classifiers_predictions(X_binary, y_binary, name, classifier_orig)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_regressors_int(name, regressor_orig):
X, _ = _boston_subset()
X = pairwise_estimator_convert_X(X[:50], regressor_orig)
rnd = np.random.RandomState(0)
y = rnd.randint(3, size=X.shape[0])
y = multioutput_estimator_convert_y_2d(regressor_orig, y)
rnd = np.random.RandomState(0)
# separate estimators to control random seeds
regressor_1 = clone(regressor_orig)
regressor_2 = clone(regressor_orig)
set_random_state(regressor_1)
set_random_state(regressor_2)
if name in CROSS_DECOMPOSITION:
y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
y_ = y_.T
else:
y_ = y
# fit
regressor_1.fit(X, y_)
pred1 = regressor_1.predict(X)
regressor_2.fit(X, y_.astype(np.float))
pred2 = regressor_2.predict(X)
assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_regressors_train(name, regressor_orig, readonly_memmap=False):
X, y = _boston_subset()
X = pairwise_estimator_convert_X(X, regressor_orig)
y = StandardScaler().fit_transform(y.reshape(-1, 1)) # X is already scaled
y = y.ravel()
regressor = clone(regressor_orig)
y = multioutput_estimator_convert_y_2d(regressor, y)
if name in CROSS_DECOMPOSITION:
rnd = np.random.RandomState(0)
y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
y_ = y_.T
else:
y_ = y
if readonly_memmap:
X, y, y_ = create_memmap_backed_data([X, y, y_])
if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'):
# linear regressors need to set alpha, but not generalized CV ones
regressor.alpha = 0.01
if name == 'PassiveAggressiveRegressor':
regressor.C = 0.01
# raises error on malformed input for fit
with assert_raises(ValueError, msg="The classifier {} does not"
" raise an error when incorrect/malformed input "
"data for fit is passed. The number of training "
"examples is not the same as the number of "
"labels. Perhaps use check_X_y in fit.".format(name)):
regressor.fit(X, y[:-1])
# fit
set_random_state(regressor)
regressor.fit(X, y_)
regressor.fit(X.tolist(), y_.tolist())
y_pred = regressor.predict(X)
assert_equal(y_pred.shape, y_.shape)
# TODO: find out why PLS and CCA fail. RANSAC is random
# and furthermore assumes the presence of outliers, hence
# skipped
if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'):
assert_greater(regressor.score(X, y_), 0.5)
@ignore_warnings
def check_regressors_no_decision_function(name, regressor_orig):
# checks whether regressors have decision_function or predict_proba
rng = np.random.RandomState(0)
X = rng.normal(size=(10, 4))
regressor = clone(regressor_orig)
y = multioutput_estimator_convert_y_2d(regressor, X[:, 0])
if hasattr(regressor, "n_components"):
# FIXME CCA, PLS is not robust to rank 1 effects
regressor.n_components = 1
regressor.fit(X, y)
funcs = ["decision_function", "predict_proba", "predict_log_proba"]
for func_name in funcs:
func = getattr(regressor, func_name, None)
if func is None:
# doesn't have function
continue
# has function. Should raise deprecation warning
msg = func_name
assert_warns_message(DeprecationWarning, msg, func, X)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_class_weight_classifiers(name, classifier_orig):
if name == "NuSVC":
# the sparse version has a parameter that doesn't do anything
raise SkipTest("Not testing NuSVC class weight as it is ignored.")
