File: v0.20.rst

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (1743 lines) | stat: -rw-r--r-- 79,968 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
.. include:: _contributors.rst

.. currentmodule:: sklearn

.. _changes_0_20_4:

Version 0.20.4
==============

**July 30, 2019**

This is a bug-fix release with some bug fixes applied to version 0.20.3.

Changelog
---------

The bundled version of joblib was upgraded from 0.13.0 to 0.13.2.

:mod:`sklearn.cluster`
..............................

- |Fix| Fixed a bug in :class:`cluster.KMeans` where KMeans++ initialisation
  could rarely result in an IndexError. :issue:`11756` by `Joel Nothman`_.

:mod:`sklearn.compose`
.......................

- |Fix| Fixed an issue in :class:`compose.ColumnTransformer` where using
  DataFrames whose column order differs between :func:``fit`` and
  :func:``transform`` could lead to silently passing incorrect columns to the
  ``remainder`` transformer.
  :pr:`14237` by `Andreas Schuderer <schuderer>`.

:mod:`sklearn.decomposition`
............................

- |Fix| Fixed a bug in :class:`cross_decomposition.CCA` improving numerical 
  stability when `Y` is close to zero. :pr:`13903` by `Thomas Fan`_.


:mod:`sklearn.model_selection`
..............................

- |Fix| Fixed a bug where :class:`model_selection.StratifiedKFold`
  shuffles each class's samples with the same ``random_state``,
  making ``shuffle=True`` ineffective.
  :issue:`13124` by :user:`Hanmin Qin <qinhanmin2014>`.

:mod:`sklearn.neighbors`
........................

- |Fix| Fixed a bug in :class:`neighbors.KernelDensity` which could not be
  restored from a pickle if ``sample_weight`` had been used.
  :issue:`13772` by :user:`Aditya Vyas <aditya1702>`.

 .. _changes_0_20_3:

Version 0.20.3
==============

**March 1, 2019**

This is a bug-fix release with some minor documentation improvements and
enhancements to features released in 0.20.0.

Changelog
---------

:mod:`sklearn.cluster`
......................

- |Fix| Fixed a bug in :class:`cluster.KMeans` where computation was single
  threaded when `n_jobs > 1` or `n_jobs = -1`.
  :issue:`12949` by :user:`Prabakaran Kumaresshan <nixphix>`.

:mod:`sklearn.compose`
......................

- |Fix| Fixed a bug in :class:`compose.ColumnTransformer` to handle
  negative indexes in the columns list of the transformers.
  :issue:`12946` by :user:`Pierre Tallotte <pierretallotte>`.

:mod:`sklearn.covariance`
.........................

- |Fix| Fixed a regression in :func:`covariance.graphical_lasso` so that
  the case `n_features=2` is handled correctly. :issue:`13276` by
  :user:`Aurélien Bellet <bellet>`.

:mod:`sklearn.decomposition`
............................

- |Fix| Fixed a bug in :func:`decomposition.sparse_encode` where computation was single
  threaded when `n_jobs > 1` or `n_jobs = -1`.
  :issue:`13005` by :user:`Prabakaran Kumaresshan <nixphix>`.

:mod:`sklearn.datasets`
............................

- |Efficiency| :func:`sklearn.datasets.fetch_openml` now loads data by
  streaming, avoiding high memory usage.  :issue:`13312` by `Joris Van den
  Bossche`_.

:mod:`sklearn.feature_extraction`
.................................

- |Fix| Fixed a bug in :class:`feature_extraction.text.CountVectorizer` which 
  would result in the sparse feature matrix having conflicting `indptr` and
  `indices` precisions under very large vocabularies. :issue:`11295` by
  :user:`Gabriel Vacaliuc <gvacaliuc>`.

:mod:`sklearn.impute`
.....................

- |Fix| add support for non-numeric data in
  :class:`sklearn.impute.MissingIndicator` which was not supported while
  :class:`sklearn.impute.SimpleImputer` was supporting this for some
  imputation strategies.
  :issue:`13046` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.linear_model`
...........................

- |Fix| Fixed a bug in :class:`linear_model.MultiTaskElasticNet` and
  :class:`linear_model.MultiTaskLasso` which were breaking when
  ``warm_start = True``. :issue:`12360` by :user:`Aakanksha Joshi <joaak>`.

:mod:`sklearn.preprocessing`
............................

- |Fix| Fixed a bug in :class:`preprocessing.KBinsDiscretizer` where
  ``strategy='kmeans'`` fails with an error during transformation due to unsorted
  bin edges. :issue:`13134` by :user:`Sandro Casagrande <SandroCasagrande>`.

- |Fix| Fixed a bug in :class:`preprocessing.OneHotEncoder` where the
  deprecation of ``categorical_features`` was handled incorrectly in
  combination with ``handle_unknown='ignore'``.
  :issue:`12881` by `Joris Van den Bossche`_.

- |Fix| Bins whose width are too small (i.e., <= 1e-8) are removed
  with a warning in :class:`preprocessing.KBinsDiscretizer`.
  :issue:`13165` by :user:`Hanmin Qin <qinhanmin2014>`.

:mod:`sklearn.svm`
..................

- |FIX| Fixed a bug in :class:`svm.SVC`, :class:`svm.NuSVC`, :class:`svm.SVR`,
  :class:`svm.NuSVR` and :class:`svm.OneClassSVM` where the ``scale`` option
  of parameter ``gamma`` is erroneously defined as
  ``1 / (n_features * X.std())``. It's now defined as
  ``1 / (n_features * X.var())``.
  :issue:`13221` by :user:`Hanmin Qin <qinhanmin2014>`.

Code and Documentation Contributors
-----------------------------------

With thanks to:

Adrin Jalali, Agamemnon Krasoulis, Albert Thomas, Andreas Mueller, Aurélien
Bellet, bertrandhaut, Bharat Raghunathan, Dowon, Emmanuel Arias, Fibinse
Xavier, Finn O'Shea, Gabriel Vacaliuc, Gael Varoquaux, Guillaume Lemaitre,
Hanmin Qin, joaak, Joel Nothman, Joris Van den Bossche, Jérémie Méhault, kms15,
Kossori Aruku, Lakshya KD, maikia, Manuel López-Ibáñez, Marco Gorelli,
MarcoGorelli, mferrari3, Mickaël Schoentgen, Nicolas Hug, pavlos kallis, Pierre
Glaser, pierretallotte, Prabakaran Kumaresshan, Reshama Shaikh, Rohit Kapoor,
Roman Yurchak, SandroCasagrande, Tashay Green, Thomas Fan, Vishaal Kapoor,
Zhuyi Xue, Zijie (ZJ) Poh

.. _changes_0_20_2:

Version 0.20.2
==============

**December 20, 2018**

This is a bug-fix release with some minor documentation improvements and
enhancements to features released in 0.20.0.

Changed models
--------------

The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

- :mod:`sklearn.neighbors` when ``metric=='jaccard'`` (bug fix)
- use of ``'seuclidean'`` or ``'mahalanobis'`` metrics in some cases (bug fix)

Changelog
---------

:mod:`sklearn.compose`
......................

- |Fix| Fixed an issue in :func:`compose.make_column_transformer` which raises
  unexpected error when columns is pandas Index or pandas Series.
  :issue:`12704` by :user:`Hanmin Qin <qinhanmin2014>`.

:mod:`sklearn.metrics`
......................

- |Fix| Fixed a bug in :func:`metrics.pairwise_distances` and
  :func:`metrics.pairwise_distances_chunked` where parameters ``V`` of
  ``"seuclidean"`` and ``VI`` of ``"mahalanobis"`` metrics were computed after
  the data was split into chunks instead of being pre-computed on whole data.
  :issue:`12701` by :user:`Jeremie du Boisberranger <jeremiedbb>`.

:mod:`sklearn.neighbors`
........................

- |Fix| Fixed :class:`sklearn.neighbors.DistanceMetric` jaccard distance
  function to return 0 when two all-zero vectors are compared.
  :issue:`12685` by :user:`Thomas Fan <thomasjpfan>`.

:mod:`sklearn.utils`
....................

- |Fix| Calling :func:`utils.check_array` on `pandas.Series` with categorical
  data, which raised an error in 0.20.0, now returns the expected output again.
  :issue:`12699` by `Joris Van den Bossche`_.

Code and Documentation Contributors
-----------------------------------

With thanks to:


adanhawth, Adrin Jalali, Albert Thomas, Andreas Mueller, Dan Stine, Feda Curic,
Hanmin Qin, Jan S, jeremiedbb, Joel Nothman, Joris Van den Bossche,
josephsalmon, Katrin Leinweber, Loic Esteve, Muhammad Hassaan Rafique, Nicolas
Hug, Olivier Grisel, Paul Paczuski, Reshama Shaikh, Sam Waterbury, Shivam
Kotwalia, Thomas Fan

.. _changes_0_20_1:

Version 0.20.1
==============

**November 21, 2018**

This is a bug-fix release with some minor documentation improvements and
enhancements to features released in 0.20.0. Note that we also include some
API changes in this release, so you might get some extra warnings after
updating from 0.20.0 to 0.20.1.

Changed models
--------------

The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

- :class:`decomposition.IncrementalPCA` (bug fix)

Changelog
---------

:mod:`sklearn.cluster`
......................

- |Efficiency| make :class:`cluster.MeanShift` no longer try to do nested
  parallelism as the overhead would hurt performance significantly when
  ``n_jobs > 1``.
  :issue:`12159` by :user:`Olivier Grisel <ogrisel>`.

- |Fix| Fixed a bug in :class:`cluster.DBSCAN` with precomputed sparse neighbors
  graph, which would add explicitly zeros on the diagonal even when already
  present. :issue:`12105` by `Tom Dupre la Tour`_.

:mod:`sklearn.compose`
......................

- |Fix| Fixed an issue in :class:`compose.ColumnTransformer` when stacking
  columns with types not convertible to a numeric.
  :issue:`11912` by :user:`Adrin Jalali <adrinjalali>`.

- |API| :class:`compose.ColumnTransformer` now applies the ``sparse_threshold``
  even if all transformation results are sparse. :issue:`12304` by `Andreas
  Müller`_.

- |API| :func:`compose.make_column_transformer` now expects
  ``(transformer, columns)`` instead of ``(columns, transformer)`` to keep
  consistent with :class:`compose.ColumnTransformer`.
  :issue:`12339` by :user:`Adrin Jalali <adrinjalali>`.

:mod:`sklearn.datasets`
............................

- |Fix| :func:`datasets.fetch_openml` to correctly use the local cache.
  :issue:`12246` by :user:`Jan N. van Rijn <janvanrijn>`.

- |Fix| :func:`datasets.fetch_openml` to correctly handle ignore attributes and
  row id attributes. :issue:`12330` by :user:`Jan N. van Rijn <janvanrijn>`.

- |Fix| Fixed integer overflow in :func:`datasets.make_classification`
  for values of ``n_informative`` parameter larger than 64.
  :issue:`10811` by :user:`Roman Feldbauer <VarIr>`.

