File: test_validation.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (793 lines) | stat: -rw-r--r-- 30,828 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
"""Tests for input validation functions"""

import warnings
import os

from tempfile import NamedTemporaryFile
from itertools import product

import pytest
from pytest import importorskip
import numpy as np
import scipy.sparse as sp
from scipy import __version__ as scipy_version

from sklearn.utils.testing import assert_false, assert_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raises_regex
from sklearn.utils.testing import assert_no_warnings
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import SkipTest
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_allclose_dense_sparse
from sklearn.utils import as_float_array, check_array, check_symmetric
from sklearn.utils import check_X_y
from sklearn.utils import deprecated
from sklearn.utils.mocking import MockDataFrame
from sklearn.utils.estimator_checks import NotAnArray
from sklearn.random_projection import sparse_random_matrix
from sklearn.linear_model import ARDRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.datasets import make_blobs
from sklearn.utils.validation import (
    has_fit_parameter,
    check_is_fitted,
    check_consistent_length,
    assert_all_finite,
    check_memory,
    LARGE_SPARSE_SUPPORTED,
    _num_samples
)
import sklearn

from sklearn.exceptions import NotFittedError
from sklearn.exceptions import DataConversionWarning

from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import TempMemmap


def test_as_float_array():
    # Test function for as_float_array
    X = np.ones((3, 10), dtype=np.int32)
    X = X + np.arange(10, dtype=np.int32)
    X2 = as_float_array(X, copy=False)
    assert_equal(X2.dtype, np.float32)
    # Another test
    X = X.astype(np.int64)
    X2 = as_float_array(X, copy=True)
    # Checking that the array wasn't overwritten
    assert as_float_array(X, False) is not X
    assert_equal(X2.dtype, np.float64)
    # Test int dtypes <= 32bit
    tested_dtypes = [np.bool,
                     np.int8, np.int16, np.int32,
                     np.uint8, np.uint16, np.uint32]
    for dtype in tested_dtypes:
        X = X.astype(dtype)
        X2 = as_float_array(X)
        assert_equal(X2.dtype, np.float32)

    # Test object dtype
    X = X.astype(object)
    X2 = as_float_array(X, copy=True)
    assert_equal(X2.dtype, np.float64)

    # Here, X is of the right type, it shouldn't be modified
    X = np.ones((3, 2), dtype=np.float32)
    assert as_float_array(X, copy=False) is X
    # Test that if X is fortran ordered it stays
    X = np.asfortranarray(X)
    assert np.isfortran(as_float_array(X, copy=True))

    # Test the copy parameter with some matrices
    matrices = [
        np.matrix(np.arange(5)),
        sp.csc_matrix(np.arange(5)).toarray(),
        sparse_random_matrix(10, 10, density=0.10).toarray()
    ]
    for M in matrices:
        N = as_float_array(M, copy=True)
        N[0, 0] = np.nan
        assert_false(np.isnan(M).any())


@pytest.mark.parametrize(
    "X",
    [(np.random.random((10, 2))),
     (sp.rand(10, 2).tocsr())])
def test_as_float_array_nan(X):
    X[5, 0] = np.nan
    X[6, 1] = np.nan
    X_converted = as_float_array(X, force_all_finite='allow-nan')
    assert_allclose_dense_sparse(X_converted, X)


def test_np_matrix():
    # Confirm that input validation code does not return np.matrix
    X = np.arange(12).reshape(3, 4)

    assert_false(isinstance(as_float_array(X), np.matrix))
    assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix))
    assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix))


def test_memmap():
    # Confirm that input validation code doesn't copy memory mapped arrays

    asflt = lambda x: as_float_array(x, copy=False)

    with NamedTemporaryFile(prefix='sklearn-test') as tmp:
        M = np.memmap(tmp, shape=(10, 10), dtype=np.float32)
        M[:] = 0

        for f in (check_array, np.asarray, asflt):
            X = f(M)
            X[:] = 1
            assert_array_equal(X.ravel(), M.ravel())
            X[:] = 0


def test_ordering():
    # Check that ordering is enforced correctly by validation utilities.
    # We need to check each validation utility, because a 'copy' without
    # 'order=K' will kill the ordering.
    X = np.ones((10, 5))
    for A in X, X.T:
        for copy in (True, False):
            B = check_array(A, order='C', copy=copy)
            assert B.flags['C_CONTIGUOUS']
            B = check_array(A, order='F', copy=copy)
            assert B.flags['F_CONTIGUOUS']
            if copy:
                assert_false(A is B)

