File: graph_shortest_path.pyx

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (610 lines) | stat: -rw-r--r-- 20,202 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
"""
Routines for performing shortest-path graph searches

The main interface is in the function `graph_shortest_path`.  This
calls cython routines that compute the shortest path using either
the Floyd-Warshall algorithm, or Dykstra's algorithm with Fibonacci Heaps.
"""

# Author: Jake Vanderplas  -- <vanderplas@astro.washington.edu>
# License: BSD 3 clause, (C) 2011

import numpy as np
cimport numpy as np

from scipy.sparse import csr_matrix, isspmatrix, isspmatrix_csr

cimport cython

from libc.stdlib cimport malloc, free

np.import_array()

DTYPE = np.float64
ctypedef np.float64_t DTYPE_t

ITYPE = np.int32
ctypedef np.int32_t ITYPE_t


def graph_shortest_path(dist_matrix, directed=True, method='auto'):
    """
    Perform a shortest-path graph search on a positive directed or
    undirected graph.

    Parameters
    ----------
    dist_matrix : arraylike or sparse matrix, shape = (N,N)
        Array of positive distances.
        If vertex i is connected to vertex j, then dist_matrix[i,j] gives
        the distance between the vertices.
        If vertex i is not connected to vertex j, then dist_matrix[i,j] = 0
    directed : boolean
        if True, then find the shortest path on a directed graph: only
        progress from a point to its neighbors, not the other way around.
        if False, then find the shortest path on an undirected graph: the
        algorithm can progress from a point to its neighbors and vice versa.
    method : string ['auto'|'FW'|'D']
        method to use.  Options are
        'auto' : attempt to choose the best method for the current problem
        'FW' : Floyd-Warshall algorithm.  O[N^3]
        'D' : Dijkstra's algorithm with Fibonacci stacks.  O[(k+log(N))N^2]

    Returns
    -------
    G : np.ndarray, float, shape = [N,N]
        G[i,j] gives the shortest distance from point i to point j
        along the graph.

    Notes
    -----
    As currently implemented, Dijkstra's algorithm does not work for
    graphs with direction-dependent distances when directed == False.
    i.e., if dist_matrix[i,j] and dist_matrix[j,i] are not equal and
    both are nonzero, method='D' will not necessarily yield the correct
    result.

    Also, these routines have not been tested for graphs with negative
    distances.  Negative distances can lead to infinite cycles that must
    be handled by specialized algorithms.
    """
    if not isspmatrix_csr(dist_matrix):
        dist_matrix = csr_matrix(dist_matrix)

    N = dist_matrix.shape[0]
    Nk = len(dist_matrix.data)

    if method == 'auto':
        if Nk < N * N / 4:
            method = 'D'
        else:
            method = 'FW'

    if method == 'FW':
        graph = np.asarray(dist_matrix.toarray(), dtype=DTYPE, order='C')
        floyd_warshall(graph, directed)
    elif method == 'D':
        graph = np.zeros((N, N), dtype=DTYPE, order='C')
        dijkstra(dist_matrix, graph, directed)
    else:
        raise ValueError("unrecognized method '%s'" % method)

    return graph


@cython.boundscheck(False)
cdef np.ndarray floyd_warshall(np.ndarray[DTYPE_t, ndim=2, mode='c'] graph,
                              int directed=0):
    """
    FloydWarshall algorithm

    Parameters
    ----------
    graph : ndarray
        on input, graph is the matrix of distances between connected points.
        unconnected points have distance=0
        on exit, graph is overwritten with the output
    directed : bool, default = False
        if True, then the algorithm will only traverse from a point to
        its neighbors when finding the shortest path.
        if False, then the algorithm will traverse all paths in both
        directions.

