File: sparsefuncs_fast.pyx

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (458 lines) | stat: -rw-r--r-- 15,097 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# Authors: Mathieu Blondel
#          Olivier Grisel
#          Peter Prettenhofer
#          Lars Buitinck
#          Giorgio Patrini
#
# License: BSD 3 clause

#!python
#cython: boundscheck=False, wraparound=False, cdivision=True

from libc.math cimport fabs, sqrt, pow
cimport numpy as np
import numpy as np
import scipy.sparse as sp
cimport cython
from cython cimport floating
from numpy.math cimport isnan

np.import_array()

ctypedef fused integral:
    int
    long long

ctypedef np.float64_t DOUBLE

def csr_row_norms(X):
    """L2 norm of each row in CSR matrix X."""
    if X.dtype not in [np.float32, np.float64]:
        X = X.astype(np.float64)
    return _csr_row_norms(X.data, X.shape, X.indices, X.indptr)


def _csr_row_norms(np.ndarray[floating, ndim=1, mode="c"] X_data,
                   shape,
                   np.ndarray[integral, ndim=1, mode="c"] X_indices,
                   np.ndarray[integral, ndim=1, mode="c"] X_indptr):
    cdef:
        unsigned long long n_samples = shape[0]
        unsigned long long n_features = shape[1]
        np.ndarray[DOUBLE, ndim=1, mode="c"] norms

        np.npy_intp i, j
        double sum_

    norms = np.zeros(n_samples, dtype=np.float64)

    for i in range(n_samples):
        sum_ = 0.0
        for j in range(X_indptr[i], X_indptr[i + 1]):
            sum_ += X_data[j] * X_data[j]
        norms[i] = sum_

    return norms


def csr_mean_variance_axis0(X):
    """Compute mean and variance along axis 0 on a CSR matrix

    Parameters
    ----------
    X : CSR sparse matrix, shape (n_samples, n_features)
        Input data.

    Returns
    -------
    means : float array with shape (n_features,)
        Feature-wise means

    variances : float array with shape (n_features,)
        Feature-wise variances

    """
    if X.dtype not in [np.float32, np.float64]:
        X = X.astype(np.float64)
    means, variances, _ =  _csr_mean_variance_axis0(X.data, X.shape[0],
                                                    X.shape[1], X.indices)
    return means, variances


def _csr_mean_variance_axis0(np.ndarray[floating, ndim=1, mode="c"] X_data,
                             unsigned long long n_samples,
                             unsigned long long n_features,
                             np.ndarray[integral, ndim=1] X_indices):
    # Implement the function here since variables using fused types
    # cannot be declared directly and can only be passed as function arguments
    cdef:
        np.npy_intp i
        unsigned long long non_zero = X_indices.shape[0]
        np.npy_intp col_ind
        floating diff
        # means[j] contains the mean of feature j
        np.ndarray[floating, ndim=1] means
        # variances[j] contains the variance of feature j
        np.ndarray[floating, ndim=1] variances

    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    means = np.zeros(n_features, dtype=dtype)
    variances = np.zeros_like(means, dtype=dtype)

    cdef:
        # counts[j] contains the number of samples where feature j is non-zero
        np.ndarray[np.int64_t, ndim=1] counts = np.zeros(n_features,
                                                         dtype=np.int64)
        # counts_nan[j] contains the number of NaNs for feature j
        np.ndarray[np.int64_t, ndim=1] counts_nan = np.zeros(n_features,
                                                             dtype=np.int64)

    for i in xrange(non_zero):
        col_ind = X_indices[i]
        if not isnan(X_data[i]):
            means[col_ind] += X_data[i]
        else:
            counts_nan[col_ind] += 1

    for i in xrange(n_features):
        means[i] /= (n_samples - counts_nan[i])

    for i in xrange(non_zero):
        col_ind = X_indices[i]
        if not isnan(X_data[i]):
            diff = X_data[i] - means[col_ind]
            variances[col_ind] += diff * diff
            counts[col_ind] += 1

    for i in xrange(n_features):
        variances[i] += (n_samples - counts_nan[i] - counts[i]) * means[i]**2
        variances[i] /= (n_samples - counts_nan[i])

    return means, variances, counts_nan


def csc_mean_variance_axis0(X):
    """Compute mean and variance along axis 0 on a CSC matrix

    Parameters
    ----------
    X : CSC sparse matrix, shape (n_samples, n_features)
        Input data.

