File: plot_changed_only_pprint_parameter.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (30 lines) | stat: -rw-r--r-- 1,033 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
"""
=================================
Compact estimator representations
=================================

This example illustrates the use of the print_changed_only global parameter.

Setting print_changed_only to True will alternate the representation of
estimators to only show the parameters that have been set to non-default
values. This can be used to have more compact representations.
"""
print(__doc__)

from sklearn.linear_model import LogisticRegression
from sklearn import set_config


lr = LogisticRegression(penalty='l1')
print('Default representation:')
print(lr)
# LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
#                    intercept_scaling=1, l1_ratio=None, max_iter=100,
#                    multi_class='auto', n_jobs=None, penalty='l1',
#                    random_state=None, solver='warn', tol=0.0001, verbose=0,
#                    warm_start=False)

set_config(print_changed_only=True)
print('\nWith changed_only option:')
print(lr)
# LogisticRegression(penalty='l1')