    Returns
    -------
    graph : ndarray
        the matrix of shortest paths between points.
        If no path exists, the path length is zero
    """
    cdef int N = graph.shape[0]
    assert graph.shape[1] == N

    cdef unsigned int i, j, k, m

    cdef DTYPE_t infinity = np.inf
    cdef DTYPE_t sum_ijk

    #initialize all distances to infinity
    graph[np.where(graph == 0)] = infinity

    #graph[i,i] should be zero
    graph.flat[::N + 1] = 0

    # for a non-directed graph, we need to symmetrize the distances
    if not directed:
        for i from 0 <= i < N:
            for j from i + 1 <= j < N:
                if graph[j, i] <= graph[i, j]:
                    graph[i, j] = graph[j, i]
                else:
                    graph[j, i] = graph[i, j]

    #now perform the Floyd-Warshall algorithm
    for k from 0 <= k < N:
        for i from 0 <= i < N:
            if graph[i, k] == infinity:
                continue
            for j from 0 <= j < N:
                sum_ijk = graph[i, k] + graph[k, j]
                if sum_ijk < graph[i, j]:
                    graph[i, j] = sum_ijk

    graph[np.where(np.isinf(graph))] = 0

    return graph


@cython.boundscheck(False)
cdef np.ndarray dijkstra(dist_matrix,
                         np.ndarray[DTYPE_t, ndim=2] graph,
                         int directed=0):
    """
    Dijkstra algorithm using Fibonacci Heaps

    Parameters
    ----------
    graph : array or sparse matrix
        dist_matrix is the matrix of distances between connected points.
        unconnected points have distance=0.  It will be converted to
        a csr_matrix internally
    indptr :
        These arrays encode a distance matrix in compressed-sparse-row
        format.
    graph : ndarray
        on input, graph is the matrix of distances between connected points.
        unconnected points have distance=0
        on exit, graph is overwritten with the output
    directed : bool, default = False
        if True, then the algorithm will only traverse from a point to
        its neighbors when finding the shortest path.
        if False, then the algorithm will traverse all paths in both
        directions.

    Returns
    -------
    graph : array
        the matrix of shortest paths between points.
        If no path exists, the path length is zero
    """
    cdef unsigned int N = graph.shape[0]
    cdef unsigned int i

    cdef FibonacciHeap heap

    cdef FibonacciNode* nodes = <FibonacciNode*> malloc(N *
                                                        sizeof(FibonacciNode))

    cdef np.ndarray distances, neighbors, indptr
    cdef np.ndarray distances2, neighbors2, indptr2

    if not isspmatrix_csr(dist_matrix):
        dist_matrix = csr_matrix(dist_matrix)

    distances = np.asarray(dist_matrix.data, dtype=DTYPE, order='C')
    neighbors = np.asarray(dist_matrix.indices, dtype=ITYPE, order='C')
    indptr = np.asarray(dist_matrix.indptr, dtype=ITYPE, order='C')

    for i from 0 <= i < N:
        initialize_node(&nodes[i], i)

    heap.min_node = NULL

    if directed:
        for i from 0 <= i < N:
            dijkstra_directed_one_row(i, neighbors, distances, indptr,
                                      graph, &heap, nodes)
    else:
        #use the csr -> csc sparse matrix conversion to quickly get
        # both directions of neigbors
        dist_matrix_T = dist_matrix.T.tocsr()

        distances2 = np.asarray(dist_matrix_T.data,
                                dtype=DTYPE, order='C')
        neighbors2 = np.asarray(dist_matrix_T.indices,
                                dtype=ITYPE, order='C')
        indptr2 = np.asarray(dist_matrix_T.indptr,
                             dtype=ITYPE, order='C')

        for i from 0 <= i < N:
            dijkstra_one_row(i, neighbors, distances, indptr,
                             neighbors2, distances2, indptr2,
                             graph, &heap, nodes)

    free(nodes)

    return graph


######################################################################
# FibonacciNode structure
#  This structure and the operations on it are the nodes of the
#  Fibonacci heap.
#

cdef struct FibonacciNode:
    unsigned int index
    unsigned int rank
    unsigned int state
    DTYPE_t val
    FibonacciNode* parent
    FibonacciNode* left_sibling
    FibonacciNode* right_sibling
    FibonacciNode* children