    Returns
    -------
    means : float array with shape (n_features,)
        Feature-wise means

    variances : float array with shape (n_features,)
        Feature-wise variances

    """
    if X.dtype not in [np.float32, np.float64]:
        X = X.astype(np.float64)
    means, variances, _ = _csc_mean_variance_axis0(X.data, X.shape[0],
                                                   X.shape[1], X.indices,
                                                  X.indptr)
    return means, variances


def _csc_mean_variance_axis0(np.ndarray[floating, ndim=1] X_data,
                             unsigned long long n_samples,
                             unsigned long long n_features,
                             np.ndarray[integral, ndim=1] X_indices,
                             np.ndarray[integral, ndim=1] X_indptr):
    # Implement the function here since variables using fused types
    # cannot be declared directly and can only be passed as function arguments
    cdef:
        np.npy_intp i, j
        unsigned long long counts
        unsigned long long startptr
        unsigned long long endptr
        floating diff
        # means[j] contains the mean of feature j
        np.ndarray[floating, ndim=1] means
        # variances[j] contains the variance of feature j
        np.ndarray[floating, ndim=1] variances

    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    means = np.zeros(n_features, dtype=dtype)
    variances = np.zeros_like(means, dtype=dtype)

    cdef np.ndarray[np.int64_t, ndim=1] counts_nan = np.zeros(n_features,
                                                              dtype=np.int64)

    for i in xrange(n_features):

        startptr = X_indptr[i]
        endptr = X_indptr[i + 1]
        counts = endptr - startptr

        for j in xrange(startptr, endptr):
            if not isnan(X_data[j]):
                means[i] += X_data[j]
            else:
                counts_nan[i] += 1
        counts -= counts_nan[i]
        means[i] /= (n_samples - counts_nan[i])

        for j in xrange(startptr, endptr):
            if not isnan(X_data[j]):
                diff = X_data[j] - means[i]
                variances[i] += diff * diff

        variances[i] += (n_samples - counts_nan[i] - counts) * means[i]**2
        variances[i] /= (n_samples - counts_nan[i])

    return means, variances, counts_nan


def incr_mean_variance_axis0(X, last_mean, last_var, last_n):
    """Compute mean and variance along axis 0 on a CSR or CSC matrix.

    last_mean, last_var are the statistics computed at the last step by this
    function. Both must be initialized to 0.0. last_n is the
    number of samples encountered until now and is initialized at 0.

    Parameters
    ----------
    X : CSR or CSC sparse matrix, shape (n_samples, n_features)
      Input data.

    last_mean : float array with shape (n_features,)
      Array of feature-wise means to update with the new data X.

    last_var : float array with shape (n_features,)
      Array of feature-wise var to update with the new data X.

    last_n : int array with shape (n_features,)
      Number of samples seen so far, before X.

    Returns
    -------
    updated_mean : float array with shape (n_features,)
      Feature-wise means

    updated_variance : float array with shape (n_features,)
      Feature-wise variances

    updated_n : int array with shape (n_features,)
      Updated number of samples seen

    Notes
    -----
    NaNs are ignored during the computation.

    References
    ----------
    T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample
      variance: recommendations, The American Statistician, Vol. 37, No. 3,
      pp. 242-247

    Also, see the non-sparse implementation of this in
    `utils.extmath._batch_mean_variance_update`.

    """
    if X.dtype not in [np.float32, np.float64]:
        X = X.astype(np.float64)
    return _incr_mean_variance_axis0(X.data, X.shape[0], X.shape[1], X.indices,
                                     X.indptr, X.format, last_mean, last_var,
                                     last_n)


def _incr_mean_variance_axis0(np.ndarray[floating, ndim=1] X_data,
                              unsigned long long n_samples,
                              unsigned long long n_features,
                              np.ndarray[integral, ndim=1] X_indices,
                              np.ndarray[integral, ndim=1] X_indptr,
                              str X_format,
                              np.ndarray[floating, ndim=1] last_mean,
                              np.ndarray[floating, ndim=1] last_var,
                              np.ndarray[np.int64_t, ndim=1] last_n):
    # Implement the function here since variables using fused types
    # cannot be declared directly and can only be passed as function arguments
    cdef:
        np.npy_intp i

    # last = stats until now
    # new = the current increment
    # updated = the aggregated stats
    # when arrays, they are indexed by i per-feature
    cdef:
        np.ndarray[floating, ndim=1] new_mean
        np.ndarray[floating, ndim=1] new_var
        np.ndarray[floating, ndim=1] updated_mean
        np.ndarray[floating, ndim=1] updated_var

    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    new_mean = np.zeros(n_features, dtype=dtype)
    new_var = np.zeros_like(new_mean, dtype=dtype)
    updated_mean = np.zeros_like(new_mean, dtype=dtype)
    updated_var = np.zeros_like(new_mean, dtype=dtype)

    cdef:
        np.ndarray[np.int64_t, ndim=1] new_n
        np.ndarray[np.int64_t, ndim=1] updated_n
        np.ndarray[floating, ndim=1] last_over_new_n
        np.ndarray[np.int64_t, ndim=1] counts_nan

    # Obtain new stats first
    new_n = np.full(n_features, n_samples, dtype=np.int64)
    updated_n = np.zeros_like(new_n, dtype=np.int64)
    last_over_new_n = np.zeros_like(new_n, dtype=dtype)

    if X_format == 'csr':
        # X is a CSR matrix
        new_mean, new_var, counts_nan = _csr_mean_variance_axis0(
            X_data, n_samples, n_features, X_indices)
    else:
        # X is a CSC matrix
        new_mean, new_var, counts_nan = _csc_mean_variance_axis0(
            X_data, n_samples, n_features, X_indices, X_indptr)

    for i in xrange(n_features):
        new_n[i] -= counts_nan[i]