- |Fix| Fixed olivetti faces dataset ``DESCR`` attribute to point to the right
  location in :func:`datasets.fetch_olivetti_faces`. :issue:`12441` by
  :user:`Jérémie du Boisberranger <jeremiedbb>`

- |Fix| :func:`datasets.fetch_openml` to retry downloading when reading
  from local cache fails. :issue:`12517` by :user:`Thomas Fan <thomasjpfan>`.

:mod:`sklearn.decomposition`
............................

- |Fix| Fixed a regression in :class:`decomposition.IncrementalPCA` where
  0.20.0 raised an error if the number of samples in the final batch for
  fitting IncrementalPCA was smaller than n_components.
  :issue:`12234` by :user:`Ming Li <minggli>`.

:mod:`sklearn.ensemble`
.......................

- |Fix| Fixed a bug mostly affecting :class:`ensemble.RandomForestClassifier`
  where ``class_weight='balanced_subsample'`` failed with more than 32 classes.
  :issue:`12165` by `Joel Nothman`_.

- |Fix| Fixed a bug affecting :class:`ensemble.BaggingClassifier`,
  :class:`ensemble.BaggingRegressor` and :class:`ensemble.IsolationForest`,
  where ``max_features`` was sometimes rounded down to zero.
  :issue:`12388` by :user:`Connor Tann <Connossor>`.

:mod:`sklearn.feature_extraction`
..................................

- |Fix| Fixed a regression in v0.20.0 where
  :func:`feature_extraction.text.CountVectorizer` and other text vectorizers
  could error during stop words validation with custom preprocessors
  or tokenizers. :issue:`12393` by `Roman Yurchak`_.

:mod:`sklearn.linear_model`
...........................

- |Fix| :class:`linear_model.SGDClassifier` and variants
  with ``early_stopping=True`` would not use a consistent validation
  split in the multiclass case and this would cause a crash when using
  those estimators as part of parallel parameter search or cross-validation.
  :issue:`12122` by :user:`Olivier Grisel <ogrisel>`.

- |Fix| Fixed a bug affecting :class:`SGDClassifier` in the multiclass
  case. Each one-versus-all step is run in a :class:`joblib.Parallel` call and
  mutating a common parameter, causing a segmentation fault if called within a
  backend using processes and not threads. We now use ``require=sharedmem``
  at the :class:`joblib.Parallel` instance creation. :issue:`12518` by
  :user:`Pierre Glaser <pierreglaser>` and :user:`Olivier Grisel <ogrisel>`.

:mod:`sklearn.metrics`
......................

- |Fix| Fixed a bug in :func:`metrics.pairwise.pairwise_distances_argmin_min`
  which returned the square root of the distance when the metric parameter was
  set to "euclidean". :issue:`12481` by
  :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |Fix| Fixed a bug in :func:`metrics.pairwise.pairwise_distances_chunked`
  which didn't ensure the diagonal is zero for euclidean distances.
  :issue:`12612` by :user:`Andreas Müller <amueller>`.

- |API| The :func:`metrics.calinski_harabaz_score` has been renamed to
  :func:`metrics.calinski_harabasz_score` and will be removed in version 0.23.
  :issue:`12211` by :user:`Lisa Thomas <LisaThomas9>`,
  :user:`Mark Hannel <markhannel>` and :user:`Melissa Ferrari <mferrari3>`.

:mod:`sklearn.mixture`
........................

- |Fix| Ensure that the ``fit_predict`` method of
  :class:`mixture.GaussianMixture` and :class:`mixture.BayesianGaussianMixture`
  always yield assignments consistent with ``fit`` followed by ``predict`` even
  if the convergence criterion is too loose or not met. :issue:`12451`
  by :user:`Olivier Grisel <ogrisel>`.

:mod:`sklearn.neighbors`
........................

- |Fix| force the parallelism backend to :code:`threading` for
  :class:`neighbors.KDTree` and :class:`neighbors.BallTree` in Python 2.7 to
  avoid pickling errors caused by the serialization of their methods.
  :issue:`12171` by :user:`Thomas Moreau <tomMoral>`.

:mod:`sklearn.preprocessing`
.............................

- |Fix| Fixed bug in :class:`preprocessing.OrdinalEncoder` when passing
  manually specified categories. :issue:`12365` by `Joris Van den Bossche`_.

- |Fix| Fixed bug in :class:`preprocessing.KBinsDiscretizer` where the
  ``transform`` method mutates the ``_encoder`` attribute. The ``transform``
  method is now thread safe. :issue:`12514` by
  :user:`Hanmin Qin <qinhanmin2014>`.

- |Fix| Fixed a bug in :class:`preprocessing.PowerTransformer` where the
  Yeo-Johnson transform was incorrect for lambda parameters outside of `[0, 2]`
  :issue:`12522` by :user:`Nicolas Hug<NicolasHug>`.

- |Fix| Fixed a bug in :class:`preprocessing.OneHotEncoder` where transform
  failed when set to ignore unknown numpy strings of different lengths 
  :issue:`12471` by :user:`Gabriel Marzinotto<GMarzinotto>`.

- |API| The default value of the :code:`method` argument in
  :func:`preprocessing.power_transform` will be changed from :code:`box-cox`
  to :code:`yeo-johnson` to match :class:`preprocessing.PowerTransformer`
  in version 0.23. A FutureWarning is raised when the default value is used.
  :issue:`12317` by :user:`Eric Chang <chang>`.

:mod:`sklearn.utils`
........................

- |Fix| Use float64 for mean accumulator to avoid floating point
  precision issues in :class:`preprocessing.StandardScaler` and
  :class:`decomposition.IncrementalPCA` when using float32 datasets.
  :issue:`12338` by :user:`bauks <bauks>`.

- |Fix| Calling :func:`utils.check_array` on `pandas.Series`, which
  raised an error in 0.20.0, now returns the expected output again.
  :issue:`12625` by `Andreas Müller`_
  
Miscellaneous
.............

- |Fix| When using site joblib by setting the environment variable
  `SKLEARN_SITE_JOBLIB`, added compatibility with joblib 0.11 in addition
  to 0.12+. :issue:`12350` by `Joel Nothman`_ and `Roman Yurchak`_.

- |Fix| Make sure to avoid raising ``FutureWarning`` when calling
  ``np.vstack`` with numpy 1.16 and later (use list comprehensions
  instead of generator expressions in many locations of the scikit-learn
  code base). :issue:`12467` by :user:`Olivier Grisel <ogrisel>`.

- |API| Removed all mentions of ``sklearn.externals.joblib``, and deprecated
  joblib methods exposed in ``sklearn.utils``, except for
  :func:`utils.parallel_backend` and :func:`utils.register_parallel_backend`,
  which allow users to configure parallel computation in scikit-learn.
  Other functionalities are part of `joblib <https://joblib.readthedocs.io/>`_.
  package and should be used directly, by installing it.
  The goal of this change is to prepare for
  unvendoring joblib in future version of scikit-learn.
  :issue:`12345` by :user:`Thomas Moreau <tomMoral>`

Code and Documentation Contributors
-----------------------------------

With thanks to:

^__^, Adrin Jalali, Andrea Navarrete, Andreas Mueller,
bauks, BenjaStudio, Cheuk Ting Ho, Connossor,
Corey Levinson, Dan Stine, daten-kieker, Denis Kataev,
Dillon Gardner, Dmitry Vukolov, Dougal J. Sutherland, Edward J Brown,
Eric Chang, Federico Caselli, Gabriel Marzinotto, Gael Varoquaux,
GauravAhlawat, Gustavo De Mari Pereira, Hanmin Qin, haroldfox,
JackLangerman, Jacopo Notarstefano, janvanrijn, jdethurens,
jeremiedbb, Joel Nothman, Joris Van den Bossche, Koen,
Kushal Chauhan, Lee Yi Jie Joel, Lily Xiong, mail-liam,
Mark Hannel, melsyt, Ming Li, Nicholas Smith,
Nicolas Hug, Nikolay Shebanov, Oleksandr Pavlyk, Olivier Grisel,
Peter Hausamann, Pierre Glaser, Pulkit Maloo, Quentin Batista,
Radostin Stoyanov, Ramil Nugmanov, Rebekah Kim, Reshama Shaikh,
Rohan Singh, Roman Feldbauer, Roman Yurchak, Roopam Sharma,
Sam Waterbury, Scott Lowe, Sebastian Raschka, Stephen Tierney,
SylvainLan, TakingItCasual, Thomas Fan, Thomas Moreau,
Tom Dupré la Tour, Tulio Casagrande, Utkarsh Upadhyay, Xing Han Lu,
Yaroslav Halchenko, Zach Miller


.. _changes_0_20:

Version 0.20.0
==============

**September 25, 2018**

This release packs in a mountain of bug fixes, features and enhancements for
the Scikit-learn library, and improvements to the documentation and examples.
Thanks to our contributors!

This release is dedicated to the memory of Raghav Rajagopalan.

.. warning::

    Version 0.20 is the last version of scikit-learn to support Python 2.7 and Python 3.4.
    Scikit-learn 0.21 will require Python 3.5 or higher.

Highlights
----------

We have tried to improve our support for common data-science use-cases
including missing values, categorical variables, heterogeneous data, and
features/targets with unusual distributions.
Missing values in features, represented by NaNs, are now accepted in
column-wise preprocessing such as scalers. Each feature is fitted disregarding
NaNs, and data containing NaNs can be transformed. The new :mod:`impute`
module provides estimators for learning despite missing data.

:class:`~compose.ColumnTransformer` handles the case where different features
or columns of a pandas.DataFrame need different preprocessing.
String or pandas Categorical columns can now be encoded with
:class:`~preprocessing.OneHotEncoder` or
:class:`~preprocessing.OrdinalEncoder`.

:class:`~compose.TransformedTargetRegressor` helps when the regression target
needs to be transformed to be modeled. :class:`~preprocessing.PowerTransformer`
and :class:`~preprocessing.KBinsDiscretizer` join
:class:`~preprocessing.QuantileTransformer` as non-linear transformations.

Beyond this, we have added :term:`sample_weight` support to several estimators
(including :class:`~cluster.KMeans`, :class:`~linear_model.BayesianRidge` and
:class:`~neighbors.KernelDensity`) and improved stopping criteria in others
(including :class:`~neural_network.MLPRegressor`,
:class:`~ensemble.GradientBoostingRegressor` and
:class:`~linear_model.SGDRegressor`).

This release is also the first to be accompanied by a :ref:`glossary` developed
by `Joel Nothman`_. The glossary is a reference resource to help users and
contributors become familiar with the terminology and conventions used in
Scikit-learn.

Sorry if your contribution didn't make it into the highlights. There's a lot
here...