    X = sp.csr_matrix(X)
    X.data = X.data[::-1]
    assert_false(X.data.flags['C_CONTIGUOUS'])


@pytest.mark.parametrize(
    "value, force_all_finite",
    [(np.inf, False), (np.nan, 'allow-nan'), (np.nan, False)]
)
@pytest.mark.parametrize(
    "retype",
    [np.asarray, sp.csr_matrix]
)
def test_check_array_force_all_finite_valid(value, force_all_finite, retype):
    X = retype(np.arange(4).reshape(2, 2).astype(np.float))
    X[0, 0] = value
    X_checked = check_array(X, force_all_finite=force_all_finite,
                            accept_sparse=True)
    assert_allclose_dense_sparse(X, X_checked)


@pytest.mark.parametrize(
    "value, force_all_finite, match_msg",
    [(np.inf, True, 'Input contains NaN, infinity'),
     (np.inf, 'allow-nan', 'Input contains infinity'),
     (np.nan, True, 'Input contains NaN, infinity'),
     (np.nan, 'allow-inf', 'force_all_finite should be a bool or "allow-nan"'),
     (np.nan, 1, 'Input contains NaN, infinity')]
)
@pytest.mark.parametrize(
    "retype",
    [np.asarray, sp.csr_matrix]
)
def test_check_array_force_all_finiteinvalid(value, force_all_finite,
                                             match_msg, retype):
    X = retype(np.arange(4).reshape(2, 2).astype(np.float))
    X[0, 0] = value
    with pytest.raises(ValueError, match=match_msg):
        check_array(X, force_all_finite=force_all_finite,
                    accept_sparse=True)


@ignore_warnings
def test_check_array():
    # accept_sparse == None
    # raise error on sparse inputs
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)
    assert_raises(TypeError, check_array, X_csr)
    # ensure_2d=False
    X_array = check_array([0, 1, 2], ensure_2d=False)
    assert_equal(X_array.ndim, 1)
    # ensure_2d=True with 1d array
    assert_raise_message(ValueError, 'Expected 2D array, got 1D array instead',
                         check_array, [0, 1, 2], ensure_2d=True)
    # ensure_2d=True with scalar array
    assert_raise_message(ValueError,
                         'Expected 2D array, got scalar array instead',
                         check_array, 10, ensure_2d=True)
    # don't allow ndim > 3
    X_ndim = np.arange(8).reshape(2, 2, 2)
    assert_raises(ValueError, check_array, X_ndim)
    check_array(X_ndim, allow_nd=True)  # doesn't raise

    # dtype and order enforcement.
    X_C = np.arange(4).reshape(2, 2).copy("C")
    X_F = X_C.copy("F")
    X_int = X_C.astype(np.int)
    X_float = X_C.astype(np.float)
    Xs = [X_C, X_F, X_int, X_float]
    dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object]
    orders = ['C', 'F', None]
    copys = [True, False]

    for X, dtype, order, copy in product(Xs, dtypes, orders, copys):
        X_checked = check_array(X, dtype=dtype, order=order, copy=copy)
        if dtype is not None:
            assert_equal(X_checked.dtype, dtype)
        else:
            assert_equal(X_checked.dtype, X.dtype)
        if order == 'C':
            assert X_checked.flags['C_CONTIGUOUS']
            assert_false(X_checked.flags['F_CONTIGUOUS'])
        elif order == 'F':
            assert X_checked.flags['F_CONTIGUOUS']
            assert_false(X_checked.flags['C_CONTIGUOUS'])
        if copy:
            assert_false(X is X_checked)
        else:
            # doesn't copy if it was already good
            if (X.dtype == X_checked.dtype and
                    X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS']
                    and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']):
                assert X is X_checked