if name.endswith("NB"):
# NaiveBayes classifiers have a somewhat different interface.
# FIXME SOON!
raise SkipTest
for n_centers in [2, 3]:
# create a very noisy dataset
X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,
random_state=0)
# can't use gram_if_pairwise() here, setting up gram matrix manually
if _is_pairwise(classifier_orig):
X_test = rbf_kernel(X_test, X_train)
X_train = rbf_kernel(X_train, X_train)
n_centers = len(np.unique(y_train))
if n_centers == 2:
class_weight = {0: 1000, 1: 0.0001}
else:
class_weight = {0: 1000, 1: 0.0001, 2: 0.0001}
classifier = clone(classifier_orig).set_params(
class_weight=class_weight)
if hasattr(classifier, "n_iter"):
classifier.set_params(n_iter=100)
if hasattr(classifier, "max_iter"):
classifier.set_params(max_iter=1000)
if hasattr(classifier, "min_weight_fraction_leaf"):
classifier.set_params(min_weight_fraction_leaf=0.01)
set_random_state(classifier)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
# XXX: Generally can use 0.89 here. On Windows, LinearSVC gets
# 0.88 (Issue #9111)
assert_greater(np.mean(y_pred == 0), 0.87)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_class_weight_balanced_classifiers(name, classifier_orig, X_train,
y_train, X_test, y_test, weights):
classifier = clone(classifier_orig)
if hasattr(classifier, "n_iter"):
classifier.set_params(n_iter=100)
if hasattr(classifier, "max_iter"):
classifier.set_params(max_iter=1000)
set_random_state(classifier)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
classifier.set_params(class_weight='balanced')
classifier.fit(X_train, y_train)
y_pred_balanced = classifier.predict(X_test)
assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'),
f1_score(y_test, y_pred, average='weighted'))
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_class_weight_balanced_linear_classifier(name, Classifier):
"""Test class weights with non-contiguous class labels."""
# this is run on classes, not instances, though this should be changed
X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y = np.array([1, 1, 1, -1, -1])
classifier = Classifier()
if hasattr(classifier, "n_iter"):
# This is a very small dataset, default n_iter are likely to prevent
# convergence
classifier.set_params(n_iter=1000)
if hasattr(classifier, "max_iter"):
classifier.set_params(max_iter=1000)
set_random_state(classifier)
# Let the model compute the class frequencies
classifier.set_params(class_weight='balanced')
coef_balanced = classifier.fit(X, y).coef_.copy()
# Count each label occurrence to reweight manually
n_samples = len(y)
n_classes = float(len(np.unique(y)))
class_weight = {1: n_samples / (np.sum(y == 1) * n_classes),
-1: n_samples / (np.sum(y == -1) * n_classes)}
classifier.set_params(class_weight=class_weight)
coef_manual = classifier.fit(X, y).coef_.copy()
assert_allclose(coef_balanced, coef_manual)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_overwrite_params(name, estimator_orig):
X, y = make_blobs(random_state=0, n_samples=9)
# some want non-negative input
X -= X.min()
X = pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel)
estimator = clone(estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator, y)
set_random_state(estimator)
# Make a physical copy of the original estimator parameters before fitting.
params = estimator.get_params()
original_params = deepcopy(params)
# Fit the model
estimator.fit(X, y)
# Compare the state of the model parameters with the original parameters
new_params = estimator.get_params()
for param_name, original_value in original_params.items():
new_value = new_params[param_name]
# We should never change or mutate the internal state of input
# parameters by default. To check this we use the joblib.hash function
# that introspects recursively any subobjects to compute a checksum.
# The only exception to this rule of immutable constructor parameters
# is possible RandomState instance but in this check we explicitly
# fixed the random_state params recursively to be integer seeds.
assert_equal(_joblib.hash(new_value), _joblib.hash(original_value),
"Estimator %s should not change or mutate "
" the parameter %s from %s to %s during fit."
% (name, param_name, original_value, new_value))
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_no_attributes_set_in_init(name, estimator):
"""Check setting during init. """
if hasattr(type(estimator).__init__, "deprecated_original"):
return
init_params = _get_args(type(estimator).__init__)
if IS_PYPY:
# __init__ signature has additional objects in PyPy
for key in ['obj']:
if key in init_params:
init_params.remove(key)
parents_init_params = [param for params_parent in
(_get_args(parent) for parent in
type(estimator).__mro__)
for param in params_parent]
# Test for no setting apart from parameters during init
invalid_attr = (set(vars(estimator)) - set(init_params)
- set(parents_init_params))
assert_false(invalid_attr,
"Estimator %s should not set any attribute apart"
" from parameters during init. Found attributes %s."