Changed models
--------------

The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

- :class:`cluster.MeanShift` (bug fix)
- :class:`decomposition.IncrementalPCA` in Python 2 (bug fix)
- :class:`decomposition.SparsePCA` (bug fix)
- :class:`ensemble.GradientBoostingClassifier` (bug fix affecting feature importances)
- :class:`isotonic.IsotonicRegression` (bug fix)
- :class:`linear_model.ARDRegression` (bug fix)
- :class:`linear_model.LogisticRegressionCV` (bug fix)
- :class:`linear_model.OrthogonalMatchingPursuit` (bug fix)
- :class:`linear_model.PassiveAggressiveClassifier` (bug fix)
- :class:`linear_model.PassiveAggressiveRegressor` (bug fix)
- :class:`linear_model.Perceptron` (bug fix)
- :class:`linear_model.SGDClassifier` (bug fix)
- :class:`linear_model.SGDRegressor` (bug fix)
- :class:`metrics.roc_auc_score` (bug fix)
- :class:`metrics.roc_curve` (bug fix)
- :class:`neural_network.BaseMultilayerPerceptron` (bug fix)
- :class:`neural_network.MLPClassifier` (bug fix)
- :class:`neural_network.MLPRegressor` (bug fix)
- The v0.19.0 release notes failed to mention a backwards incompatibility with
  :class:`model_selection.StratifiedKFold` when ``shuffle=True`` due to
  :issue:`7823`.

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we
cannot assure that this list is complete.)

Known Major Bugs
----------------

* :issue:`11924`: :class:`linear_model.LogisticRegressionCV` with
  `solver='lbfgs'` and `multi_class='multinomial'` may be non-deterministic or
  otherwise broken on macOS. This appears to be the case on Travis CI servers,
  but has not been confirmed on personal MacBooks! This issue has been present
  in previous releases.

* :issue:`9354`: :func:`metrics.pairwise.euclidean_distances` (which is used
  several times throughout the library) gives results with poor precision,
  which particularly affects its use with 32-bit float inputs. This became
  more problematic in versions 0.18 and 0.19 when some algorithms were changed
  to avoid casting 32-bit data into 64-bit.

Changelog
---------

Support for Python 3.3 has been officially dropped.


:mod:`sklearn.cluster`
......................

- |MajorFeature| :class:`cluster.AgglomerativeClustering` now supports Single
  Linkage clustering via ``linkage='single'``. :issue:`9372` by :user:`Leland
  McInnes <lmcinnes>` and :user:`Steve Astels <sastels>`.

- |Feature| :class:`cluster.KMeans` and :class:`cluster.MiniBatchKMeans` now support
  sample weights via new parameter ``sample_weight`` in ``fit`` function.
  :issue:`10933` by :user:`Johannes Hansen <jnhansen>`.

- |Efficiency| :class:`cluster.KMeans`, :class:`cluster.MiniBatchKMeans` and
  :func:`cluster.k_means` passed with ``algorithm='full'`` now enforces
  row-major ordering, improving runtime.
  :issue:`10471` by :user:`Gaurav Dhingra <gxyd>`.

- |Efficiency| :class:`cluster.DBSCAN` now is parallelized according to ``n_jobs``
  regardless of ``algorithm``.
  :issue:`8003` by :user:`Joël Billaud <recamshak>`.

- |Enhancement| :class:`cluster.KMeans` now gives a warning if the number of
  distinct clusters found is smaller than ``n_clusters``. This may occur when
  the number of distinct points in the data set is actually smaller than the
  number of cluster one is looking for.
  :issue:`10059` by :user:`Christian Braune <christianbraune79>`.

- |Fix| Fixed a bug where the ``fit`` method of
  :class:`cluster.AffinityPropagation` stored cluster
  centers as 3d array instead of 2d array in case of non-convergence. For the
  same class, fixed undefined and arbitrary behavior in case of training data
  where all samples had equal similarity.
  :issue:`9612`. By :user:`Jonatan Samoocha <jsamoocha>`.

- |Fix| Fixed a bug in :func:`cluster.spectral_clustering` where the normalization of
  the spectrum was using a division instead of a multiplication. :issue:`8129`
  by :user:`Jan Margeta <jmargeta>`, :user:`Guillaume Lemaitre <glemaitre>`,
  and :user:`Devansh D. <devanshdalal>`.

- |Fix| Fixed a bug in :func:`cluster.k_means_elkan` where the returned
  ``iteration`` was 1 less than the correct value. Also added the missing
  ``n_iter_`` attribute in the docstring of :class:`cluster.KMeans`.
  :issue:`11353` by :user:`Jeremie du Boisberranger <jeremiedbb>`.

- |Fix| Fixed a bug in :func:`cluster.mean_shift` where the assigned labels
  were not deterministic if there were multiple clusters with the same
  intensities.
  :issue:`11901` by :user:`Adrin Jalali <adrinjalali>`.

- |API| Deprecate ``pooling_func`` unused parameter in
  :class:`cluster.AgglomerativeClustering`.
  :issue:`9875` by :user:`Kumar Ashutosh <thechargedneutron>`.


:mod:`sklearn.compose`
......................

- New module.

- |MajorFeature| Added :class:`compose.ColumnTransformer`, which allows to
  apply different transformers to different columns of arrays or pandas
  DataFrames. :issue:`9012` by `Andreas Müller`_ and `Joris Van den Bossche`_,
  and :issue:`11315` by :user:`Thomas Fan <thomasjpfan>`.

- |MajorFeature| Added the :class:`compose.TransformedTargetRegressor` which
  transforms the target y before fitting a regression model. The predictions
  are mapped back to the original space via an inverse transform. :issue:`9041`
  by `Andreas Müller`_ and :user:`Guillaume Lemaitre <glemaitre>`.



:mod:`sklearn.covariance`
.........................

- |Efficiency| Runtime improvements to :class:`covariance.GraphicalLasso`.
  :issue:`9858` by :user:`Steven Brown <stevendbrown>`.

- |API| The :func:`covariance.graph_lasso`,
  :class:`covariance.GraphLasso` and :class:`covariance.GraphLassoCV` have been
  renamed to :func:`covariance.graphical_lasso`,
  :class:`covariance.GraphicalLasso` and :class:`covariance.GraphicalLassoCV`
  respectively and will be removed in version 0.22.
  :issue:`9993` by :user:`Artiem Krinitsyn <artiemq>`


:mod:`sklearn.datasets`
.......................

- |MajorFeature| Added :func:`datasets.fetch_openml` to fetch datasets from
  `OpenML <https://openml.org>`_. OpenML is a free, open data sharing platform
  and will be used instead of mldata as it provides better service availability.
  :issue:`9908` by `Andreas Müller`_ and :user:`Jan N. van Rijn <janvanrijn>`.

- |Feature| In :func:`datasets.make_blobs`, one can now pass a list to the
  ``n_samples`` parameter to indicate the number of samples to generate per
  cluster. :issue:`8617` by :user:`Maskani Filali Mohamed <maskani-moh>` and
  :user:`Konstantinos Katrioplas <kkatrio>`.

- |Feature| Add ``filename`` attribute to :mod:`datasets` that have a CSV file.
  :issue:`9101` by :user:`alex-33 <alex-33>`
  and :user:`Maskani Filali Mohamed <maskani-moh>`.

- |Feature| ``return_X_y`` parameter has been added to several dataset loaders.
  :issue:`10774` by :user:`Chris Catalfo <ccatalfo>`.

- |Fix| Fixed a bug in :func:`datasets.load_boston` which had a wrong data
  point. :issue:`10795` by :user:`Takeshi Yoshizawa <tarcusx>`.

- |Fix| Fixed a bug in :func:`datasets.load_iris` which had two wrong data points.
  :issue:`11082` by :user:`Sadhana Srinivasan <rotuna>`
  and :user:`Hanmin Qin <qinhanmin2014>`.

- |Fix| Fixed a bug in :func:`datasets.fetch_kddcup99`, where data were not
  properly shuffled. :issue:`9731` by `Nicolas Goix`_.

- |Fix| Fixed a bug in :func:`datasets.make_circles`, where no odd number of
  data points could be generated. :issue:`10045` by :user:`Christian Braune
  <christianbraune79>`.

- |API| Deprecated :func:`sklearn.datasets.fetch_mldata` to be removed in
  version 0.22. mldata.org is no longer operational. Until removal it will
  remain possible to load cached datasets. :issue:`11466` by `Joel Nothman`_.

:mod:`sklearn.decomposition`
............................

- |Feature| :func:`decomposition.dict_learning` functions and models now
  support positivity constraints. This applies to the dictionary and sparse
  code. :issue:`6374` by :user:`John Kirkham <jakirkham>`.

- |Feature| |Fix| :class:`decomposition.SparsePCA` now exposes
  ``normalize_components``. When set to True, the train and test data are
  centered with the train mean respectively during the fit phase and the
  transform phase. This fixes the behavior of SparsePCA. When set to False,
  which is the default, the previous abnormal behaviour still holds. The False
  value is for backward compatibility and should not be used. :issue:`11585`
  by :user:`Ivan Panico <FollowKenny>`.

- |Efficiency| Efficiency improvements in :func:`decomposition.dict_learning`.
  :issue:`11420` and others by :user:`John Kirkham <jakirkham>`.

- |Fix| Fix for uninformative error in :class:`decomposition.IncrementalPCA`:
  now an error is raised if the number of components is larger than the
  chosen batch size. The ``n_components=None`` case was adapted accordingly.
  :issue:`6452`. By :user:`Wally Gauze <wallygauze>`.

- |Fix| Fixed a bug where the ``partial_fit`` method of
  :class:`decomposition.IncrementalPCA` used integer division instead of float
  division on Python 2.
  :issue:`9492` by :user:`James Bourbeau <jrbourbeau>`.

- |Fix| In :class:`decomposition.PCA` selecting a n_components parameter greater
  than the number of samples now raises an error. Similarly, the
  ``n_components=None`` case now selects the minimum of ``n_samples`` and
  ``n_features``.
  :issue:`8484` by :user:`Wally Gauze <wallygauze>`.

- |Fix| Fixed a bug in :class:`decomposition.PCA` where users will get
  unexpected error with large datasets when ``n_components='mle'`` on Python 3
  versions.
  :issue:`9886` by :user:`Hanmin Qin <qinhanmin2014>`.

- |Fix| Fixed an underflow in calculating KL-divergence for
  :class:`decomposition.NMF` :issue:`10142` by `Tom Dupre la Tour`_.

- |Fix| Fixed a bug in :class:`decomposition.SparseCoder` when running OMP
  sparse coding in parallel using read-only memory mapped datastructures.
  :issue:`5956` by :user:`Vighnesh Birodkar <vighneshbirodkar>` and
  :user:`Olivier Grisel <ogrisel>`.


:mod:`sklearn.discriminant_analysis`
....................................

- |Efficiency| Memory usage improvement for :func:`_class_means` and
  :func:`_class_cov` in :mod:`discriminant_analysis`. :issue:`10898` by
  :user:`Nanxin Chen <bobchennan>`.


:mod:`sklearn.dummy`
....................

- |Feature| :class:`dummy.DummyRegressor` now has a ``return_std`` option in its
  ``predict`` method. The returned standard deviations will be zeros.

- |Feature| :class:`dummy.DummyClassifier` and :class:`dummy.DummyRegressor` now
  only require X to be an object with finite length or shape. :issue:`9832` by
  :user:`Vrishank Bhardwaj <vrishank97>`.

