1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
# Authors: Mathieu Blondel
# Olivier Grisel
# Peter Prettenhofer
# Lars Buitinck
# Giorgio Patrini
#
# License: BSD 3 clause
#!python
#cython: boundscheck=False, wraparound=False, cdivision=True
from libc.math cimport fabs, sqrt, pow
cimport numpy as np
import numpy as np
import scipy.sparse as sp
cimport cython
from cython cimport floating
from numpy.math cimport isnan
np.import_array()
ctypedef fused integral:
int
long long
ctypedef np.float64_t DOUBLE
def csr_row_norms(X):
"""L2 norm of each row in CSR matrix X."""
if X.dtype not in [np.float32, np.float64]:
X = X.astype(np.float64)
return _csr_row_norms(X.data, X.shape, X.indices, X.indptr)
def _csr_row_norms(np.ndarray[floating, ndim=1, mode="c"] X_data,
shape,
np.ndarray[integral, ndim=1, mode="c"] X_indices,
np.ndarray[integral, ndim=1, mode="c"] X_indptr):
cdef:
unsigned long long n_samples = shape[0]
unsigned long long n_features = shape[1]
np.ndarray[DOUBLE, ndim=1, mode="c"] norms
np.npy_intp i, j
double sum_
norms = np.zeros(n_samples, dtype=np.float64)
for i in range(n_samples):
sum_ = 0.0
for j in range(X_indptr[i], X_indptr[i + 1]):
sum_ += X_data[j] * X_data[j]
norms[i] = sum_
return norms
def csr_mean_variance_axis0(X):
"""Compute mean and variance along axis 0 on a CSR matrix
Parameters
----------
X : CSR sparse matrix, shape (n_samples, n_features)
Input data.
Returns
-------
means : float array with shape (n_features,)
Feature-wise means
variances : float array with shape (n_features,)
Feature-wise variances
"""
if X.dtype not in [np.float32, np.float64]:
X = X.astype(np.float64)
means, variances, _ = _csr_mean_variance_axis0(X.data, X.shape[0],
X.shape[1], X.indices)
return means, variances
def _csr_mean_variance_axis0(np.ndarray[floating, ndim=1, mode="c"] X_data,
unsigned long long n_samples,
unsigned long long n_features,
np.ndarray[integral, ndim=1] X_indices):
# Implement the function here since variables using fused types
# cannot be declared directly and can only be passed as function arguments
cdef:
np.npy_intp i
unsigned long long non_zero = X_indices.shape[0]
np.npy_intp col_ind
floating diff
# means[j] contains the mean of feature j
np.ndarray[floating, ndim=1] means
# variances[j] contains the variance of feature j
np.ndarray[floating, ndim=1] variances
if floating is float:
dtype = np.float32
else:
dtype = np.float64
means = np.zeros(n_features, dtype=dtype)
variances = np.zeros_like(means, dtype=dtype)
cdef:
# counts[j] contains the number of samples where feature j is non-zero
np.ndarray[np.int64_t, ndim=1] counts = np.zeros(n_features,
dtype=np.int64)
# counts_nan[j] contains the number of NaNs for feature j
np.ndarray[np.int64_t, ndim=1] counts_nan = np.zeros(n_features,
dtype=np.int64)
for i in xrange(non_zero):
col_ind = X_indices[i]
if not isnan(X_data[i]):
means[col_ind] += X_data[i]
else:
counts_nan[col_ind] += 1
for i in xrange(n_features):
means[i] /= (n_samples - counts_nan[i])
for i in xrange(non_zero):
col_ind = X_indices[i]
if not isnan(X_data[i]):
diff = X_data[i] - means[col_ind]
variances[col_ind] += diff * diff
counts[col_ind] += 1
for i in xrange(n_features):
variances[i] += (n_samples - counts_nan[i] - counts[i]) * means[i]**2
variances[i] /= (n_samples - counts_nan[i])
return means, variances, counts_nan
def csc_mean_variance_axis0(X):
"""Compute mean and variance along axis 0 on a CSC matrix
Parameters
----------
X : CSC sparse matrix, shape (n_samples, n_features)
Input data.