    # allowed sparse != None
    X_csc = sp.csc_matrix(X_C)
    X_coo = X_csc.tocoo()
    X_dok = X_csc.todok()
    X_int = X_csc.astype(np.int)
    X_float = X_csc.astype(np.float)

    Xs = [X_csc, X_coo, X_dok, X_int, X_float]
    accept_sparses = [['csr', 'coo'], ['coo', 'dok']]
    for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses,
                                                 copys):
        with warnings.catch_warnings(record=True) as w:
            X_checked = check_array(X, dtype=dtype,
                                    accept_sparse=accept_sparse, copy=copy)
        if (dtype is object or sp.isspmatrix_dok(X)) and len(w):
            message = str(w[0].message)
            messages = ["object dtype is not supported by sparse matrices",
                        "Can't check dok sparse matrix for nan or inf."]
            assert message in messages
        else:
            assert_equal(len(w), 0)
        if dtype is not None:
            assert_equal(X_checked.dtype, dtype)
        else:
            assert_equal(X_checked.dtype, X.dtype)
        if X.format in accept_sparse:
            # no change if allowed
            assert_equal(X.format, X_checked.format)
        else:
            # got converted
            assert_equal(X_checked.format, accept_sparse[0])
        if copy:
            assert_false(X is X_checked)
        else:
            # doesn't copy if it was already good
            if (X.dtype == X_checked.dtype and X.format == X_checked.format):
                assert X is X_checked

    # other input formats
    # convert lists to arrays
    X_dense = check_array([[1, 2], [3, 4]])
    assert isinstance(X_dense, np.ndarray)
    # raise on too deep lists
    assert_raises(ValueError, check_array, X_ndim.tolist())
    check_array(X_ndim.tolist(), allow_nd=True)  # doesn't raise
    # convert weird stuff to arrays
    X_no_array = NotAnArray(X_dense)
    result = check_array(X_no_array)
    assert isinstance(result, np.ndarray)

    # deprecation warning if string-like array with dtype="numeric"
    expected_warn_regex = r"converted to decimal numbers if dtype='numeric'"
    X_str = [['11', '12'], ['13', 'xx']]
    for X in [X_str, np.array(X_str, dtype='U'), np.array(X_str, dtype='S')]:
        with pytest.warns(FutureWarning, match=expected_warn_regex):
            check_array(X, dtype="numeric")

    # deprecation warning if byte-like array with dtype="numeric"
    X_bytes = [[b'a', b'b'], [b'c', b'd']]
    for X in [X_bytes, np.array(X_bytes, dtype='V1')]:
        with pytest.warns(FutureWarning, match=expected_warn_regex):
            check_array(X, dtype="numeric")


def test_check_array_pandas_dtype_object_conversion():
    # test that data-frame like objects with dtype object
    # get converted
    X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object)
    X_df = MockDataFrame(X)
    assert_equal(check_array(X_df).dtype.kind, "f")
    assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f")
    # smoke-test against dataframes with column named "dtype"
    X_df.dtype = "Hans"
    assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f")


def test_check_array_on_mock_dataframe():
    arr = np.array([[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]])
    mock_df = MockDataFrame(arr)
    checked_arr = check_array(mock_df)
    assert_equal(checked_arr.dtype,
                 arr.dtype)
    checked_arr = check_array(mock_df, dtype=np.float32)
    assert_equal(checked_arr.dtype, np.dtype(np.float32))


def test_check_array_dtype_stability():
    # test that lists with ints don't get converted to floats
    X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    assert_equal(check_array(X).dtype.kind, "i")
    assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i")


def test_check_array_dtype_warning():
    X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    X_float64 = np.asarray(X_int_list, dtype=np.float64)
    X_float32 = np.asarray(X_int_list, dtype=np.float32)
    X_int64 = np.asarray(X_int_list, dtype=np.int64)
    X_csr_float64 = sp.csr_matrix(X_float64)
    X_csr_float32 = sp.csr_matrix(X_float32)
    X_csc_float32 = sp.csc_matrix(X_float32)
    X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32)
    y = [0, 0, 1]
    integer_data = [X_int64, X_csc_int32]
    float64_data = [X_float64, X_csr_float64]
    float32_data = [X_float32, X_csr_float32, X_csc_float32]
    for X in integer_data:
        X_checked = assert_no_warnings(check_array, X, dtype=np.float64,
                                       accept_sparse=True)
        assert_equal(X_checked.dtype, np.float64)

