1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
"""
Our own implementation of the Newton algorithm
Unlike the scipy.optimize version, this version of the Newton conjugate
gradient solver uses only one function call to retrieve the
func value, the gradient value and a callable for the Hessian matvec
product. If the function call is very expensive (e.g. for logistic
regression with large design matrix), this approach gives very
significant speedups.
"""
# This is a modified file from scipy.optimize
# Original authors: Travis Oliphant, Eric Jones
# Modifications by Gael Varoquaux, Mathieu Blondel and Tom Dupre la Tour
# License: BSD
import numpy as np
import warnings
from scipy.optimize.linesearch import line_search_wolfe2, line_search_wolfe1
from ..exceptions import ConvergenceWarning
class _LineSearchError(RuntimeError):
pass
def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval,
**kwargs):
"""
Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
suitable step length is not found, and raise an exception if a
suitable step length is not found.
Raises
------
_LineSearchError
If no suitable step size is found
"""
ret = line_search_wolfe1(f, fprime, xk, pk, gfk,
old_fval, old_old_fval,
**kwargs)
if ret[0] is None:
# line search failed: try different one.
ret = line_search_wolfe2(f, fprime, xk, pk, gfk,
old_fval, old_old_fval, **kwargs)
if ret[0] is None:
raise _LineSearchError()
return ret
def _cg(fhess_p, fgrad, maxiter, tol):
"""
Solve iteratively the linear system 'fhess_p . xsupi = fgrad'
with a conjugate gradient descent.
Parameters
----------
fhess_p : callable
Function that takes the gradient as a parameter and returns the
matrix product of the Hessian and gradient
fgrad : ndarray, shape (n_features,) or (n_features + 1,)
Gradient vector
maxiter : int
Number of CG iterations.
tol : float
Stopping criterion.
Returns
-------
xsupi : ndarray, shape (n_features,) or (n_features + 1,)
Estimated solution
"""
xsupi = np.zeros(len(fgrad), dtype=fgrad.dtype)
ri = fgrad
psupi = -ri
i = 0
dri0 = np.dot(ri, ri)
while i <= maxiter:
if np.sum(np.abs(ri)) <= tol:
break
Ap = fhess_p(psupi)
# check curvature
curv = np.dot(psupi, Ap)
if 0 <= curv <= 3 * np.finfo(np.float64).eps:
break
elif curv < 0:
if i > 0:
break
else:
# fall back to steepest descent direction
xsupi += dri0 / curv * psupi
break
alphai = dri0 / curv
xsupi += alphai * psupi
ri = ri + alphai * Ap
dri1 = np.dot(ri, ri)
betai = dri1 / dri0
psupi = -ri + betai * psupi
i = i + 1
dri0 = dri1 # update np.dot(ri,ri) for next time.
return xsupi
def newton_cg(grad_hess, func, grad, x0, args=(), tol=1e-4,
maxiter=100, maxinner=200, line_search=True, warn=True):
"""
Minimization of scalar function of one or more variables using the
Newton-CG algorithm.
Parameters
----------
grad_hess : callable
Should return the gradient and a callable returning the matvec product
of the Hessian.
func : callable
Should return the value of the function.
grad : callable
Should return the function value and the gradient. This is used
by the linesearch functions.
x0 : array of float
Initial guess.
args : tuple, optional
Arguments passed to func_grad_hess, func and grad.
tol : float
Stopping criterion. The iteration will stop when
``max{|g_i | i = 1, ..., n} <= tol``
where ``g_i`` is the i-th component of the gradient.
maxiter : int
Number of Newton iterations.
maxinner : int
Number of CG iterations.
line_search : boolean
Whether to use a line search or not.
warn : boolean
Whether to warn when didn't converge.
Returns
-------
xk : ndarray of float
Estimated minimum.
"""
x0 = np.asarray(x0).flatten()
xk = x0
k = 0
if line_search:
old_fval = func(x0, *args)
old_old_fval = None
# Outer loop: our Newton iteration
while k < maxiter:
# Compute a search direction pk by applying the CG method to
# del2 f(xk) p = - fgrad f(xk) starting from 0.
fgrad, fhess_p = grad_hess(xk, *args)
absgrad = np.abs(fgrad)
if np.max(absgrad) < tol:
break
maggrad = np.sum(absgrad)
eta = min([0.5, np.sqrt(maggrad)])
termcond = eta * maggrad
# Inner loop: solve the Newton update by conjugate gradient, to
# avoid inverting the Hessian
xsupi = _cg(fhess_p, fgrad, maxiter=maxinner, tol=termcond)
alphak = 1.0
if line_search:
try:
alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \
_line_search_wolfe12(func, grad, xk, xsupi, fgrad,
old_fval, old_old_fval, args=args)
except _LineSearchError:
warnings.warn('Line Search failed')
break
xk = xk + alphak * xsupi # upcast if necessary
k += 1
if warn and k >= maxiter:
warnings.warn("newton-cg failed to converge. Increase the "
"number of iterations.", ConvergenceWarning)
return xk, k
|