- |Feature| :class:`dummy.DummyClassifier` and :class:`dummy.DummyRegressor`
  can now be scored without supplying test samples.
  :issue:`11951` by :user:`Rüdiger Busche <JarnoRFB>`.


:mod:`sklearn.ensemble`
.......................

- |Feature| :class:`ensemble.BaggingRegressor` and
  :class:`ensemble.BaggingClassifier` can now be fit with missing/non-finite
  values in X and/or multi-output Y to support wrapping pipelines that perform
  their own imputation. :issue:`9707` by :user:`Jimmy Wan <jimmywan>`.

- |Feature| :class:`ensemble.GradientBoostingClassifier` and
  :class:`ensemble.GradientBoostingRegressor` now support early stopping
  via ``n_iter_no_change``, ``validation_fraction`` and ``tol``. :issue:`7071`
  by `Raghav RV`_

- |Feature| Added ``named_estimators_`` parameter in
  :class:`ensemble.VotingClassifier` to access fitted estimators.
  :issue:`9157` by :user:`Herilalaina Rakotoarison <herilalaina>`.

- |Fix| Fixed a bug when fitting :class:`ensemble.GradientBoostingClassifier` or
  :class:`ensemble.GradientBoostingRegressor` with ``warm_start=True`` which
  previously raised a segmentation fault due to a non-conversion of CSC matrix
  into CSR format expected by ``decision_function``. Similarly, Fortran-ordered
  arrays are converted to C-ordered arrays in the dense case. :issue:`9991` by
  :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| Fixed a bug in :class:`ensemble.GradientBoostingRegressor`
  and :class:`ensemble.GradientBoostingClassifier` to have
  feature importances summed and then normalized, rather than normalizing on a
  per-tree basis. The previous behavior over-weighted the Gini importance of
  features that appear in later stages. This issue only affected feature
  importances. :issue:`11176` by :user:`Gil Forsyth <gforsyth>`.

- |API| The default value of the ``n_estimators`` parameter of
  :class:`ensemble.RandomForestClassifier`, :class:`ensemble.RandomForestRegressor`,
  :class:`ensemble.ExtraTreesClassifier`, :class:`ensemble.ExtraTreesRegressor`,
  and :class:`ensemble.RandomTreesEmbedding` will change from 10 in version 0.20
  to 100 in 0.22. A FutureWarning is raised when the default value is used.
  :issue:`11542` by :user:`Anna Ayzenshtat <annaayzenshtat>`.

- |API| Classes derived from :class:`ensemble.BaseBagging`. The attribute
  ``estimators_samples_`` will return a list of arrays containing the indices
  selected for each bootstrap instead of a list of arrays containing the mask
  of the samples selected for each bootstrap. Indices allows to repeat samples
  while mask does not allow this functionality.
  :issue:`9524` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| :class:`ensemble.BaseBagging` where one could not deterministically
  reproduce ``fit`` result using the object attributes when ``random_state``
  is set. :issue:`9723` by :user:`Guillaume Lemaitre <glemaitre>`.


:mod:`sklearn.feature_extraction`
.................................

- |Feature| Enable the call to :term:`get_feature_names` in unfitted
  :class:`feature_extraction.text.CountVectorizer` initialized with a
  vocabulary. :issue:`10908` by :user:`Mohamed Maskani <maskani-moh>`.

- |Enhancement| ``idf_`` can now be set on a
  :class:`feature_extraction.text.TfidfTransformer`.
  :issue:`10899` by :user:`Sergey Melderis <serega>`.

- |Fix| Fixed a bug in :func:`feature_extraction.image.extract_patches_2d` which
  would throw an exception if ``max_patches`` was greater than or equal to the
  number of all possible patches rather than simply returning the number of
  possible patches. :issue:`10101` by :user:`Varun Agrawal <varunagrawal>`

- |Fix| Fixed a bug in :class:`feature_extraction.text.CountVectorizer`,
  :class:`feature_extraction.text.TfidfVectorizer`,
  :class:`feature_extraction.text.HashingVectorizer` to support 64 bit sparse
  array indexing necessary to process large datasets with more than 2·10⁹ tokens
  (words or n-grams). :issue:`9147` by :user:`Claes-Fredrik Mannby <mannby>`
  and `Roman Yurchak`_.

- |Fix| Fixed bug in :class:`feature_extraction.text.TfidfVectorizer` which
  was ignoring the parameter ``dtype``. In addition,
  :class:`feature_extraction.text.TfidfTransformer` will preserve ``dtype``
  for floating and raise a warning if ``dtype`` requested is integer.
  :issue:`10441` by :user:`Mayur Kulkarni <maykulkarni>` and
  :user:`Guillaume Lemaitre <glemaitre>`.


:mod:`sklearn.feature_selection`
................................

- |Feature| Added select K best features functionality to
  :class:`feature_selection.SelectFromModel`.
  :issue:`6689` by :user:`Nihar Sheth <nsheth12>` and
  :user:`Quazi Rahman <qmaruf>`.

- |Feature| Added ``min_features_to_select`` parameter to
  :class:`feature_selection.RFECV` to bound evaluated features counts.
  :issue:`11293` by :user:`Brent Yi <brentyi>`.

- |Feature| :class:`feature_selection.RFECV`'s fit method now supports
  :term:`groups`.  :issue:`9656` by :user:`Adam Greenhall <adamgreenhall>`.

- |Fix| Fixed computation of ``n_features_to_compute`` for edge case with tied
  CV scores in :class:`feature_selection.RFECV`.
  :issue:`9222` by :user:`Nick Hoh <nickypie>`.

:mod:`sklearn.gaussian_process`
...............................

- |Efficiency| In :class:`gaussian_process.GaussianProcessRegressor`, method
  ``predict`` is faster when using ``return_std=True`` in particular more when
  called several times in a row. :issue:`9234` by :user:`andrewww <andrewww>`
  and :user:`Minghui Liu <minghui-liu>`.


:mod:`sklearn.impute`
.....................

- New module, adopting ``preprocessing.Imputer`` as
  :class:`impute.SimpleImputer` with minor changes (see under preprocessing
  below).

- |MajorFeature| Added :class:`impute.MissingIndicator` which generates a
  binary indicator for missing values. :issue:`8075` by :user:`Maniteja Nandana
  <maniteja123>` and :user:`Guillaume Lemaitre <glemaitre>`.

- |Feature| The :class:`impute.SimpleImputer` has a new strategy,
  ``'constant'``, to complete missing values with a fixed one, given by the
  ``fill_value`` parameter. This strategy supports numeric and non-numeric
  data, and so does the ``'most_frequent'`` strategy now. :issue:`11211` by
  :user:`Jeremie du Boisberranger <jeremiedbb>`.


:mod:`sklearn.isotonic`
.......................

- |Fix| Fixed a bug in :class:`isotonic.IsotonicRegression` which incorrectly
  combined weights when fitting a model to data involving points with
  identical X values.
  :issue:`9484` by :user:`Dallas Card <dallascard>`


:mod:`sklearn.linear_model`
...........................

- |Feature| :class:`linear_model.SGDClassifier`,
  :class:`linear_model.SGDRegressor`,
  :class:`linear_model.PassiveAggressiveClassifier`,
  :class:`linear_model.PassiveAggressiveRegressor` and
  :class:`linear_model.Perceptron` now expose ``early_stopping``,
  ``validation_fraction`` and ``n_iter_no_change`` parameters, to stop
  optimization monitoring the score on a validation set. A new learning rate
  ``"adaptive"`` strategy divides the learning rate by 5 each time
  ``n_iter_no_change`` consecutive epochs fail to improve the model.
  :issue:`9043` by `Tom Dupre la Tour`_.

- |Feature| Add `sample_weight` parameter to the fit method of
  :class:`linear_model.BayesianRidge` for weighted linear regression.
  :issue:`10112` by :user:`Peter St. John <pstjohn>`.

- |Fix| Fixed a bug in :func:`logistic.logistic_regression_path` to ensure
  that the returned coefficients are correct when ``multiclass='multinomial'``.
  Previously, some of the coefficients would override each other, leading to
  incorrect results in :class:`linear_model.LogisticRegressionCV`.
  :issue:`11724` by :user:`Nicolas Hug <NicolasHug>`.

- |Fix| Fixed a bug in :class:`linear_model.LogisticRegression` where when using
  the parameter ``multi_class='multinomial'``, the ``predict_proba`` method was
  returning incorrect probabilities in the case of binary outcomes.
  :issue:`9939` by :user:`Roger Westover <rwolst>`.

- |Fix| Fixed a bug in :class:`linear_model.LogisticRegressionCV` where the
  ``score`` method always computes accuracy, not the metric given by
  the ``scoring`` parameter.
  :issue:`10998` by :user:`Thomas Fan <thomasjpfan>`.

- |Fix| Fixed a bug in :class:`linear_model.LogisticRegressionCV` where the
  'ovr' strategy was always used to compute cross-validation scores in the
  multiclass setting, even if ``'multinomial'`` was set.
  :issue:`8720` by :user:`William de Vazelhes <wdevazelhes>`.

- |Fix| Fixed a bug in :class:`linear_model.OrthogonalMatchingPursuit` that was
  broken when setting ``normalize=False``.
  :issue:`10071` by `Alexandre Gramfort`_.

- |Fix| Fixed a bug in :class:`linear_model.ARDRegression` which caused
  incorrectly updated estimates for the standard deviation and the
  coefficients. :issue:`10153` by :user:`Jörg Döpfert <jdoepfert>`.

- |Fix| Fixed a bug in :class:`linear_model.ARDRegression` and
  :class:`linear_model.BayesianRidge` which caused NaN predictions when fitted
  with a constant target.
  :issue:`10095` by :user:`Jörg Döpfert <jdoepfert>`.

- |Fix| Fixed a bug in :class:`linear_model.RidgeClassifierCV` where
  the parameter ``store_cv_values`` was not implemented though
  it was documented in ``cv_values`` as a way to set up the storage
  of cross-validation values for different alphas. :issue:`10297` by
  :user:`Mabel Villalba-Jiménez <mabelvj>`.

- |Fix| Fixed a bug in :class:`linear_model.ElasticNet` which caused the input
  to be overridden when using parameter ``copy_X=True`` and
  ``check_input=False``. :issue:`10581` by :user:`Yacine Mazari <ymazari>`.

- |Fix| Fixed a bug in :class:`sklearn.linear_model.Lasso`
  where the coefficient had wrong shape when ``fit_intercept=False``.
  :issue:`10687` by :user:`Martin Hahn <martin-hahn>`.

- |Fix| Fixed a bug in :func:`sklearn.linear_model.LogisticRegression` where the
  ``multi_class='multinomial'`` with binary output ``with warm_start=True``
  :issue:`10836` by :user:`Aishwarya Srinivasan <aishgrt1>`.

- |Fix| Fixed a bug in :class:`linear_model.RidgeCV` where using integer
  ``alphas`` raised an error.
  :issue:`10397` by :user:`Mabel Villalba-Jiménez <mabelvj>`.