    # First pass
    cdef bint is_first_pass = True
    for i in xrange(n_features):
        if last_n[i] > 0:
            is_first_pass = False
            break
    if is_first_pass:
        return new_mean, new_var, new_n

    # Next passes
    for i in xrange(n_features):
        updated_n[i] = last_n[i] + new_n[i]
        last_over_new_n[i] = last_n[i] / new_n[i]

    # Unnormalized stats
    for i in xrange(n_features):
        last_mean[i] *= last_n[i]
        last_var[i] *= last_n[i]
        new_mean[i] *= new_n[i]
        new_var[i] *= new_n[i]

    # Update stats
    for i in xrange(n_features):
        updated_var[i] = (last_var[i] + new_var[i] +
                          last_over_new_n[i] / updated_n[i] *
                          (last_mean[i] / last_over_new_n[i] - new_mean[i])**2)
        updated_mean[i] = (last_mean[i] + new_mean[i]) / updated_n[i]
        updated_var[i] /= updated_n[i]

    return updated_mean, updated_var, updated_n


def inplace_csr_row_normalize_l1(X):
    """Inplace row normalize using the l1 norm"""
    _inplace_csr_row_normalize_l1(X.data, X.shape, X.indices, X.indptr)


def _inplace_csr_row_normalize_l1(np.ndarray[floating, ndim=1] X_data,
                                  shape,
                                  np.ndarray[integral, ndim=1] X_indices,
                                  np.ndarray[integral, ndim=1] X_indptr):
    cdef unsigned long long n_samples = shape[0]
    cdef unsigned long long n_features = shape[1]

    # the column indices for row i are stored in:
    #    indices[indptr[i]:indices[i+1]]
    # and their corresponding values are stored in:
    #    data[indptr[i]:indptr[i+1]]
    cdef np.npy_intp i, j
    cdef double sum_

    for i in xrange(n_samples):
        sum_ = 0.0

        for j in xrange(X_indptr[i], X_indptr[i + 1]):
            sum_ += fabs(X_data[j])

        if sum_ == 0.0:
            # do not normalize empty rows (can happen if CSR is not pruned
            # correctly)
            continue

        for j in xrange(X_indptr[i], X_indptr[i + 1]):
            X_data[j] /= sum_


def inplace_csr_row_normalize_l2(X):
    """Inplace row normalize using the l2 norm"""
    _inplace_csr_row_normalize_l2(X.data, X.shape, X.indices, X.indptr)


def _inplace_csr_row_normalize_l2(np.ndarray[floating, ndim=1] X_data,
                                  shape,
                                  np.ndarray[integral, ndim=1] X_indices,
                                  np.ndarray[integral, ndim=1] X_indptr):
    cdef integral n_samples = shape[0]
    cdef integral n_features = shape[1]

    cdef np.npy_intp i, j
    cdef double sum_

    for i in xrange(n_samples):
        sum_ = 0.0

        for j in xrange(X_indptr[i], X_indptr[i + 1]):
            sum_ += (X_data[j] * X_data[j])

        if sum_ == 0.0:
            # do not normalize empty rows (can happen if CSR is not pruned
            # correctly)
            continue

        sum_ = sqrt(sum_)

        for j in xrange(X_indptr[i], X_indptr[i + 1]):
            X_data[j] /= sum_


def assign_rows_csr(X,
                    np.ndarray[np.npy_intp, ndim=1] X_rows,
                    np.ndarray[np.npy_intp, ndim=1] out_rows,
                    np.ndarray[floating, ndim=2, mode="c"] out):
    """Densify selected rows of a CSR matrix into a preallocated array.

    Like out[out_rows] = X[X_rows].toarray() but without copying.
    No-copy supported for both dtype=np.float32 and dtype=np.float64.

    Parameters
    ----------
    X : scipy.sparse.csr_matrix, shape=(n_samples, n_features)
    X_rows : array, dtype=np.intp, shape=n_rows
    out_rows : array, dtype=np.intp, shape=n_rows
    out : array, shape=(arbitrary, n_features)
    """
    cdef:
        # npy_intp (np.intp in Python) is what np.where returns,
        # but int is what scipy.sparse uses.
        int i, ind, j
        np.npy_intp rX
        np.ndarray[floating, ndim=1] data = X.data
        np.ndarray[int, ndim=1] indices = X.indices, indptr = X.indptr

    if X_rows.shape[0] != out_rows.shape[0]:
        raise ValueError("cannot assign %d rows to %d"
                         % (X_rows.shape[0], out_rows.shape[0]))

    out[out_rows] = 0.
    for i in range(X_rows.shape[0]):
        rX = X_rows[i]
        for ind in range(indptr[rX], indptr[rX + 1]):
            j = indices[ind]
            out[out_rows[i], j] = data[ind]