        X_checked = assert_warns(DataConversionWarning, check_array, X,
                                 dtype=np.float64,
                                 accept_sparse=True, warn_on_dtype=True)
        assert_equal(X_checked.dtype, np.float64)

        # Check that the warning message includes the name of the Estimator
        X_checked = assert_warns_message(DataConversionWarning,
                                         'SomeEstimator',
                                         check_array, X,
                                         dtype=[np.float64, np.float32],
                                         accept_sparse=True,
                                         warn_on_dtype=True,
                                         estimator='SomeEstimator')
        assert_equal(X_checked.dtype, np.float64)

        X_checked, y_checked = assert_warns_message(
            DataConversionWarning, 'KNeighborsClassifier',
            check_X_y, X, y, dtype=np.float64, accept_sparse=True,
            warn_on_dtype=True, estimator=KNeighborsClassifier())

        assert_equal(X_checked.dtype, np.float64)

    for X in float64_data:
        X_checked = assert_no_warnings(check_array, X, dtype=np.float64,
                                       accept_sparse=True, warn_on_dtype=True)
        assert_equal(X_checked.dtype, np.float64)
        X_checked = assert_no_warnings(check_array, X, dtype=np.float64,
                                       accept_sparse=True, warn_on_dtype=False)
        assert_equal(X_checked.dtype, np.float64)

    for X in float32_data:
        X_checked = assert_no_warnings(check_array, X,
                                       dtype=[np.float64, np.float32],
                                       accept_sparse=True)
        assert_equal(X_checked.dtype, np.float32)
        assert X_checked is X

        X_checked = assert_no_warnings(check_array, X,
                                       dtype=[np.float64, np.float32],
                                       accept_sparse=['csr', 'dok'],
                                       copy=True)
        assert_equal(X_checked.dtype, np.float32)
        assert_false(X_checked is X)

    X_checked = assert_no_warnings(check_array, X_csc_float32,
                                   dtype=[np.float64, np.float32],
                                   accept_sparse=['csr', 'dok'],
                                   copy=False)
    assert_equal(X_checked.dtype, np.float32)
    assert_false(X_checked is X_csc_float32)
    assert_equal(X_checked.format, 'csr')


def test_check_array_accept_sparse_type_exception():
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)
    invalid_type = SVR()

    msg = ("A sparse matrix was passed, but dense data is required. "
           "Use X.toarray() to convert to a dense numpy array.")
    assert_raise_message(TypeError, msg,
                         check_array, X_csr, accept_sparse=False)
    with pytest.warns(DeprecationWarning):
        assert_raise_message(TypeError, msg,
                             check_array, X_csr, accept_sparse=None)

    msg = ("Parameter 'accept_sparse' should be a string, "
           "boolean or list of strings. You provided 'accept_sparse={}'.")
    assert_raise_message(ValueError, msg.format(invalid_type),
                         check_array, X_csr, accept_sparse=invalid_type)

    msg = ("When providing 'accept_sparse' as a tuple or list, "
           "it must contain at least one string value.")
    assert_raise_message(ValueError, msg.format([]),
                         check_array, X_csr, accept_sparse=[])
    assert_raise_message(ValueError, msg.format(()),
                         check_array, X_csr, accept_sparse=())

    assert_raise_message(TypeError, "SVR",
                         check_array, X_csr, accept_sparse=[invalid_type])

    # Test deprecation of 'None'
    assert_warns(DeprecationWarning, check_array, X, accept_sparse=None)


def test_check_array_accept_sparse_no_exception():
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)

    check_array(X_csr, accept_sparse=True)
    check_array(X_csr, accept_sparse='csr')
    check_array(X_csr, accept_sparse=['csr'])
    check_array(X_csr, accept_sparse=('csr',))