cdef void initialize_node(FibonacciNode* node,
                          unsigned int index,
                          DTYPE_t val=0):
    # Assumptions: - node is a valid pointer
    #              - node is not currently part of a heap
    node.index = index
    node.val = val
    node.rank = 0
    node.state = 0  # 0 -> NOT_IN_HEAP

    node.parent = NULL
    node.left_sibling = NULL
    node.right_sibling = NULL
    node.children = NULL


cdef FibonacciNode* rightmost_sibling(FibonacciNode* node):
    # Assumptions: - node is a valid pointer
    cdef FibonacciNode* temp = node
    while(temp.right_sibling):
        temp = temp.right_sibling
    return temp


cdef FibonacciNode* leftmost_sibling(FibonacciNode* node):
    # Assumptions: - node is a valid pointer
    cdef FibonacciNode* temp = node
    while(temp.left_sibling):
        temp = temp.left_sibling
    return temp


cdef void add_child(FibonacciNode* node, FibonacciNode* new_child):
    # Assumptions: - node is a valid pointer
    #              - new_child is a valid pointer
    #              - new_child is not the sibling or child of another node
    new_child.parent = node

    if node.children:
        add_sibling(node.children, new_child)
    else:
        node.children = new_child
        new_child.right_sibling = NULL
        new_child.left_sibling = NULL
        node.rank = 1


cdef void add_sibling(FibonacciNode* node, FibonacciNode* new_sibling):
    # Assumptions: - node is a valid pointer
    #              - new_sibling is a valid pointer
    #              - new_sibling is not the child or sibling of another node
    cdef FibonacciNode* temp = rightmost_sibling(node)
    temp.right_sibling = new_sibling
    new_sibling.left_sibling = temp
    new_sibling.right_sibling = NULL
    new_sibling.parent = node.parent
    if new_sibling.parent:
        new_sibling.parent.rank += 1


cdef void remove(FibonacciNode* node):
    # Assumptions: - node is a valid pointer
    if node.parent:
        node.parent.rank -= 1
        if node.left_sibling:
            node.parent.children = node.left_sibling
        elif node.right_sibling:
            node.parent.children = node.right_sibling
        else:
            node.parent.children = NULL

    if node.left_sibling:
        node.left_sibling.right_sibling = node.right_sibling
    if node.right_sibling:
        node.right_sibling.left_sibling = node.left_sibling

    node.left_sibling = NULL
    node.right_sibling = NULL
    node.parent = NULL


######################################################################
# FibonacciHeap structure
#  This structure and operations on it use the FibonacciNode
#  routines to implement a Fibonacci heap

ctypedef FibonacciNode* pFibonacciNode


cdef struct FibonacciHeap:
    FibonacciNode* min_node
    pFibonacciNode[100] roots_by_rank  # maximum number of nodes is ~2^100.


cdef void insert_node(FibonacciHeap* heap,
                      FibonacciNode* node):
    # Assumptions: - heap is a valid pointer
    #              - node is a valid pointer
    #              - node is not the child or sibling of another node
    if heap.min_node:
        add_sibling(heap.min_node, node)
        if node.val < heap.min_node.val:
            heap.min_node = node
    else:
        heap.min_node = node


cdef void decrease_val(FibonacciHeap* heap,
                       FibonacciNode* node,
                       DTYPE_t newval):
    # Assumptions: - heap is a valid pointer
    #              - newval <= node.val
    #              - node is a valid pointer
    #              - node is not the child or sibling of another node
    node.val = newval
    if node.parent and (node.parent.val >= newval):
        remove(node)
        insert_node(heap, node)
    elif heap.min_node.val > node.val:
        heap.min_node = node


cdef void link(FibonacciHeap* heap, FibonacciNode* node):
    # Assumptions: - heap is a valid pointer
    #              - node is a valid pointer
    #              - node is already within heap

    cdef FibonacciNode *linknode
    cdef FibonacciNode *parent
    cdef FibonacciNode *child