% (name, sorted(invalid_attr)))
# Ensure that each parameter is set in init
invalid_attr = (set(init_params) - set(vars(estimator))
- set(["self"]))
assert_false(invalid_attr,
"Estimator %s should store all parameters"
" as an attribute during init. Did not find "
"attributes %s." % (name, sorted(invalid_attr)))
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_sparsify_coefficients(name, estimator_orig):
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1],
[-1, -2], [2, 2], [-2, -2]])
y = [1, 1, 1, 2, 2, 2, 3, 3, 3]
est = clone(estimator_orig)
est.fit(X, y)
pred_orig = est.predict(X)
# test sparsify with dense inputs
est.sparsify()
assert sparse.issparse(est.coef_)
pred = est.predict(X)
assert_array_equal(pred, pred_orig)
# pickle and unpickle with sparse coef_
est = pickle.loads(pickle.dumps(est))
assert sparse.issparse(est.coef_)
pred = est.predict(X)
assert_array_equal(pred, pred_orig)
@ignore_warnings(category=DeprecationWarning)
def check_classifier_data_not_an_array(name, estimator_orig):
X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]])
X = pairwise_estimator_convert_X(X, estimator_orig)
y = [1, 1, 1, 2, 2, 2]
y = multioutput_estimator_convert_y_2d(estimator_orig, y)
check_estimators_data_not_an_array(name, estimator_orig, X, y)
@ignore_warnings(category=DeprecationWarning)
def check_regressor_data_not_an_array(name, estimator_orig):
X, y = _boston_subset(n_samples=50)
X = pairwise_estimator_convert_X(X, estimator_orig)
y = multioutput_estimator_convert_y_2d(estimator_orig, y)
check_estimators_data_not_an_array(name, estimator_orig, X, y)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_estimators_data_not_an_array(name, estimator_orig, X, y):
if name in CROSS_DECOMPOSITION:
raise SkipTest("Skipping check_estimators_data_not_an_array "
"for cross decomposition module as estimators "
"are not deterministic.")
# separate estimators to control random seeds
estimator_1 = clone(estimator_orig)
estimator_2 = clone(estimator_orig)
set_random_state(estimator_1)
set_random_state(estimator_2)
y_ = NotAnArray(np.asarray(y))
X_ = NotAnArray(np.asarray(X))
# fit
estimator_1.fit(X_, y_)
pred1 = estimator_1.predict(X_)
estimator_2.fit(X, y)
pred2 = estimator_2.predict(X)
assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)
def check_parameters_default_constructible(name, Estimator):
# this check works on classes, not instances
classifier = LinearDiscriminantAnalysis()
# test default-constructibility
# get rid of deprecation warnings
with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
if name in META_ESTIMATORS:
estimator = Estimator(classifier)
else:
estimator = Estimator()
# test cloning
clone(estimator)
# test __repr__
repr(estimator)
# test that set_params returns self
assert estimator.set_params() is estimator
# test if init does nothing but set parameters
# this is important for grid_search etc.
# We get the default parameters from init and then
# compare these against the actual values of the attributes.
# this comes from getattr. Gets rid of deprecation decorator.
init = getattr(estimator.__init__, 'deprecated_original',
estimator.__init__)
try:
def param_filter(p):
"""Identify hyper parameters of an estimator"""
return (p.name != 'self' and
p.kind != p.VAR_KEYWORD and
p.kind != p.VAR_POSITIONAL)
init_params = [p for p in signature(init).parameters.values()
if param_filter(p)]
except (TypeError, ValueError):