@pytest.fixture(params=['csr', 'csc', 'coo', 'bsr'])
def X_64bit(request):
    X = sp.rand(20, 10, format=request.param)
    for attr in ['indices', 'indptr', 'row', 'col']:
        if hasattr(X, attr):
            setattr(X, attr, getattr(X, attr).astype('int64'))
    yield X


def test_check_array_accept_large_sparse_no_exception(X_64bit):
    # When large sparse are allowed
    if LARGE_SPARSE_SUPPORTED:
        check_array(X_64bit, accept_large_sparse=True, accept_sparse=True)


def test_check_array_accept_large_sparse_raise_exception(X_64bit):
    # When large sparse are not allowed
    if LARGE_SPARSE_SUPPORTED:
        msg = ("Only sparse matrices with 32-bit integer indices "
               "are accepted. Got int64 indices.")
        assert_raise_message(ValueError, msg,
                             check_array, X_64bit,
                             accept_sparse=True,
                             accept_large_sparse=False)


def test_check_array_large_indices_non_supported_scipy_version(X_64bit):
    # Large indices should not be allowed for scipy<0.14.0
    if not LARGE_SPARSE_SUPPORTED:
        msg = ("Scipy version %s does not support large"
               " indices, please upgrade your scipy"
               " to 0.14.0 or above" % scipy_version)
        assert_raise_message(ValueError, msg, check_array,
                             X_64bit, accept_sparse='csc')


def test_check_array_min_samples_and_features_messages():
    # empty list is considered 2D by default:
    msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_array, [[]])

    # If considered a 1D collection when ensure_2d=False, then the minimum
    # number of samples will break:
    msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False)

    # Invalid edge case when checking the default minimum sample of a scalar
    msg = "Singleton array array(42) cannot be considered a valid collection."
    assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False)

    # Simulate a model that would need at least 2 samples to be well defined
    X = np.ones((1, 10))
    y = np.ones(1)
    msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y,
                         ensure_min_samples=2)

    # The same message is raised if the data has 2 dimensions even if this is
    # not mandatory
    assert_raise_message(ValueError, msg, check_X_y, X, y,
                         ensure_min_samples=2, ensure_2d=False)

    # Simulate a model that would require at least 3 features (e.g. SelectKBest
    # with k=3)
    X = np.ones((10, 2))
    y = np.ones(2)
    msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y,
                         ensure_min_features=3)

    # Only the feature check is enabled whenever the number of dimensions is 2
    # even if allow_nd is enabled:
    assert_raise_message(ValueError, msg, check_X_y, X, y,
                         ensure_min_features=3, allow_nd=True)

    # Simulate a case where a pipeline stage as trimmed all the features of a
    # 2D dataset.
    X = np.empty(0).reshape(10, 0)
    y = np.ones(10)
    msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y)

    # nd-data is not checked for any minimum number of features by default:
    X = np.ones((10, 0, 28, 28))
    y = np.ones(10)
    X_checked, y_checked = check_X_y(X, y, allow_nd=True)
    assert_array_equal(X, X_checked)
    assert_array_equal(y, y_checked)


def test_check_array_complex_data_error():
    X = np.array([[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]])
    assert_raises_regex(
        ValueError, "Complex data not supported", check_array, X)

    # list of lists
    X = [[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]]
    assert_raises_regex(
        ValueError, "Complex data not supported", check_array, X)

    # tuple of tuples
    X = ((1 + 2j, 3 + 4j, 5 + 7j), (2 + 3j, 4 + 5j, 6 + 7j))
    assert_raises_regex(
        ValueError, "Complex data not supported", check_array, X)

    # list of np arrays
    X = [np.array([1 + 2j, 3 + 4j, 5 + 7j]),
         np.array([2 + 3j, 4 + 5j, 6 + 7j])]
    assert_raises_regex(
        ValueError, "Complex data not supported", check_array, X)

    # tuple of np arrays
    X = (np.array([1 + 2j, 3 + 4j, 5 + 7j]),
         np.array([2 + 3j, 4 + 5j, 6 + 7j]))
    assert_raises_regex(
        ValueError, "Complex data not supported", check_array, X)

    # dataframe
    X = MockDataFrame(
        np.array([[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]]))
    assert_raises_regex(
        ValueError, "Complex data not supported", check_array, X)