Returns
-------
means : float array with shape (n_features,)
Feature-wise means
variances : float array with shape (n_features,)
Feature-wise variances
"""
if X.dtype not in [np.float32, np.float64]:
X = X.astype(np.float64)
means, variances, _ = _csc_mean_variance_axis0(X.data, X.shape[0],
X.shape[1], X.indices,
X.indptr)
return means, variances
def _csc_mean_variance_axis0(np.ndarray[floating, ndim=1] X_data,
unsigned long long n_samples,
unsigned long long n_features,
np.ndarray[integral, ndim=1] X_indices,
np.ndarray[integral, ndim=1] X_indptr):
# Implement the function here since variables using fused types
# cannot be declared directly and can only be passed as function arguments
cdef:
np.npy_intp i, j
unsigned long long counts
unsigned long long startptr
unsigned long long endptr
floating diff
# means[j] contains the mean of feature j
np.ndarray[floating, ndim=1] means
# variances[j] contains the variance of feature j
np.ndarray[floating, ndim=1] variances
if floating is float:
dtype = np.float32
else:
dtype = np.float64
means = np.zeros(n_features, dtype=dtype)
variances = np.zeros_like(means, dtype=dtype)
cdef np.ndarray[np.int64_t, ndim=1] counts_nan = np.zeros(n_features,
dtype=np.int64)
for i in xrange(n_features):
startptr = X_indptr[i]
endptr = X_indptr[i + 1]
counts = endptr - startptr
for j in xrange(startptr, endptr):
if not isnan(X_data[j]):
means[i] += X_data[j]
else:
counts_nan[i] += 1
counts -= counts_nan[i]
means[i] /= (n_samples - counts_nan[i])
for j in xrange(startptr, endptr):
if not isnan(X_data[j]):
diff = X_data[j] - means[i]
variances[i] += diff * diff
variances[i] += (n_samples - counts_nan[i] - counts) * means[i]**2
variances[i] /= (n_samples - counts_nan[i])
return means, variances, counts_nan
def incr_mean_variance_axis0(X, last_mean, last_var, last_n):
"""Compute mean and variance along axis 0 on a CSR or CSC matrix.
last_mean, last_var are the statistics computed at the last step by this
function. Both must be initialized to 0.0. last_n is the
number of samples encountered until now and is initialized at 0.
Parameters
----------
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
Input data.
last_mean : float array with shape (n_features,)
Array of feature-wise means to update with the new data X.
last_var : float array with shape (n_features,)
Array of feature-wise var to update with the new data X.
last_n : int array with shape (n_features,)
Number of samples seen so far, before X.
Returns
-------
updated_mean : float array with shape (n_features,)
Feature-wise means
updated_variance : float array with shape (n_features,)
Feature-wise variances
updated_n : int array with shape (n_features,)
Updated number of samples seen
Notes
-----
NaNs are ignored during the computation.
References
----------
T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample
variance: recommendations, The American Statistician, Vol. 37, No. 3,
pp. 242-247
Also, see the non-sparse implementation of this in
`utils.extmath._batch_mean_variance_update`.
"""
if X.dtype not in [np.float32, np.float64]:
X = X.astype(np.float64)
return _incr_mean_variance_axis0(X.data, X.shape[0], X.shape[1], X.indices,
X.indptr, X.format, last_mean, last_var,
last_n)
def _incr_mean_variance_axis0(np.ndarray[floating, ndim=1] X_data,
unsigned long long n_samples,
unsigned long long n_features,
np.ndarray[integral, ndim=1] X_indices,
np.ndarray[integral, ndim=1] X_indptr,
str X_format,
np.ndarray[floating, ndim=1] last_mean,
np.ndarray[floating, ndim=1] last_var,
np.ndarray[np.int64_t, ndim=1] last_n):
# Implement the function here since variables using fused types
# cannot be declared directly and can only be passed as function arguments
cdef:
np.npy_intp i
# last = stats until now
# new = the current increment
# updated = the aggregated stats
# when arrays, they are indexed by i per-feature
cdef:
np.ndarray[floating, ndim=1] new_mean
np.ndarray[floating, ndim=1] new_var
np.ndarray[floating, ndim=1] updated_mean
np.ndarray[floating, ndim=1] updated_var
if floating is float:
dtype = np.float32
else:
dtype = np.float64
new_mean = np.zeros(n_features, dtype=dtype)
new_var = np.zeros_like(new_mean, dtype=dtype)
