File: plot_svm_tie_breaking.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (64 lines) | stat: -rw-r--r-- 2,165 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""
=========================================================
SVM Tie Breaking Example
=========================================================
Tie breaking is costly if ``decision_function_shape='ovr'``, and therefore it
is not enabled by default. This example illustrates the effect of the
``break_ties`` parameter for a multiclass classification problem and
``decision_function_shape='ovr'``.

The two plots differ only in the area in the middle where the classes are
tied. If ``break_ties=False``, all input in that area would be classified as
one class, whereas if ``break_ties=True``, the tie-breaking mechanism will
create a non-convex decision boundary in that area.
"""
print(__doc__)


# Code source: Andreas Mueller, Adrin Jalali
# License: BSD 3 clause


import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_blobs

X, y = make_blobs(random_state=27)

fig, sub = plt.subplots(2, 1, figsize=(5, 8))
titles = ("break_ties = False",
          "break_ties = True")

for break_ties, title, ax in zip((False, True), titles, sub.flatten()):

    svm = SVC(kernel="linear", C=1, break_ties=break_ties,
              decision_function_shape='ovr').fit(X, y)

    xlim = [X[:, 0].min(), X[:, 0].max()]
    ylim = [X[:, 1].min(), X[:, 1].max()]

    xs = np.linspace(xlim[0], xlim[1], 1000)
    ys = np.linspace(ylim[0], ylim[1], 1000)
    xx, yy = np.meshgrid(xs, ys)

    pred = svm.predict(np.c_[xx.ravel(), yy.ravel()])

    colors = [plt.cm.Accent(i) for i in [0, 4, 7]]

    points = ax.scatter(X[:, 0], X[:, 1], c=y, cmap="Accent")
    classes = [(0, 1), (0, 2), (1, 2)]
    line = np.linspace(X[:, 1].min() - 5, X[:, 1].max() + 5)
    ax.imshow(-pred.reshape(xx.shape), cmap="Accent", alpha=.2,
              extent=(xlim[0], xlim[1], ylim[1], ylim[0]))

    for coef, intercept, col in zip(svm.coef_, svm.intercept_, classes):
        line2 = -(line * coef[1] + intercept) / coef[0]
        ax.plot(line2, line, "-", c=colors[col[0]])
        ax.plot(line2, line, "--", c=colors[col[1]])
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
    ax.set_title(title)
    ax.set_aspect("equal")

plt.show()