    # sparse matrix
    X = sp.coo_matrix([[0, 1 + 2j], [0, 0]])
    assert_raises_regex(
        ValueError, "Complex data not supported", check_array, X)


def test_has_fit_parameter():
    assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight"))
    assert has_fit_parameter(RandomForestRegressor, "sample_weight")
    assert has_fit_parameter(SVR, "sample_weight")
    assert has_fit_parameter(SVR(), "sample_weight")

    class TestClassWithDeprecatedFitMethod:
        @deprecated("Deprecated for the purpose of testing has_fit_parameter")
        def fit(self, X, y, sample_weight=None):
            pass

    assert has_fit_parameter(TestClassWithDeprecatedFitMethod,
                             "sample_weight"), \
        "has_fit_parameter fails for class with deprecated fit method."


def test_check_symmetric():
    arr_sym = np.array([[0, 1], [1, 2]])
    arr_bad = np.ones(2)
    arr_asym = np.array([[0, 2], [0, 2]])

    test_arrays = {'dense': arr_asym,
                   'dok': sp.dok_matrix(arr_asym),
                   'csr': sp.csr_matrix(arr_asym),
                   'csc': sp.csc_matrix(arr_asym),
                   'coo': sp.coo_matrix(arr_asym),
                   'lil': sp.lil_matrix(arr_asym),
                   'bsr': sp.bsr_matrix(arr_asym)}

    # check error for bad inputs
    assert_raises(ValueError, check_symmetric, arr_bad)

    # check that asymmetric arrays are properly symmetrized
    for arr_format, arr in test_arrays.items():
        # Check for warnings and errors
        assert_warns(UserWarning, check_symmetric, arr)
        assert_raises(ValueError, check_symmetric, arr, raise_exception=True)

        output = check_symmetric(arr, raise_warning=False)
        if sp.issparse(output):
            assert_equal(output.format, arr_format)
            assert_array_equal(output.toarray(), arr_sym)
        else:
            assert_array_equal(output, arr_sym)


def test_check_is_fitted():
    # Check is ValueError raised when non estimator instance passed
    assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_")
    assert_raises(TypeError, check_is_fitted, "SVR", "support_")

    ard = ARDRegression()
    svr = SVR(gamma='scale')

    try:
        assert_raises(NotFittedError, check_is_fitted, ard, "coef_")
        assert_raises(NotFittedError, check_is_fitted, svr, "support_")
    except ValueError:
        assert False, "check_is_fitted failed with ValueError"

    # NotFittedError is a subclass of both ValueError and AttributeError
    try:
        check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s")
    except ValueError as e:
        assert_equal(str(e), "Random message ARDRegression, ARDRegression")

    try:
        check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s")
    except AttributeError as e:
        assert_equal(str(e), "Another message SVR, SVR")

    ard.fit(*make_blobs())
    svr.fit(*make_blobs())

    assert_equal(None, check_is_fitted(ard, "coef_"))
    assert_equal(None, check_is_fitted(svr, "support_"))


def test_check_consistent_length():
    check_consistent_length([1], [2], [3], [4], [5])
    check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b'])
    check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2)))
    assert_raises_regex(ValueError, 'inconsistent numbers of samples',
                        check_consistent_length, [1, 2], [1])
    assert_raises_regex(TypeError, r"got <\w+ 'int'>",
                        check_consistent_length, [1, 2], 1)
    assert_raises_regex(TypeError, r"got <\w+ 'object'>",
                        check_consistent_length, [1, 2], object())

    assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1))
    # Despite ensembles having __len__ they must raise TypeError
    assert_raises_regex(TypeError, 'estimator', check_consistent_length,
                        [1, 2], RandomForestRegressor())
    # XXX: We should have a test with a string, but what is correct behaviour?


def test_check_dataframe_fit_attribute():
    # check pandas dataframe with 'fit' column does not raise error
    # https://github.com/scikit-learn/scikit-learn/issues/8415
    try:
        import pandas as pd
        X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        X_df = pd.DataFrame(X, columns=['a', 'b', 'fit'])
        check_consistent_length(X_df)
    except ImportError:
        raise SkipTest("Pandas not found")


def test_suppress_validation():
    X = np.array([0, np.inf])
    assert_raises(ValueError, assert_all_finite, X)
    sklearn.set_config(assume_finite=True)
    assert_all_finite(X)
    sklearn.set_config(assume_finite=False)
    assert_raises(ValueError, assert_all_finite, X)


def test_check_array_series():
    # regression test that check_array works on pandas Series
    pd = importorskip("pandas")
    res = check_array(pd.Series([1, 2, 3]), ensure_2d=False,
                      warn_on_dtype=True)
    assert_array_equal(res, np.array([1, 2, 3]))