updated_mean = np.zeros_like(new_mean, dtype=dtype)
updated_var = np.zeros_like(new_mean, dtype=dtype)
cdef:
np.ndarray[np.int64_t, ndim=1] new_n
np.ndarray[np.int64_t, ndim=1] updated_n
np.ndarray[floating, ndim=1] last_over_new_n
np.ndarray[np.int64_t, ndim=1] counts_nan
# Obtain new stats first
new_n = np.full(n_features, n_samples, dtype=np.int64)
updated_n = np.zeros_like(new_n, dtype=np.int64)
last_over_new_n = np.zeros_like(new_n, dtype=dtype)
if X_format == 'csr':
# X is a CSR matrix
new_mean, new_var, counts_nan = _csr_mean_variance_axis0(
X_data, n_samples, n_features, X_indices)
else:
# X is a CSC matrix
new_mean, new_var, counts_nan = _csc_mean_variance_axis0(
X_data, n_samples, n_features, X_indices, X_indptr)
for i in xrange(n_features):
new_n[i] -= counts_nan[i]
# First pass
cdef bint is_first_pass = True
for i in xrange(n_features):
if last_n[i] > 0:
is_first_pass = False
break
if is_first_pass:
return new_mean, new_var, new_n
# Next passes
for i in xrange(n_features):
updated_n[i] = last_n[i] + new_n[i]
last_over_new_n[i] = last_n[i] / new_n[i]
# Unnormalized stats
for i in xrange(n_features):
last_mean[i] *= last_n[i]
last_var[i] *= last_n[i]
new_mean[i] *= new_n[i]
new_var[i] *= new_n[i]
# Update stats
for i in xrange(n_features):
updated_var[i] = (last_var[i] + new_var[i] +
last_over_new_n[i] / updated_n[i] *
(last_mean[i] / last_over_new_n[i] - new_mean[i])**2)
updated_mean[i] = (last_mean[i] + new_mean[i]) / updated_n[i]
updated_var[i] /= updated_n[i]
return updated_mean, updated_var, updated_n
def inplace_csr_row_normalize_l1(X):
"""Inplace row normalize using the l1 norm"""
_inplace_csr_row_normalize_l1(X.data, X.shape, X.indices, X.indptr)
def _inplace_csr_row_normalize_l1(np.ndarray[floating, ndim=1] X_data,
shape,
np.ndarray[integral, ndim=1] X_indices,
np.ndarray[integral, ndim=1] X_indptr):
cdef unsigned long long n_samples = shape[0]
cdef unsigned long long n_features = shape[1]
# the column indices for row i are stored in:
# indices[indptr[i]:indices[i+1]]
# and their corresponding values are stored in:
# data[indptr[i]:indptr[i+1]]
cdef np.npy_intp i, j
cdef double sum_
for i in xrange(n_samples):
sum_ = 0.0
for j in xrange(X_indptr[i], X_indptr[i + 1]):
sum_ += fabs(X_data[j])
if sum_ == 0.0:
# do not normalize empty rows (can happen if CSR is not pruned
# correctly)
continue
for j in xrange(X_indptr[i], X_indptr[i + 1]):
X_data[j] /= sum_
def inplace_csr_row_normalize_l2(X):
"""Inplace row normalize using the l2 norm"""
_inplace_csr_row_normalize_l2(X.data, X.shape, X.indices, X.indptr)
def _inplace_csr_row_normalize_l2(np.ndarray[floating, ndim=1] X_data,
shape,
np.ndarray[integral, ndim=1] X_indices,
np.ndarray[integral, ndim=1] X_indptr):
cdef integral n_samples = shape[0]
cdef integral n_features = shape[1]
cdef np.npy_intp i, j
cdef double sum_
for i in xrange(n_samples):
sum_ = 0.0
for j in xrange(X_indptr[i], X_indptr[i + 1]):
sum_ += (X_data[j] * X_data[j])
if sum_ == 0.0:
# do not normalize empty rows (can happen if CSR is not pruned
# correctly)
continue
sum_ = sqrt(sum_)
for j in xrange(X_indptr[i], X_indptr[i + 1]):
X_data[j] /= sum_
def assign_rows_csr(X,
np.ndarray[np.npy_intp, ndim=1] X_rows,
np.ndarray[np.npy_intp, ndim=1] out_rows,
np.ndarray[floating, ndim=2, mode="c"] out):
"""Densify selected rows of a CSR matrix into a preallocated array.
Like out[out_rows] = X[X_rows].toarray() but without copying.
No-copy supported for both dtype=np.float32 and dtype=np.float64.
Parameters
----------
X : scipy.sparse.csr_matrix, shape=(n_samples, n_features)
X_rows : array, dtype=np.intp, shape=n_rows
out_rows : array, dtype=np.intp, shape=n_rows
out : array, shape=(arbitrary, n_features)
"""
cdef:
# npy_intp (np.intp in Python) is what np.where returns,
# but int is what scipy.sparse uses.
int i, ind, j
np.npy_intp rX
np.ndarray[floating, ndim=1] data = X.data
np.ndarray[int, ndim=1] indices = X.indices, indptr = X.indptr
if X_rows.shape[0] != out_rows.shape[0]:
raise ValueError("cannot assign %d rows to %d"
% (X_rows.shape[0], out_rows.shape[0]))
out[out_rows] = 0.
for i in range(X_rows.shape[0]):
rX = X_rows[i]
for ind in range(indptr[rX], indptr[rX + 1]):
j = indices[ind]
out[out_rows[i], j] = data[ind]
|