- |Fix| Fixed condition triggering gap computation in
  :class:`linear_model.Lasso` and :class:`linear_model.ElasticNet` when working
  with sparse matrices. :issue:`10992` by `Alexandre Gramfort`_.

- |Fix| Fixed a bug in :class:`linear_model.SGDClassifier`,
  :class:`linear_model.SGDRegressor`,
  :class:`linear_model.PassiveAggressiveClassifier`,
  :class:`linear_model.PassiveAggressiveRegressor` and
  :class:`linear_model.Perceptron`, where the stopping criterion was stopping
  the algorithm before convergence. A parameter ``n_iter_no_change`` was added
  and set by default to 5. Previous behavior is equivalent to setting the
  parameter to 1. :issue:`9043` by `Tom Dupre la Tour`_.

- |Fix| Fixed a bug where liblinear and libsvm-based estimators would segfault
  if passed a scipy.sparse matrix with 64-bit indices. They now raise a
  ValueError.
  :issue:`11327` by :user:`Karan Dhingra <kdhingra307>` and `Joel Nothman`_.

- |API| The default values of the ``solver`` and ``multi_class`` parameters of
  :class:`linear_model.LogisticRegression` will change respectively from
  ``'liblinear'`` and ``'ovr'`` in version 0.20 to ``'lbfgs'`` and
  ``'auto'`` in version 0.22. A FutureWarning is raised when the default
  values are used. :issue:`11905` by `Tom Dupre la Tour`_ and `Joel Nothman`_.

- |API| Deprecate ``positive=True`` option in :class:`linear_model.Lars` as
  the underlying implementation is broken. Use :class:`linear_model.Lasso`
  instead. :issue:`9837` by `Alexandre Gramfort`_.

- |API| ``n_iter_`` may vary from previous releases in
  :class:`linear_model.LogisticRegression` with ``solver='lbfgs'`` and
  :class:`linear_model.HuberRegressor`. For Scipy <= 1.0.0, the optimizer could
  perform more than the requested maximum number of iterations. Now both
  estimators will report at most ``max_iter`` iterations even if more were
  performed. :issue:`10723` by `Joel Nothman`_.


:mod:`sklearn.manifold`
.......................

- |Efficiency| Speed improvements for both 'exact' and 'barnes_hut' methods in
  :class:`manifold.TSNE`. :issue:`10593` and :issue:`10610` by
  `Tom Dupre la Tour`_.

- |Feature| Support sparse input in :meth:`manifold.Isomap.fit`.
  :issue:`8554` by :user:`Leland McInnes <lmcinnes>`.

- |Feature| :func:`manifold.t_sne.trustworthiness` accepts metrics other than
  Euclidean. :issue:`9775` by :user:`William de Vazelhes <wdevazelhes>`.

- |Fix| Fixed a bug in :func:`manifold.spectral_embedding` where the
  normalization of the spectrum was using a division instead of a
  multiplication. :issue:`8129` by :user:`Jan Margeta <jmargeta>`,
  :user:`Guillaume Lemaitre <glemaitre>`, and :user:`Devansh D.
  <devanshdalal>`.

- |API| |Feature| Deprecate ``precomputed`` parameter in function
  :func:`manifold.t_sne.trustworthiness`. Instead, the new parameter ``metric``
  should be used with any compatible metric including 'precomputed', in which
  case the input matrix ``X`` should be a matrix of pairwise distances or
  squared distances. :issue:`9775` by :user:`William de Vazelhes
  <wdevazelhes>`.

- |API| Deprecate ``precomputed`` parameter in function
  :func:`manifold.t_sne.trustworthiness`. Instead, the new parameter
  ``metric`` should be used with any compatible metric including
  'precomputed', in which case the input matrix ``X`` should be a matrix of
  pairwise distances or squared distances. :issue:`9775` by
  :user:`William de Vazelhes <wdevazelhes>`.


:mod:`sklearn.metrics`
......................

- |MajorFeature| Added the :func:`metrics.davies_bouldin_score` metric for
  evaluation of clustering models without a ground truth. :issue:`10827` by
  :user:`Luis Osa <logc>`.

- |MajorFeature| Added the :func:`metrics.balanced_accuracy_score` metric and
  a corresponding ``'balanced_accuracy'`` scorer for binary and multiclass
  classification. :issue:`8066` by :user:`xyguo` and :user:`Aman Dalmia
  <dalmia>`, and :issue:`10587` by `Joel Nothman`_.

- |Feature| Partial AUC is available via ``max_fpr`` parameter in
  :func:`metrics.roc_auc_score`. :issue:`3840` by
  :user:`Alexander Niederbühl <Alexander-N>`.

- |Feature| A scorer based on :func:`metrics.brier_score_loss` is also
  available. :issue:`9521` by :user:`Hanmin Qin <qinhanmin2014>`.

- |Feature| Added control over the normalization in
  :func:`metrics.normalized_mutual_info_score` and
  :func:`metrics.adjusted_mutual_info_score` via the ``average_method``
  parameter. In version 0.22, the default normalizer for each will become
  the *arithmetic* mean of the entropies of each clustering. :issue:`11124` by
  :user:`Arya McCarthy <aryamccarthy>`.

- |Feature| Added ``output_dict`` parameter in :func:`metrics.classification_report`
  to return classification statistics as dictionary.
  :issue:`11160` by :user:`Dan Barkhorn <danielbarkhorn>`.

- |Feature| :func:`metrics.classification_report` now reports all applicable averages on
  the given data, including micro, macro and weighted average as well as samples
  average for multilabel data. :issue:`11679` by :user:`Alexander Pacha <apacha>`.

- |Feature| :func:`metrics.average_precision_score` now supports binary
  ``y_true`` other than ``{0, 1}`` or ``{-1, 1}`` through ``pos_label``
  parameter. :issue:`9980` by :user:`Hanmin Qin <qinhanmin2014>`.

- |Feature| :func:`metrics.label_ranking_average_precision_score` now supports
  ``sample_weight``.
  :issue:`10845` by :user:`Jose Perez-Parras Toledano <jopepato>`.

- |Feature| Add ``dense_output`` parameter to :func:`metrics.pairwise.linear_kernel`.
  When False and both inputs are sparse, will return a sparse matrix.
  :issue:`10999` by :user:`Taylor G Smith <tgsmith61591>`.

- |Efficiency| :func:`metrics.silhouette_score` and
  :func:`metrics.silhouette_samples` are more memory efficient and run
  faster. This avoids some reported freezes and MemoryErrors.
  :issue:`11135` by `Joel Nothman`_.

- |Fix| Fixed a bug in :func:`metrics.precision_recall_fscore_support`
  when truncated `range(n_labels)` is passed as value for `labels`.
  :issue:`10377` by :user:`Gaurav Dhingra <gxyd>`.

- |Fix| Fixed a bug due to floating point error in
  :func:`metrics.roc_auc_score` with non-integer sample weights. :issue:`9786`
  by :user:`Hanmin Qin <qinhanmin2014>`.

- |Fix| Fixed a bug where :func:`metrics.roc_curve` sometimes starts on y-axis
  instead of (0, 0), which is inconsistent with the document and other
  implementations. Note that this will not influence the result from
  :func:`metrics.roc_auc_score` :issue:`10093` by :user:`alexryndin
  <alexryndin>` and :user:`Hanmin Qin <qinhanmin2014>`.

- |Fix| Fixed a bug to avoid integer overflow. Casted product to 64 bits integer in
  :func:`metrics.mutual_info_score`.
  :issue:`9772` by :user:`Kumar Ashutosh <thechargedneutron>`.

- |Fix| Fixed a bug where :func:`metrics.average_precision_score` will sometimes return
  ``nan`` when ``sample_weight`` contains 0.
  :issue:`9980` by :user:`Hanmin Qin <qinhanmin2014>`.

- |Fix| Fixed a bug in :func:`metrics.fowlkes_mallows_score` to avoid integer
  overflow. Casted return value of `contingency_matrix` to `int64` and computed
  product of square roots rather than square root of product.
  :issue:`9515` by :user:`Alan Liddell <aliddell>` and
  :user:`Manh Dao <manhdao>`.

- |API| Deprecate ``reorder`` parameter in :func:`metrics.auc` as it's no
  longer required for :func:`metrics.roc_auc_score`. Moreover using
  ``reorder=True`` can hide bugs due to floating point error in the input.
  :issue:`9851` by :user:`Hanmin Qin <qinhanmin2014>`.

- |API| In :func:`metrics.normalized_mutual_info_score` and
  :func:`metrics.adjusted_mutual_info_score`, warn that
  ``average_method`` will have a new default value. In version 0.22, the
  default normalizer for each will become the *arithmetic* mean of the
  entropies of each clustering. Currently,
  :func:`metrics.normalized_mutual_info_score` uses the default of
  ``average_method='geometric'``, and
  :func:`metrics.adjusted_mutual_info_score` uses the default of
  ``average_method='max'`` to match their behaviors in version 0.19.
  :issue:`11124` by :user:`Arya McCarthy <aryamccarthy>`.

- |API| The ``batch_size`` parameter to :func:`metrics.pairwise_distances_argmin_min`
  and :func:`metrics.pairwise_distances_argmin` is deprecated to be removed in
  v0.22. It no longer has any effect, as batch size is determined by global
  ``working_memory`` config. See :ref:`working_memory`. :issue:`10280` by `Joel
  Nothman`_ and :user:`Aman Dalmia <dalmia>`.


:mod:`sklearn.mixture`
......................

- |Feature| Added function :term:`fit_predict` to :class:`mixture.GaussianMixture`
  and :class:`mixture.GaussianMixture`, which is essentially equivalent to
  calling :term:`fit` and :term:`predict`. :issue:`10336` by :user:`Shu Haoran
  <haoranShu>` and :user:`Andrew Peng <Andrew-peng>`.

- |Fix| Fixed a bug in :class:`mixture.BaseMixture` where the reported `n_iter_` was
  missing an iteration. It affected :class:`mixture.GaussianMixture` and
  :class:`mixture.BayesianGaussianMixture`. :issue:`10740` by :user:`Erich
  Schubert <kno10>` and :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| Fixed a bug in :class:`mixture.BaseMixture` and its subclasses
  :class:`mixture.GaussianMixture` and :class:`mixture.BayesianGaussianMixture`
  where the ``lower_bound_`` was not the max lower bound across all
  initializations (when ``n_init > 1``), but just the lower bound of the last
  initialization. :issue:`10869` by :user:`Aurélien Géron <ageron>`.


:mod:`sklearn.model_selection`
..............................

- |Feature| Add `return_estimator` parameter in
  :func:`model_selection.cross_validate` to return estimators fitted on each
  split. :issue:`9686` by :user:`Aurélien Bellet <bellet>`.

- |Feature| New ``refit_time_`` attribute will be stored in
  :class:`model_selection.GridSearchCV` and
  :class:`model_selection.RandomizedSearchCV` if ``refit`` is set to ``True``.
  This will allow measuring the complete time it takes to perform
  hyperparameter optimization and refitting the best model on the whole
  dataset. :issue:`11310` by :user:`Matthias Feurer <mfeurer>`.

