File: optimize.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (204 lines) | stat: -rw-r--r-- 5,742 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
Our own implementation of the Newton algorithm

Unlike the scipy.optimize version, this version of the Newton conjugate
gradient solver uses only one function call to retrieve the
func value, the gradient value and a callable for the Hessian matvec
product. If the function call is very expensive (e.g. for logistic
regression with large design matrix), this approach gives very
significant speedups.
"""
# This is a modified file from scipy.optimize
# Original authors: Travis Oliphant, Eric Jones
# Modifications by Gael Varoquaux, Mathieu Blondel and Tom Dupre la Tour
# License: BSD

import numpy as np
import warnings
from scipy.optimize.linesearch import line_search_wolfe2, line_search_wolfe1

from ..exceptions import ConvergenceWarning


class _LineSearchError(RuntimeError):
    pass


def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval,
                         **kwargs):
    """
    Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
    suitable step length is not found, and raise an exception if a
    suitable step length is not found.

    Raises
    ------
    _LineSearchError
        If no suitable step size is found

    """
    ret = line_search_wolfe1(f, fprime, xk, pk, gfk,
                             old_fval, old_old_fval,
                             **kwargs)

    if ret[0] is None:
        # line search failed: try different one.
        ret = line_search_wolfe2(f, fprime, xk, pk, gfk,
                                 old_fval, old_old_fval, **kwargs)

    if ret[0] is None:
        raise _LineSearchError()

    return ret


def _cg(fhess_p, fgrad, maxiter, tol):
    """
    Solve iteratively the linear system 'fhess_p . xsupi = fgrad'
    with a conjugate gradient descent.

    Parameters
    ----------
    fhess_p : callable
        Function that takes the gradient as a parameter and returns the
        matrix product of the Hessian and gradient

    fgrad : ndarray, shape (n_features,) or (n_features + 1,)
        Gradient vector

    maxiter : int
        Number of CG iterations.

    tol : float
        Stopping criterion.

    Returns
    -------
    xsupi : ndarray, shape (n_features,) or (n_features + 1,)
        Estimated solution
    """
    xsupi = np.zeros(len(fgrad), dtype=fgrad.dtype)
    ri = fgrad
    psupi = -ri
    i = 0
    dri0 = np.dot(ri, ri)

    while i <= maxiter:
        if np.sum(np.abs(ri)) <= tol:
            break

        Ap = fhess_p(psupi)
        # check curvature
        curv = np.dot(psupi, Ap)
        if 0 <= curv <= 3 * np.finfo(np.float64).eps:
            break
        elif curv < 0:
            if i > 0:
                break
            else:
                # fall back to steepest descent direction
                xsupi += dri0 / curv * psupi
                break
        alphai = dri0 / curv
        xsupi += alphai * psupi
        ri = ri + alphai * Ap
        dri1 = np.dot(ri, ri)
        betai = dri1 / dri0
        psupi = -ri + betai * psupi
        i = i + 1
        dri0 = dri1          # update np.dot(ri,ri) for next time.

    return xsupi


def newton_cg(grad_hess, func, grad, x0, args=(), tol=1e-4,
              maxiter=100, maxinner=200, line_search=True, warn=True):
    """
    Minimization of scalar function of one or more variables using the
    Newton-CG algorithm.

    Parameters
    ----------
    grad_hess : callable
        Should return the gradient and a callable returning the matvec product
        of the Hessian.

    func : callable
        Should return the value of the function.

    grad : callable
        Should return the function value and the gradient. This is used
        by the linesearch functions.

    x0 : array of float
        Initial guess.

    args : tuple, optional
        Arguments passed to func_grad_hess, func and grad.

    tol : float
        Stopping criterion. The iteration will stop when
        ``max{|g_i | i = 1, ..., n} <= tol``
        where ``g_i`` is the i-th component of the gradient.

    maxiter : int
        Number of Newton iterations.

    maxinner : int
        Number of CG iterations.

    line_search : boolean
        Whether to use a line search or not.

    warn : boolean
        Whether to warn when didn't converge.

    Returns
    -------
    xk : ndarray of float
        Estimated minimum.
    """
    x0 = np.asarray(x0).flatten()
    xk = x0
    k = 0

    if line_search:
        old_fval = func(x0, *args)
        old_old_fval = None

    # Outer loop: our Newton iteration
    while k < maxiter:
        # Compute a search direction pk by applying the CG method to
        #  del2 f(xk) p = - fgrad f(xk) starting from 0.
        fgrad, fhess_p = grad_hess(xk, *args)

        absgrad = np.abs(fgrad)
        if np.max(absgrad) < tol:
            break

        maggrad = np.sum(absgrad)
        eta = min([0.5, np.sqrt(maggrad)])
        termcond = eta * maggrad

        # Inner loop: solve the Newton update by conjugate gradient, to
        # avoid inverting the Hessian
        xsupi = _cg(fhess_p, fgrad, maxiter=maxinner, tol=termcond)

        alphak = 1.0

        if line_search:
            try:
                alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \
                    _line_search_wolfe12(func, grad, xk, xsupi, fgrad,
                                         old_fval, old_old_fval, args=args)
            except _LineSearchError:
                warnings.warn('Line Search failed')
                break

        xk = xk + alphak * xsupi        # upcast if necessary
        k += 1

    if warn and k >= maxiter:
        warnings.warn("newton-cg failed to converge. Increase the "
                      "number of iterations.", ConvergenceWarning)
    return xk, k