    if heap.roots_by_rank[node.rank] == NULL:
        heap.roots_by_rank[node.rank] = node
    else:
        linknode = heap.roots_by_rank[node.rank]
        heap.roots_by_rank[node.rank] = NULL

        if node.val < linknode.val or node == heap.min_node:
            remove(linknode)
            add_child(node, linknode)
            link(heap, node)
        else:
            remove(node)
            add_child(linknode, node)
            link(heap, linknode)


cdef FibonacciNode* remove_min(FibonacciHeap* heap):
    # Assumptions: - heap is a valid pointer
    #              - heap.min_node is a valid pointer
    cdef FibonacciNode *temp
    cdef FibonacciNode *temp_right
    cdef FibonacciNode *out
    cdef unsigned int i

    # make all min_node children into root nodes
    if heap.min_node.children:
        temp = leftmost_sibling(heap.min_node.children)
        temp_right = NULL

        while temp:
            temp_right = temp.right_sibling
            remove(temp)
            add_sibling(heap.min_node, temp)
            temp = temp_right

        heap.min_node.children = NULL

    # choose a root node other than min_node
    temp = leftmost_sibling(heap.min_node)
    if temp == heap.min_node:
        if heap.min_node.right_sibling:
            temp = heap.min_node.right_sibling
        else:
            out = heap.min_node
            heap.min_node = NULL
            return out

    # remove min_node, and point heap to the new min
    out = heap.min_node
    remove(heap.min_node)
    heap.min_node = temp

    # re-link the heap
    for i from 0 <= i < 100:
        heap.roots_by_rank[i] = NULL

    while temp:
        if temp.val < heap.min_node.val:
            heap.min_node = temp
        temp_right = temp.right_sibling
        link(heap, temp)
        temp = temp_right

    return out


######################################################################
# Debugging: Functions for printing the fibonacci heap
#
#cdef void print_node(FibonacciNode* node, int level=0):
#    print '%s(%i,%i) %i' % (level*'   ', node.index, node.val, node.rank)
#    if node.children:
#        print_node(leftmost_sibling(node.children), level+1)
#    if node.right_sibling:
#        print_node(node.right_sibling, level)
#
#
#cdef void print_heap(FibonacciHeap* heap):
#    print "---------------------------------"
#    if heap.min_node:
#        print_node(leftmost_sibling(heap.min_node))
#    else:
#        print "[empty heap]"


@cython.boundscheck(False)
cdef void dijkstra_directed_one_row(
                    unsigned int i_node,
                    np.ndarray[ITYPE_t, ndim=1, mode='c'] neighbors,
                    np.ndarray[DTYPE_t, ndim=1, mode='c'] distances,
                    np.ndarray[ITYPE_t, ndim=1, mode='c'] indptr,
                    np.ndarray[DTYPE_t, ndim=2, mode='c'] graph,
                    FibonacciHeap* heap,
                    FibonacciNode* nodes):
    """
    Calculate distances from a single point to all targets using a
    directed graph.

    Parameters
    ----------
    i_node : index of source point
    neighbors : array, shape = [N,]
        indices of neighbors for each point
    distances : array, shape = [N,]
        lengths of edges to each neighbor
    indptr : array, shape = (N+1,)
        the neighbors of point i are given by
        neighbors[indptr[i]:indptr[i+1]]
    graph : array, shape = (N,N)
        on return, graph[i_node] contains the path lengths from
        i_node to each target
    heap : the Fibonacci heap object to use
    nodes : the array of nodes to use
    """
    cdef unsigned int N = graph.shape[0]
    cdef unsigned int i
    cdef FibonacciNode *v
    cdef FibonacciNode *current_neighbor
    cdef DTYPE_t dist