- |Feature| Expose `error_score` parameter in
  :func:`model_selection.cross_validate`,
  :func:`model_selection.cross_val_score`,
  :func:`model_selection.learning_curve` and
  :func:`model_selection.validation_curve` to control the behavior triggered
  when an error occurs in :func:`model_selection._fit_and_score`.
  :issue:`11576` by :user:`Samuel O. Ronsin <samronsin>`.

- |Feature| `BaseSearchCV` now has an experimental, private interface to
  support customized parameter search strategies, through its ``_run_search``
  method. See the implementations in :class:`model_selection.GridSearchCV` and
  :class:`model_selection.RandomizedSearchCV` and please provide feedback if
  you use this. Note that we do not assure the stability of this API beyond
  version 0.20. :issue:`9599` by `Joel Nothman`_

- |Enhancement| Add improved error message in
  :func:`model_selection.cross_val_score` when multiple metrics are passed in
  ``scoring`` keyword. :issue:`11006` by :user:`Ming Li <minggli>`.

- |API| The default number of cross-validation folds ``cv`` and the default
  number of splits ``n_splits`` in the :class:`model_selection.KFold`-like
  splitters will change from 3 to 5 in 0.22 as 3-fold has a lot of variance.
  :issue:`11557` by :user:`Alexandre Boucaud <aboucaud>`.

- |API| The default of ``iid`` parameter of :class:`model_selection.GridSearchCV`
  and :class:`model_selection.RandomizedSearchCV` will change from ``True`` to
  ``False`` in version 0.22 to correspond to the standard definition of
  cross-validation, and the parameter will be removed in version 0.24
  altogether. This parameter is of greatest practical significance where the
  sizes of different test sets in cross-validation were very unequal, i.e. in
  group-based CV strategies. :issue:`9085` by :user:`Laurent Direr <ldirer>`
  and `Andreas Müller`_.

- |API| The default value of the ``error_score`` parameter in
  :class:`model_selection.GridSearchCV` and
  :class:`model_selection.RandomizedSearchCV` will change to ``np.NaN`` in
  version 0.22. :issue:`10677` by :user:`Kirill Zhdanovich <Zhdanovich>`.

- |API| Changed ValueError exception raised in
  :class:`model_selection.ParameterSampler` to a UserWarning for case where the
  class is instantiated with a greater value of ``n_iter`` than the total space
  of parameters in the parameter grid. ``n_iter`` now acts as an upper bound on
  iterations. :issue:`10982` by :user:`Juliet Lawton <julietcl>`

- |API| Invalid input for :class:`model_selection.ParameterGrid` now
  raises TypeError.
  :issue:`10928` by :user:`Solutus Immensus <solutusimmensus>`


:mod:`sklearn.multioutput`
..........................

- |MajorFeature| Added :class:`multioutput.RegressorChain` for multi-target
  regression. :issue:`9257` by :user:`Kumar Ashutosh <thechargedneutron>`.


:mod:`sklearn.naive_bayes`
..........................

- |MajorFeature| Added :class:`naive_bayes.ComplementNB`, which implements the
  Complement Naive Bayes classifier described in Rennie et al. (2003).
  :issue:`8190` by :user:`Michael A. Alcorn <airalcorn2>`.

- |Feature| Add `var_smoothing` parameter in :class:`naive_bayes.GaussianNB`
  to give a precise control over variances calculation.
  :issue:`9681` by :user:`Dmitry Mottl <Mottl>`.

- |Fix| Fixed a bug in :class:`naive_bayes.GaussianNB` which incorrectly
  raised error for prior list which summed to 1.
  :issue:`10005` by :user:`Gaurav Dhingra <gxyd>`.

- |Fix| Fixed a bug in :class:`naive_bayes.MultinomialNB` which did not accept
  vector valued pseudocounts (alpha).
  :issue:`10346` by :user:`Tobias Madsen <TobiasMadsen>`


:mod:`sklearn.neighbors`
........................

- |Efficiency| :class:`neighbors.RadiusNeighborsRegressor` and
  :class:`neighbors.RadiusNeighborsClassifier` are now
  parallelized according to ``n_jobs`` regardless of ``algorithm``.
  :issue:`10887` by :user:`Joël Billaud <recamshak>`.

- |Efficiency| :mod:`Nearest neighbors <neighbors>` query methods are now more
  memory efficient when ``algorithm='brute'``.
  :issue:`11136` by `Joel Nothman`_ and :user:`Aman Dalmia <dalmia>`.

- |Feature| Add ``sample_weight`` parameter to the fit method of
  :class:`neighbors.KernelDensity` to enable weighting in kernel density
  estimation.
  :issue:`4394` by :user:`Samuel O. Ronsin <samronsin>`.

- |Feature| Novelty detection with :class:`neighbors.LocalOutlierFactor`:
  Add a ``novelty`` parameter to :class:`neighbors.LocalOutlierFactor`. When
  ``novelty`` is set to True, :class:`neighbors.LocalOutlierFactor` can then
  be used for novelty detection, i.e. predict on new unseen data. Available
  prediction methods are ``predict``, ``decision_function`` and
  ``score_samples``. By default, ``novelty`` is set to ``False``, and only
  the ``fit_predict`` method is avaiable.
  By :user:`Albert Thomas <albertcthomas>`.

- |Fix| Fixed a bug in :class:`neighbors.NearestNeighbors` where fitting a
  NearestNeighbors model fails when a) the distance metric used is a
  callable and b) the input to the NearestNeighbors model is sparse.
  :issue:`9579` by :user:`Thomas Kober <tttthomasssss>`.

- |Fix| Fixed a bug so ``predict`` in
  :class:`neighbors.RadiusNeighborsRegressor` can handle empty neighbor set
  when using non uniform weights. Also raises a new warning when no neighbors
  are found for samples. :issue:`9655` by :user:`Andreas Bjerre-Nielsen
  <abjer>`.

- |Fix| |Efficiency| Fixed a bug in ``KDTree`` construction that results in
  faster construction and querying times.
  :issue:`11556` by :user:`Jake VanderPlas <jakevdp>`

- |Fix| Fixed a bug in :class:`neighbors.KDTree` and :class:`neighbors.BallTree` where
  pickled tree objects would change their type to the super class :class:`BinaryTree`.
  :issue:`11774` by :user:`Nicolas Hug <NicolasHug>`.


:mod:`sklearn.neural_network`
.............................

- |Feature| Add `n_iter_no_change` parameter in
  :class:`neural_network.BaseMultilayerPerceptron`,
  :class:`neural_network.MLPRegressor`, and
  :class:`neural_network.MLPClassifier` to give control over
  maximum number of epochs to not meet ``tol`` improvement.
  :issue:`9456` by :user:`Nicholas Nadeau <nnadeau>`.

- |Fix| Fixed a bug in :class:`neural_network.BaseMultilayerPerceptron`,
  :class:`neural_network.MLPRegressor`, and
  :class:`neural_network.MLPClassifier` with new ``n_iter_no_change``
  parameter now at 10 from previously hardcoded 2.
  :issue:`9456` by :user:`Nicholas Nadeau <nnadeau>`.

- |Fix| Fixed a bug in :class:`neural_network.MLPRegressor` where fitting
  quit unexpectedly early due to local minima or fluctuations.
  :issue:`9456` by :user:`Nicholas Nadeau <nnadeau>`


:mod:`sklearn.pipeline`
.......................

- |Feature| The ``predict`` method of :class:`pipeline.Pipeline` now passes
  keyword arguments on to the pipeline's last estimator, enabling the use of
  parameters such as ``return_std`` in a pipeline with caution.
  :issue:`9304` by :user:`Breno Freitas <brenolf>`.

- |API| :class:`pipeline.FeatureUnion` now supports ``'drop'`` as a transformer
  to drop features. :issue:`11144` by :user:`Thomas Fan <thomasjpfan>`.


:mod:`sklearn.preprocessing`
............................

- |MajorFeature| Expanded :class:`preprocessing.OneHotEncoder` to allow to
  encode categorical string features as a numeric array using a one-hot (or
  dummy) encoding scheme, and added :class:`preprocessing.OrdinalEncoder` to
  convert to ordinal integers. Those two classes now handle encoding of all
  feature types (also handles string-valued features) and derives the
  categories based on the unique values in the features instead of the maximum
  value in the features. :issue:`9151` and :issue:`10521` by :user:`Vighnesh
  Birodkar <vighneshbirodkar>` and `Joris Van den Bossche`_.

- |MajorFeature| Added :class:`preprocessing.KBinsDiscretizer` for turning
  continuous features into categorical or one-hot encoded
  features. :issue:`7668`, :issue:`9647`, :issue:`10195`,
  :issue:`10192`, :issue:`11272`, :issue:`11467` and :issue:`11505`.
  by :user:`Henry Lin <hlin117>`, `Hanmin Qin`_,
  `Tom Dupre la Tour`_ and :user:`Giovanni Giuseppe Costa <ggc87>`.

- |MajorFeature| Added :class:`preprocessing.PowerTransformer`, which
  implements the Yeo-Johnson and Box-Cox power transformations. Power
  transformations try to find a set of feature-wise parametric transformations
  to approximately map data to a Gaussian distribution centered at zero and
  with unit variance. This is useful as a variance-stabilizing transformation
  in situations where normality and homoscedasticity are desirable.
  :issue:`10210` by :user:`Eric Chang <chang>` and :user:`Maniteja
  Nandana <maniteja123>`, and :issue:`11520` by :user:`Nicolas Hug
  <nicolashug>`.

- |MajorFeature| NaN values are ignored and handled in the following
  preprocessing methods:
  :class:`preprocessing.MaxAbsScaler`,
  :class:`preprocessing.MinMaxScaler`,
  :class:`preprocessing.RobustScaler`,
  :class:`preprocessing.StandardScaler`,
  :class:`preprocessing.PowerTransformer`,
  :class:`preprocessing.QuantileTransformer` classes and
  :func:`preprocessing.maxabs_scale`,
  :func:`preprocessing.minmax_scale`,
  :func:`preprocessing.robust_scale`,
  :func:`preprocessing.scale`,
  :func:`preprocessing.power_transform`,
  :func:`preprocessing.quantile_transform` functions respectively addressed in
  issues :issue:`11011`, :issue:`11005`, :issue:`11308`, :issue:`11206`,
  :issue:`11306`, and :issue:`10437`.
  By :user:`Lucija Gregov <LucijaGregov>` and
  :user:`Guillaume Lemaitre <glemaitre>`.

- |Feature| :class:`preprocessing.PolynomialFeatures` now supports sparse
  input. :issue:`10452` by :user:`Aman Dalmia <dalmia>` and `Joel Nothman`_.

- |Feature| :class:`preprocessing.RobustScaler` and
  :func:`preprocessing.robust_scale` can be fitted using sparse matrices.
  :issue:`11308` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Feature| :class:`preprocessing.OneHotEncoder` now supports the
  :term:`get_feature_names` method to obtain the transformed feature names.
  :issue:`10181` by :user:`Nirvan Anjirbag <Nirvan101>` and
  `Joris Van den Bossche`_.