    # with categorical dtype (not a numpy dtype) (GH12699)
    s = pd.Series(['a', 'b', 'c']).astype('category')
    res = check_array(s, dtype=None, ensure_2d=False)
    assert_array_equal(res, np.array(['a', 'b', 'c'], dtype=object))


def test_check_dataframe_warns_on_dtype():
    # Check that warn_on_dtype also works for DataFrames.
    # https://github.com/scikit-learn/scikit-learn/issues/10948
    pd = importorskip("pandas")

    df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], dtype=object)
    assert_warns_message(DataConversionWarning,
                         "Data with input dtype object were all converted to "
                         "float64.",
                         check_array, df, dtype=np.float64, warn_on_dtype=True)
    assert_warns(DataConversionWarning, check_array, df,
                 dtype='numeric', warn_on_dtype=True)
    assert_no_warnings(check_array, df, dtype='object', warn_on_dtype=True)

    # Also check that it raises a warning for mixed dtypes in a DataFrame.
    df_mixed = pd.DataFrame([['1', 2, 3], ['4', 5, 6]])
    assert_warns(DataConversionWarning, check_array, df_mixed,
                 dtype=np.float64, warn_on_dtype=True)
    assert_warns(DataConversionWarning, check_array, df_mixed,
                 dtype='numeric', warn_on_dtype=True)
    assert_warns(DataConversionWarning, check_array, df_mixed,
                 dtype=object, warn_on_dtype=True)

    # Even with numerical dtypes, a conversion can be made because dtypes are
    # uniformized throughout the array.
    df_mixed_numeric = pd.DataFrame([[1., 2, 3], [4., 5, 6]])
    assert_warns(DataConversionWarning, check_array, df_mixed_numeric,
                 dtype='numeric', warn_on_dtype=True)
    assert_no_warnings(check_array, df_mixed_numeric.astype(int),
                       dtype='numeric', warn_on_dtype=True)


class DummyMemory(object):
    def cache(self, func):
        return func


class WrongDummyMemory(object):
    pass


@pytest.mark.filterwarnings("ignore:The 'cachedir' attribute")
def test_check_memory():
    memory = check_memory("cache_directory")
    assert_equal(memory.cachedir, os.path.join('cache_directory', 'joblib'))
    memory = check_memory(None)
    assert_equal(memory.cachedir, None)
    dummy = DummyMemory()
    memory = check_memory(dummy)
    assert memory is dummy
    assert_raises_regex(ValueError, "'memory' should be None, a string or"
                        " have the same interface as joblib.Memory."
                        " Got memory='1' instead.", check_memory, 1)
    dummy = WrongDummyMemory()
    assert_raises_regex(ValueError, "'memory' should be None, a string or"
                        " have the same interface as joblib.Memory."
                        " Got memory='{}' instead.".format(dummy),
                        check_memory, dummy)


@pytest.mark.parametrize('copy', [True, False])
def test_check_array_memmap(copy):
    X = np.ones((4, 4))
    with TempMemmap(X, mmap_mode='r') as X_memmap:
        X_checked = check_array(X_memmap, copy=copy)
        assert np.may_share_memory(X_memmap, X_checked) == (not copy)
        assert X_checked.flags['WRITEABLE'] == copy


def test_check_X_y_informative_error():
    X = np.ones((2, 2))
    y = None
    assert_raise_message(ValueError, "y cannot be None", check_X_y, X, y)


def test_retrieve_samples_from_non_standard_shape():
    class TestNonNumericShape:
        def __init__(self):
            self.shape = ("not numeric",)

        def __len__(self):
            return len([1, 2, 3])

    X = TestNonNumericShape()
    assert _num_samples(X) == len(X)