# init is not a python function.
# true for mixins
return
params = estimator.get_params()
if name in META_ESTIMATORS:
# they can need a non-default argument
init_params = init_params[1:]
for init_param in init_params:
assert_not_equal(init_param.default, init_param.empty,
"parameter %s for %s has no default value"
% (init_param.name, type(estimator).__name__))
assert_in(type(init_param.default),
[str, int, float, bool, tuple, type(None),
np.float64, types.FunctionType, Memory])
if init_param.name not in params.keys():
# deprecated parameter, not in get_params
assert init_param.default is None
continue
if (issubclass(Estimator, BaseSGD) and
init_param.name in ['tol', 'max_iter']):
# To remove in 0.21, when they get their future default values
continue
param_value = params[init_param.name]
if isinstance(param_value, np.ndarray):
assert_array_equal(param_value, init_param.default)
else:
if is_scalar_nan(param_value):
# Allows to set default parameters to np.nan
assert param_value is init_param.default, init_param.name
else:
assert param_value == init_param.default, init_param.name
def multioutput_estimator_convert_y_2d(estimator, y):
# Estimators in mono_output_task_error raise ValueError if y is of 1-D
# Convert into a 2-D y for those estimators.
if "MultiTask" in estimator.__class__.__name__:
return np.reshape(y, (-1, 1))
return y
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_non_transformer_estimators_n_iter(name, estimator_orig):
# Test that estimators that are not transformers with a parameter
# max_iter, return the attribute of n_iter_ at least 1.
# These models are dependent on external solvers like
# libsvm and accessing the iter parameter is non-trivial.
not_run_check_n_iter = ['Ridge', 'SVR', 'NuSVR', 'NuSVC',
'RidgeClassifier', 'SVC', 'RandomizedLasso',
'LogisticRegressionCV', 'LinearSVC',
'LogisticRegression']
# Tested in test_transformer_n_iter
not_run_check_n_iter += CROSS_DECOMPOSITION
if name in not_run_check_n_iter:
return
# LassoLars stops early for the default alpha=1.0 the iris dataset.
if name == 'LassoLars':
estimator = clone(estimator_orig).set_params(alpha=0.)
else:
estimator = clone(estimator_orig)
if hasattr(estimator, 'max_iter'):
iris = load_iris()
X, y_ = iris.data, iris.target
y_ = multioutput_estimator_convert_y_2d(estimator, y_)
set_random_state(estimator, 0)
if name == 'AffinityPropagation':
estimator.fit(X)
else:
estimator.fit(X, y_)
assert estimator.n_iter_ >= 1
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_transformer_n_iter(name, estimator_orig):
# Test that transformers with a parameter max_iter, return the
# attribute of n_iter_ at least 1.
estimator = clone(estimator_orig)
if hasattr(estimator, "max_iter"):
if name in CROSS_DECOMPOSITION:
# Check using default data
X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]]
y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]]
else:
X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
random_state=0, n_features=2, cluster_std=0.1)
X -= X.min() - 0.1
set_random_state(estimator, 0)
estimator.fit(X, y_)