- |Feature| A parameter ``check_inverse`` was added to
  :class:`preprocessing.FunctionTransformer` to ensure that ``func`` and
  ``inverse_func`` are the inverse of each other.
  :issue:`9399` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Feature| The ``transform`` method of :class:`sklearn.preprocessing.MultiLabelBinarizer`
  now ignores any unknown classes. A warning is raised stating the unknown classes
  classes found which are ignored.
  :issue:`10913` by :user:`Rodrigo Agundez <rragundez>`.

- |Fix| Fixed bugs in :class:`preprocessing.LabelEncoder` which would
  sometimes throw errors when ``transform`` or ``inverse_transform`` was called
  with empty arrays. :issue:`10458` by :user:`Mayur Kulkarni <maykulkarni>`.

- |Fix| Fix ValueError in :class:`preprocessing.LabelEncoder` when using
  ``inverse_transform`` on unseen labels. :issue:`9816` by :user:`Charlie Newey
  <newey01c>`.

- |Fix| Fix bug in :class:`preprocessing.OneHotEncoder` which discarded the
  ``dtype`` when returning a sparse matrix output.
  :issue:`11042` by :user:`Daniel Morales <DanielMorales9>`.

- |Fix| Fix ``fit`` and ``partial_fit`` in
  :class:`preprocessing.StandardScaler` in the rare case when ``with_mean=False``
  and `with_std=False` which was crashing by calling ``fit`` more than once and
  giving inconsistent results for ``mean_`` whether the input was a sparse or a
  dense matrix. ``mean_`` will be set to ``None`` with both sparse and dense
  inputs. ``n_samples_seen_`` will be also reported for both input types.
  :issue:`11235` by :user:`Guillaume Lemaitre <glemaitre>`.

- |API| Deprecate ``n_values`` and ``categorical_features`` parameters and
  ``active_features_``, ``feature_indices_`` and ``n_values_`` attributes
  of :class:`preprocessing.OneHotEncoder`. The ``n_values`` parameter can be
  replaced with the new ``categories`` parameter, and the attributes with the
  new ``categories_`` attribute. Selecting the categorical features with
  the ``categorical_features`` parameter is now better supported using the
  :class:`compose.ColumnTransformer`.
  :issue:`10521` by `Joris Van den Bossche`_.

- |API| Deprecate :class:`preprocessing.Imputer` and move
  the corresponding module to :class:`impute.SimpleImputer`.
  :issue:`9726` by :user:`Kumar Ashutosh
  <thechargedneutron>`.

- |API| The ``axis`` parameter that was in
  :class:`preprocessing.Imputer` is no longer present in
  :class:`impute.SimpleImputer`. The behavior is equivalent
  to ``axis=0`` (impute along columns). Row-wise
  imputation can be performed with FunctionTransformer
  (e.g., ``FunctionTransformer(lambda X:
  SimpleImputer().fit_transform(X.T).T)``). :issue:`10829`
  by :user:`Guillaume Lemaitre <glemaitre>` and
  :user:`Gilberto Olimpio <gilbertoolimpio>`.

- |API| The NaN marker for the missing values has been changed
  between the :class:`preprocessing.Imputer` and the
  :class:`impute.SimpleImputer`.
  ``missing_values='NaN'`` should now be
  ``missing_values=np.nan``. :issue:`11211` by
  :user:`Jeremie du Boisberranger <jeremiedbb>`.

- |API| In :class:`preprocessing.FunctionTransformer`, the default of
  ``validate`` will be from ``True`` to ``False`` in 0.22.
  :issue:`10655` by :user:`Guillaume Lemaitre <glemaitre>`.


:mod:`sklearn.svm`
..................

- |Fix| Fixed a bug in :class:`svm.SVC` where when the argument ``kernel`` is
  unicode in Python2, the ``predict_proba`` method was raising an
  unexpected TypeError given dense inputs.
  :issue:`10412` by :user:`Jiongyan Zhang <qmick>`.

- |API| Deprecate ``random_state`` parameter in :class:`svm.OneClassSVM` as
  the underlying implementation is not random.
  :issue:`9497` by :user:`Albert Thomas <albertcthomas>`.

- |API| The default value of ``gamma`` parameter of :class:`svm.SVC`,
  :class:`~svm.NuSVC`, :class:`~svm.SVR`, :class:`~svm.NuSVR`,
  :class:`~svm.OneClassSVM` will change from ``'auto'`` to ``'scale'`` in
  version 0.22 to account better for unscaled features. :issue:`8361` by
  :user:`Gaurav Dhingra <gxyd>` and :user:`Ting Neo <neokt>`.


:mod:`sklearn.tree`
...................

- |Enhancement| Although private (and hence not assured API stability),
  :class:`tree._criterion.ClassificationCriterion` and
  :class:`tree._criterion.RegressionCriterion` may now be cimported and
  extended. :issue:`10325` by :user:`Camil Staps <camilstaps>`.

- |Fix| Fixed a bug in :class:`tree.BaseDecisionTree` with `splitter="best"`
  where split threshold could become infinite when values in X were
  near infinite. :issue:`10536` by :user:`Jonathan Ohayon <Johayon>`.

- |Fix| Fixed a bug in :class:`tree.MAE` to ensure sample weights are being
  used during the calculation of tree MAE impurity. Previous behaviour could
  cause suboptimal splits to be chosen since the impurity calculation
  considered all samples to be of equal weight importance.
  :issue:`11464` by :user:`John Stott <JohnStott>`.


:mod:`sklearn.utils`
....................

- |Feature| :func:`utils.check_array` and :func:`utils.check_X_y` now have
  ``accept_large_sparse`` to control whether scipy.sparse matrices with 64-bit
  indices should be rejected.
  :issue:`11327` by :user:`Karan Dhingra <kdhingra307>` and `Joel Nothman`_.

- |Efficiency| |Fix| Avoid copying the data in :func:`utils.check_array` when
  the input data is a memmap (and ``copy=False``). :issue:`10663` by
  :user:`Arthur Mensch <arthurmensch>` and :user:`Loïc Estève <lesteve>`.

- |API| :func:`utils.check_array` yield a ``FutureWarning`` indicating
  that arrays of bytes/strings will be interpreted as decimal numbers
  beginning in version 0.22. :issue:`10229` by :user:`Ryan Lee <rtlee9>`


Multiple modules
................

- |Feature| |API| More consistent outlier detection API:
  Add a ``score_samples`` method in :class:`svm.OneClassSVM`,
  :class:`ensemble.IsolationForest`, :class:`neighbors.LocalOutlierFactor`,
  :class:`covariance.EllipticEnvelope`. It allows to access raw score
  functions from original papers. A new ``offset_`` parameter allows to link
  ``score_samples`` and ``decision_function`` methods.
  The ``contamination`` parameter of :class:`ensemble.IsolationForest` and
  :class:`neighbors.LocalOutlierFactor` ``decision_function`` methods is used
  to define this ``offset_`` such that outliers (resp. inliers) have negative (resp.
  positive) ``decision_function`` values. By default, ``contamination`` is
  kept unchanged to 0.1 for a deprecation period. In 0.22, it will be set to "auto",
  thus using method-specific score offsets.
  In :class:`covariance.EllipticEnvelope` ``decision_function`` method, the
  ``raw_values`` parameter is deprecated as the shifted Mahalanobis distance
  will be always returned in 0.22. :issue:`9015` by `Nicolas Goix`_.

- |Feature| |API| A ``behaviour`` parameter has been introduced in :class:`ensemble.IsolationForest`
  to ensure backward compatibility.
  In the old behaviour, the ``decision_function`` is independent of the ``contamination``
  parameter. A threshold attribute depending on the ``contamination`` parameter is thus
  used.
  In the new behaviour the ``decision_function`` is dependent on the ``contamination``
  parameter, in such a way that 0 becomes its natural threshold to detect outliers.
  Setting behaviour to "old" is deprecated and will not be possible in version 0.22.
  Beside, the behaviour parameter will be removed in 0.24.
  :issue:`11553` by `Nicolas Goix`_.

- |API| Added convergence warning to :class:`svm.LinearSVC` and
  :class:`linear_model.LogisticRegression` when ``verbose`` is set to 0.
  :issue:`10881` by :user:`Alexandre Sevin <AlexandreSev>`.

- |API| Changed warning type from :class:`UserWarning` to
  :class:`exceptions.ConvergenceWarning` for failing convergence in
  :func:`linear_model.logistic_regression_path`,
  :class:`linear_model.RANSACRegressor`, :func:`linear_model.ridge_regression`,
  :class:`gaussian_process.GaussianProcessRegressor`,
  :class:`gaussian_process.GaussianProcessClassifier`,
  :func:`decomposition.fastica`, :class:`cross_decomposition.PLSCanonical`,
  :class:`cluster.AffinityPropagation`, and :class:`cluster.Birch`.
  :issue:`10306` by :user:`Jonathan Siebert <jotasi>`.


Miscellaneous
.............

- |MajorFeature| A new configuration parameter, ``working_memory`` was added
  to control memory consumption limits in chunked operations, such as the new
  :func:`metrics.pairwise_distances_chunked`. See :ref:`working_memory`.
  :issue:`10280` by `Joel Nothman`_ and :user:`Aman Dalmia <dalmia>`.

- |Feature| The version of :mod:`joblib` bundled with Scikit-learn is now 0.12.
  This uses a new default multiprocessing implementation, named `loky
  <https://github.com/tomMoral/loky>`_. While this may incur some memory and
  communication overhead, it should provide greater cross-platform stability
  than relying on Python standard library multiprocessing. :issue:`11741` by
  the Joblib developers, especially :user:`Thomas Moreau <tomMoral>` and
  `Olivier Grisel`_.

- |Feature| An environment variable to use the site joblib instead of the
  vendored one was added (:ref:`environment_variable`). The main API of joblib
  is now exposed in :mod:`sklearn.utils`.
  :issue:`11166` by `Gael Varoquaux`_.

- |Feature| Add almost complete PyPy 3 support. Known unsupported
  functionalities are :func:`datasets.load_svmlight_file`,
  :class:`feature_extraction.FeatureHasher` and
  :class:`feature_extraction.text.HashingVectorizer`. For running on PyPy,
  PyPy3-v5.10+, Numpy 1.14.0+, and scipy 1.1.0+ are required.
  :issue:`11010` by :user:`Ronan Lamy <rlamy>` and `Roman Yurchak`_.

- |Feature| A utility method :func:`sklearn.show_versions()` was added to
  print out information relevant for debugging. It includes the user system,
  the Python executable, the version of the main libraries and BLAS binding
  information. :issue:`11596` by :user:`Alexandre Boucaud <aboucaud>`

- |Fix| Fixed a bug when setting parameters on meta-estimator, involving both
  a wrapped estimator and its parameter. :issue:`9999` by :user:`Marcus Voss
  <marcus-voss>` and `Joel Nothman`_.