    # initialize nodes
    for i from 0 <= i < N:
        initialize_node(&nodes[i], i)

    heap.min_node = NULL
    insert_node(heap, &nodes[i_node])

    while heap.min_node:
        v = remove_min(heap)
        v.state = 2  # 2 -> SCANNED

        for i from indptr[v.index] <= i < indptr[v.index + 1]:
            current_neighbor = &nodes[neighbors[i]]
            if current_neighbor.state != 2:      # 2 -> SCANNED
                dist = distances[i]
                if current_neighbor.state == 0:  # 0 -> NOT_IN_HEAP
                    current_neighbor.state = 1   # 1 -> IN_HEAP
                    current_neighbor.val = v.val + dist
                    insert_node(heap, current_neighbor)
                elif current_neighbor.val > v.val + dist:
                    decrease_val(heap, current_neighbor,
                                 v.val + dist)

        #v has now been scanned: add the distance to the results
        graph[i_node, v.index] = v.val


@cython.boundscheck(False)
cdef void dijkstra_one_row(unsigned int i_node,
                    np.ndarray[ITYPE_t, ndim=1, mode='c'] neighbors1,
                    np.ndarray[DTYPE_t, ndim=1, mode='c'] distances1,
                    np.ndarray[ITYPE_t, ndim=1, mode='c'] indptr1,
                    np.ndarray[ITYPE_t, ndim=1, mode='c'] neighbors2,
                    np.ndarray[DTYPE_t, ndim=1, mode='c'] distances2,
                    np.ndarray[ITYPE_t, ndim=1, mode='c'] indptr2,
                    np.ndarray[DTYPE_t, ndim=2, mode='c'] graph,
                    FibonacciHeap* heap,
                    FibonacciNode* nodes):
    """
    Calculate distances from a single point to all targets using an
    undirected graph.

    Parameters
    ----------
    i_node : index of source point
    neighbors[1,2] : array, shape = [N,]
        indices of neighbors for each point
    distances[1,2] : array, shape = [N,]
        lengths of edges to each neighbor
    indptr[1,2] : array, shape = (N+1,)
        the neighbors of point i are given by
        neighbors1[indptr1[i]:indptr1[i+1]] and
        neighbors2[indptr2[i]:indptr2[i+1]]
    graph : array, shape = (N,)
        on return, graph[i_node] contains the path lengths from
        i_node to each target
    heap : the Fibonacci heap object to use
    nodes : the array of nodes to use
    """
    cdef unsigned int N = graph.shape[0]
    cdef unsigned int i
    cdef FibonacciNode *v
    cdef FibonacciNode *current_neighbor
    cdef DTYPE_t dist

    # re-initialize nodes
    # children, parent, left_sibling, right_sibling should already be NULL
    # rank should already be 0, index will already be set
    # we just need to re-set state and val
    for i from 0 <= i < N:
        nodes[i].state = 0  # 0 -> NOT_IN_HEAP
        nodes[i].val = 0

    insert_node(heap, &nodes[i_node])

    while heap.min_node:
        v = remove_min(heap)
        v.state = 2  # 2 -> SCANNED

        for i from indptr1[v.index] <= i < indptr1[v.index + 1]:
            current_neighbor = &nodes[neighbors1[i]]
            if current_neighbor.state != 2:      # 2 -> SCANNED
                dist = distances1[i]
                if current_neighbor.state == 0:  # 0 -> NOT_IN_HEAP
                    current_neighbor.state = 1   # 1 -> IN_HEAP
                    current_neighbor.val = v.val + dist
                    insert_node(heap, current_neighbor)
                elif current_neighbor.val > v.val + dist:
                    decrease_val(heap, current_neighbor,
                                 v.val + dist)

        for i from indptr2[v.index] <= i < indptr2[v.index + 1]:
            current_neighbor = &nodes[neighbors2[i]]
            if current_neighbor.state != 2:      # 2 -> SCANNED
                dist = distances2[i]
                if current_neighbor.state == 0:  # 0 -> NOT_IN_HEAP
                    current_neighbor.state = 1   # 1 -> IN_HEAP
                    current_neighbor.val = v.val + dist
                    insert_node(heap, current_neighbor)
                elif current_neighbor.val > v.val + dist:
                    decrease_val(heap, current_neighbor,
                                 v.val + dist)

        #v has now been scanned: add the distance to the results
        graph[i_node, v.index] = v.val