# These return a n_iter per component.
if name in CROSS_DECOMPOSITION:
for iter_ in estimator.n_iter_:
assert_greater_equal(iter_, 1)
else:
assert_greater_equal(estimator.n_iter_, 1)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_get_params_invariance(name, estimator_orig):
# Checks if get_params(deep=False) is a subset of get_params(deep=True)
class T(BaseEstimator):
"""Mock classifier
"""
def __init__(self):
pass
def fit(self, X, y):
return self
def transform(self, X):
return X
e = clone(estimator_orig)
shallow_params = e.get_params(deep=False)
deep_params = e.get_params(deep=True)
assert_true(all(item in deep_params.items() for item in
shallow_params.items()))
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_set_params(name, estimator_orig):
# Check that get_params() returns the same thing
# before and after set_params() with some fuzz
estimator = clone(estimator_orig)
orig_params = estimator.get_params(deep=False)
msg = ("get_params result does not match what was passed to set_params")
estimator.set_params(**orig_params)
curr_params = estimator.get_params(deep=False)
assert_equal(set(orig_params.keys()), set(curr_params.keys()), msg)
for k, v in curr_params.items():
assert orig_params[k] is v, msg
# some fuzz values
test_values = [-np.inf, np.inf, None]
test_params = deepcopy(orig_params)
for param_name in orig_params.keys():
default_value = orig_params[param_name]
for value in test_values:
test_params[param_name] = value
try:
estimator.set_params(**test_params)
except (TypeError, ValueError) as e:
e_type = e.__class__.__name__
# Exception occurred, possibly parameter validation
warnings.warn("{} occurred during set_params. "
"It is recommended to delay parameter "
"validation until fit.".format(e_type))
change_warning_msg = "Estimator's parameters changed after " \
"set_params raised {}".format(e_type)
params_before_exception = curr_params
curr_params = estimator.get_params(deep=False)
try:
assert_equal(set(params_before_exception.keys()),
set(curr_params.keys()))
for k, v in curr_params.items():
assert params_before_exception[k] is v
except AssertionError:
warnings.warn(change_warning_msg)
else:
curr_params = estimator.get_params(deep=False)
assert_equal(set(test_params.keys()),
set(curr_params.keys()),
msg)
for k, v in curr_params.items():
assert test_params[k] is v, msg
test_params[param_name] = default_value
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_classifiers_regression_target(name, estimator_orig):
# Check if classifier throws an exception when fed regression targets
boston = load_boston()
X, y = boston.data, boston.target
e = clone(estimator_orig)
msg = 'Unknown label type: '
assert_raises_regex(ValueError, msg, e.fit, X, y)
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_decision_proba_consistency(name, estimator_orig):
# Check whether an estimator having both decision_function and
# predict_proba methods has outputs with perfect rank correlation.
centers = [(2, 2), (4, 4)]
X, y = make_blobs(n_samples=100, random_state=0, n_features=4,
centers=centers, cluster_std=1.0, shuffle=True)
X_test = np.random.randn(20, 2) + 4
estimator = clone(estimator_orig)
if (hasattr(estimator, "decision_function") and
hasattr(estimator, "predict_proba")):
estimator.fit(X, y)
a = estimator.predict_proba(X_test)[:, 1]
b = estimator.decision_function(X_test)
assert_array_equal(rankdata(a), rankdata(b))
def check_outliers_fit_predict(name, estimator_orig):
# Check fit_predict for outlier detectors.
X, _ = make_blobs(n_samples=300, random_state=0)
X = shuffle(X, random_state=7)
n_samples, n_features = X.shape
estimator = clone(estimator_orig)
set_random_state(estimator)
y_pred = estimator.fit_predict(X)
assert y_pred.shape == (n_samples,)
assert y_pred.dtype.kind == 'i'
assert_array_equal(np.unique(y_pred), np.array([-1, 1]))
# check fit_predict = fit.predict when the estimator has both a predict and
# a fit_predict method. recall that it is already assumed here that the
# estimator has a fit_predict method
if hasattr(estimator, 'predict'):
y_pred_2 = estimator.fit(X).predict(X)
assert_array_equal(y_pred, y_pred_2)
if hasattr(estimator, "contamination"):
# proportion of outliers equal to contamination parameter when not
# set to 'auto'
contamination = 0.1
estimator.set_params(contamination=contamination)
y_pred = estimator.fit_predict(X)
assert_almost_equal(np.mean(y_pred != 1), contamination)
# raises error when contamination is a scalar and not in [0,1]
for contamination in [-0.5, 2.3]:
estimator.set_params(contamination=contamination)
assert_raises(ValueError, estimator.fit_predict, X)
|