- |Fix| Fixed a bug where calling :func:`sklearn.base.clone` was not thread
  safe and could result in a "pop from empty list" error. :issue:`9569`
  by `Andreas Müller`_.

- |API| The default value of ``n_jobs`` is changed from ``1`` to ``None`` in
  all related functions and classes. ``n_jobs=None`` means ``unset``. It will
  generally be interpreted as ``n_jobs=1``, unless the current
  ``joblib.Parallel`` backend context specifies otherwise (See
  :term:`Glossary <n_jobs>` for additional information). Note that this change
  happens immediately (i.e., without a deprecation cycle).
  :issue:`11741` by `Olivier Grisel`_.

- |Fix| Fixed a bug in validation helpers where passing a Dask DataFrame results
  in an error. :issue:`12462` by :user:`Zachariah Miller <zwmiller>`

Changes to estimator checks
---------------------------

These changes mostly affect library developers.

- Checks for transformers now apply if the estimator implements
  :term:`transform`, regardless of whether it inherits from
  :class:`sklearn.base.TransformerMixin`. :issue:`10474` by `Joel Nothman`_.

- Classifiers are now checked for consistency between :term:`decision_function`
  and categorical predictions.
  :issue:`10500` by :user:`Narine Kokhlikyan <NarineK>`.

- Allow tests in :func:`utils.estimator_checks.check_estimator` to test functions
  that accept pairwise data.
  :issue:`9701` by :user:`Kyle Johnson <gkjohns>`

- Allow :func:`utils.estimator_checks.check_estimator` to check that there is no
  private settings apart from parameters during estimator initialization.
  :issue:`9378` by :user:`Herilalaina Rakotoarison <herilalaina>`

- The set of checks in :func:`utils.estimator_checks.check_estimator` now includes a
  ``check_set_params`` test which checks that ``set_params`` is equivalent to
  passing parameters in ``__init__`` and warns if it encounters parameter
  validation. :issue:`7738` by :user:`Alvin Chiang <absolutelyNoWarranty>`

- Add invariance tests for clustering metrics. :issue:`8102` by :user:`Ankita
  Sinha <anki08>` and :user:`Guillaume Lemaitre <glemaitre>`.

- Add ``check_methods_subset_invariance`` to
  :func:`~utils.estimator_checks.check_estimator`, which checks that
  estimator methods are invariant if applied to a data subset.
  :issue:`10428` by :user:`Jonathan Ohayon <Johayon>`

- Add tests in :func:`utils.estimator_checks.check_estimator` to check that an
  estimator can handle read-only memmap input data. :issue:`10663` by
  :user:`Arthur Mensch <arthurmensch>` and :user:`Loïc Estève <lesteve>`.

- ``check_sample_weights_pandas_series`` now uses 8 rather than 6 samples
  to accommodate for the default number of clusters in :class:`cluster.KMeans`.
  :issue:`10933` by :user:`Johannes Hansen <jnhansen>`.

- Estimators are now checked for whether ``sample_weight=None`` equates to
  ``sample_weight=np.ones(...)``.
  :issue:`11558` by :user:`Sergul Aydore <sergulaydore>`.


Code and Documentation Contributors
-----------------------------------

Thanks to everyone who has contributed to the maintenance and improvement of the
project since version 0.19, including:

211217613, Aarshay Jain, absolutelyNoWarranty, Adam Greenhall, Adam Kleczewski,
Adam Richie-Halford, adelr, AdityaDaflapurkar, Adrin Jalali, Aidan Fitzgerald,
aishgrt1, Akash Shivram, Alan Liddell, Alan Yee, Albert Thomas, Alexander
Lenail, Alexander-N, Alexandre Boucaud, Alexandre Gramfort, Alexandre Sevin,
Alex Egg, Alvaro Perez-Diaz, Amanda, Aman Dalmia, Andreas Bjerre-Nielsen,
Andreas Mueller, Andrew Peng, Angus Williams, Aniruddha Dave, annaayzenshtat,
Anthony Gitter, Antonio Quinonez, Anubhav Marwaha, Arik Pamnani, Arthur Ozga,
Artiem K, Arunava, Arya McCarthy, Attractadore, Aurélien Bellet, Aurélien
Geron, Ayush Gupta, Balakumaran Manoharan, Bangda Sun, Barry Hart, Bastian
Venthur, Ben Lawson, Benn Roth, Breno Freitas, Brent Yi, brett koonce, Caio
Oliveira, Camil Staps, cclauss, Chady Kamar, Charlie Brummitt, Charlie Newey,
chris, Chris, Chris Catalfo, Chris Foster, Chris Holdgraf, Christian Braune,
Christian Hirsch, Christian Hogan, Christopher Jenness, Clement Joudet, cnx,
cwitte, Dallas Card, Dan Barkhorn, Daniel, Daniel Ferreira, Daniel Gomez,
Daniel Klevebring, Danielle Shwed, Daniel Mohns, Danil Baibak, Darius Morawiec,
David Beach, David Burns, David Kirkby, David Nicholson, David Pickup, Derek,
Didi Bar-Zev, diegodlh, Dillon Gardner, Dillon Niederhut, dilutedsauce,
dlovell, Dmitry Mottl, Dmitry Petrov, Dor Cohen, Douglas Duhaime, Ekaterina
Tuzova, Eric Chang, Eric Dean Sanchez, Erich Schubert, Eunji, Fang-Chieh Chou,
FarahSaeed, felix, Félix Raimundo, fenx, filipj8, FrankHui, Franz Wompner,
Freija Descamps, frsi, Gabriele Calvo, Gael Varoquaux, Gaurav Dhingra, Georgi
Peev, Gil Forsyth, Giovanni Giuseppe Costa, gkevinyen5418, goncalo-rodrigues,
Gryllos Prokopis, Guillaume Lemaitre, Guillaume "Vermeille" Sanchez, Gustavo De
Mari Pereira, hakaa1, Hanmin Qin, Henry Lin, Hong, Honghe, Hossein Pourbozorg,
Hristo, Hunan Rostomyan, iampat, Ivan PANICO, Jaewon Chung, Jake VanderPlas,
jakirkham, James Bourbeau, James Malcolm, Jamie Cox, Jan Koch, Jan Margeta, Jan
Schlüter, janvanrijn, Jason Wolosonovich, JC Liu, Jeb Bearer, jeremiedbb, Jimmy
Wan, Jinkun Wang, Jiongyan Zhang, jjabl, jkleint, Joan Massich, Joël Billaud,
Joel Nothman, Johannes Hansen, JohnStott, Jonatan Samoocha, Jonathan Ohayon,
Jörg Döpfert, Joris Van den Bossche, Jose Perez-Parras Toledano, josephsalmon,
jotasi, jschendel, Julian Kuhlmann, Julien Chaumond, julietcl, Justin Shenk,
Karl F, Kasper Primdal Lauritzen, Katrin Leinweber, Kirill, ksemb, Kuai Yu,
Kumar Ashutosh, Kyeongpil Kang, Kye Taylor, kyledrogo, Leland McInnes, Léo DS,
Liam Geron, Liutong Zhou, Lizao Li, lkjcalc, Loic Esteve, louib, Luciano Viola,
Lucija Gregov, Luis Osa, Luis Pedro Coelho, Luke M Craig, Luke Persola, Mabel,
Mabel Villalba, Maniteja Nandana, MarkIwanchyshyn, Mark Roth, Markus Müller,
MarsGuy, Martin Gubri, martin-hahn, martin-kokos, mathurinm, Matthias Feurer,
Max Copeland, Mayur Kulkarni, Meghann Agarwal, Melanie Goetz, Michael A.
Alcorn, Minghui Liu, Ming Li, Minh Le, Mohamed Ali Jamaoui, Mohamed Maskani,
Mohammad Shahebaz, Muayyad Alsadi, Nabarun Pal, Nagarjuna Kumar, Naoya Kanai,
Narendran Santhanam, NarineK, Nathaniel Saul, Nathan Suh, Nicholas Nadeau,
P.Eng.,  AVS, Nick Hoh, Nicolas Goix, Nicolas Hug, Nicolau Werneck,
nielsenmarkus11, Nihar Sheth, Nikita Titov, Nilesh Kevlani, Nirvan Anjirbag,
notmatthancock, nzw, Oleksandr Pavlyk, oliblum90, Oliver Rausch, Olivier
Grisel, Oren Milman, Osaid Rehman Nasir, pasbi, Patrick Fernandes, Patrick
Olden, Paul Paczuski, Pedro Morales, Peter, Peter St. John, pierreablin,
pietruh, Pinaki Nath Chowdhury, Piotr Szymański, Pradeep Reddy Raamana, Pravar
D Mahajan, pravarmahajan, QingYing Chen, Raghav RV, Rajendra arora,
RAKOTOARISON Herilalaina, Rameshwar Bhaskaran, RankyLau, Rasul Kerimov,
Reiichiro Nakano, Rob, Roman Kosobrodov, Roman Yurchak, Ronan Lamy, rragundez,
Rüdiger Busche, Ryan, Sachin Kelkar, Sagnik Bhattacharya, Sailesh Choyal, Sam
Radhakrishnan, Sam Steingold, Samuel Bell, Samuel O. Ronsin, Saqib Nizam
Shamsi, SATISH J, Saurabh Gupta, Scott Gigante, Sebastian Flennerhag, Sebastian
Raschka, Sebastien Dubois, Sébastien Lerique, Sebastin Santy, Sergey Feldman,
Sergey Melderis, Sergul Aydore, Shahebaz, Shalil Awaley, Shangwu Yao, Sharad
Vijalapuram, Sharan Yalburgi, shenhanc78, Shivam Rastogi, Shu Haoran, siftikha,
Sinclert Pérez, SolutusImmensus, Somya Anand, srajan paliwal, Sriharsha Hatwar,
Sri Krishna, Stefan van der Walt, Stephen McDowell, Steven Brown, syonekura,
Taehoon Lee, Takanori Hayashi, tarcusx, Taylor G Smith, theriley106, Thomas,
Thomas Fan, Thomas Heavey, Tobias Madsen, tobycheese, Tom Augspurger, Tom Dupré
la Tour, Tommy, Trevor Stephens, Trishnendu Ghorai, Tulio Casagrande,
twosigmajab, Umar Farouk Umar, Urvang Patel, Utkarsh Upadhyay, Vadim
Markovtsev, Varun Agrawal, Vathsala Achar, Vilhelm von Ehrenheim, Vinayak
Mehta, Vinit, Vinod Kumar L, Viraj Mavani, Viraj Navkal, Vivek Kumar, Vlad
Niculae, vqean3, Vrishank Bhardwaj, vufg, wallygauze, Warut Vijitbenjaronk,
wdevazelhes, Wenhao Zhang, Wes Barnett, Will, William de Vazelhes, Will
Rosenfeld, Xin Xiong, Yiming (Paul) Li, ymazari, Yufeng, Zach Griffith, Zé
Vinícius, Zhenqing Hu, Zhiqing Xiao, Zijie (ZJ) Poh