1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
# cython: profile=True, boundscheck=False, wraparound=False, cdivision=True
# Profiling is enabled by default as the overhead does not seem to be
# measurable on this specific use case.
# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Lars Buitinck
#
# License: BSD 3 clause
# TODO: We still need to use ndarrays instead of typed memoryviews when using
# fused types and when the array may be read-only (for instance when it's
# provided by the user). This is fixed in cython > 0.3.
import numpy as np
cimport numpy as np
cimport cython
from cython cimport floating
from libc.math cimport sqrt
from ..utils.extmath import row_norms
np.import_array()
ctypedef np.float64_t DOUBLE
ctypedef np.int32_t INT
cdef floating _euclidean_dense_dense(
floating* a, # IN
floating* b, # IN
int n_features,
bint squared) nogil:
"""Euclidean distance between a dense and b dense"""
cdef:
int i
int n = n_features // 4
int rem = n_features % 4
floating result = 0
# We manually unroll the loop for better cache optimization.
for i in range(n):
result += ((a[0] - b[0]) * (a[0] - b[0])
+(a[1] - b[1]) * (a[1] - b[1])
+(a[2] - b[2]) * (a[2] - b[2])
+(a[3] - b[3]) * (a[3] - b[3]))
a += 4; b += 4
for i in range(rem):
result += (a[i] - b[i]) * (a[i] - b[i])
return result if squared else sqrt(result)
def _euclidean_dense_dense_wrapper(floating[::1] a, floating[::1] b,
bint squared):
"""Wrapper of _euclidean_dense_dense for testing purpose"""
return _euclidean_dense_dense(&a[0], &b[0], a.shape[0], squared)
cdef floating _euclidean_sparse_dense(
floating[::1] a_data, # IN
int[::1] a_indices, # IN
floating[::1] b, # IN
floating b_squared_norm,
bint squared) nogil:
"""Euclidean distance between a sparse and b dense"""
cdef:
int nnz = a_indices.shape[0]
int i
floating tmp, bi
floating result = 0.0
for i in range(nnz):
bi = b[a_indices[i]]
tmp = a_data[i] - bi
result += tmp * tmp - bi * bi
result += b_squared_norm
if result < 0: result = 0.0
return result if squared else sqrt(result)
def _euclidean_sparse_dense_wrapper(
floating[::1] a_data,
int[::1] a_indices,
floating[::1] b,
floating b_squared_norm,
bint squared):
"""Wrapper of _euclidean_sparse_dense for testing purpose"""
return _euclidean_sparse_dense(
a_data, a_indices, b, b_squared_norm, squared)
cpdef floating _inertia_dense(
np.ndarray[floating, ndim=2, mode='c'] X, # IN
floating[::1] sample_weight, # IN
floating[:, ::1] centers, # IN
int[::1] labels): # IN
"""Compute inertia for dense input data
Sum of squared distance between each sample and its assigned center.
"""
cdef:
int n_samples = X.shape[0]
int n_features = X.shape[1]
int i, j
floating sq_dist = 0.0
floating inertia = 0.0
for i in range(n_samples):
j = labels[i]
sq_dist = _euclidean_dense_dense(&X[i, 0], ¢ers[j, 0],
n_features, True)
inertia += sq_dist * sample_weight[i]
return inertia
cpdef floating _inertia_sparse(
X, # IN
floating[::1] sample_weight, # IN
floating[:, ::1] centers, # IN
int[::1] labels): # IN
"""Compute inertia for sparse input data
Sum of squared distance between each sample and its assigned center.
"""
cdef:
floating[::1] X_data = X.data
int[::1] X_indices = X.indices
int[::1] X_indptr = X.indptr
int n_samples = X.shape[0]
int n_features = X.shape[1]
int i, j
floating sq_dist = 0.0
floating inertia = 0.0
floating[::1] centers_squared_norms = row_norms(centers, squared=True)
for i in range(n_samples):
j = labels[i]
sq_dist = _euclidean_sparse_dense(
X_data[X_indptr[i]: X_indptr[i + 1]],
X_indices[X_indptr[i]: X_indptr[i + 1]],
centers[j], centers_squared_norms[j], True)
inertia += sq_dist * sample_weight[i]
return inertia
cpdef void _relocate_empty_clusters_dense(
np.ndarray[floating, ndim=2, mode='c'] X, # IN
floating[::1] sample_weight, # IN
floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # INOUT
floating[::1] weight_in_clusters, # INOUT
int[::1] labels): # IN
"""Relocate centers which have no sample assigned to them."""
cdef:
int[::1] empty_clusters = np.where(np.equal(weight_in_clusters, 0))[0].astype(np.int32)
int n_empty = empty_clusters.shape[0]
if n_empty == 0:
return
cdef:
int n_features = X.shape[1]
floating[::1] distances = ((np.asarray(X) - np.asarray(centers_old)[labels])**2).sum(axis=1)
int[::1] far_from_centers = np.argpartition(distances, -n_empty)[:-n_empty-1:-1].astype(np.int32)
int new_cluster_id, old_cluster_id, far_idx, idx, k
floating weight
for idx in range(n_empty):
new_cluster_id = empty_clusters[idx]
far_idx = far_from_centers[idx]
weight = sample_weight[far_idx]
old_cluster_id = labels[far_idx]
for k in range(n_features):
centers_new[old_cluster_id, k] -= X[far_idx, k] * weight
centers_new[new_cluster_id, k] = X[far_idx, k] * weight
weight_in_clusters[new_cluster_id] = weight
weight_in_clusters[old_cluster_id] -= weight
cpdef void _relocate_empty_clusters_sparse(
floating[::1] X_data, # IN
int[::1] X_indices, # IN
int[::1] X_indptr, # IN
floating[::1] sample_weight, # IN
floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # INOUT
floating[::1] weight_in_clusters, # INOUT
int[::1] labels): # IN
"""Relocate centers which have no sample assigned to them."""
cdef:
int[::1] empty_clusters = np.where(np.equal(weight_in_clusters, 0))[0].astype(np.int32)
int n_empty = empty_clusters.shape[0]
if n_empty == 0:
return
cdef:
int n_samples = X_indptr.shape[0] - 1
int n_features = centers_old.shape[1]
floating x
int i, j, k
floating[::1] distances = np.zeros(n_samples, dtype=X_data.base.dtype)
floating[::1] centers_squared_norms = row_norms(centers_old, squared=True)
for i in range(n_samples):
j = labels[i]
distances[i] = _euclidean_sparse_dense(
X_data[X_indptr[i]: X_indptr[i + 1]],
X_indices[X_indptr[i]: X_indptr[i + 1]],
centers_old[j], centers_squared_norms[j], True)
cdef:
int[::1] far_from_centers = np.argpartition(distances, -n_empty)[:-n_empty-1:-1].astype(np.int32)
int new_cluster_id, old_cluster_id, far_idx, idx
floating weight
for idx in range(n_empty):
new_cluster_id = empty_clusters[idx]
far_idx = far_from_centers[idx]
weight = sample_weight[far_idx]
old_cluster_id = labels[far_idx]
for k in range(X_indptr[far_idx], X_indptr[far_idx + 1]):
centers_new[old_cluster_id, X_indices[k]] -= X_data[k] * weight
centers_new[new_cluster_id, X_indices[k]] = X_data[k] * weight
weight_in_clusters[new_cluster_id] = weight
weight_in_clusters[old_cluster_id] -= weight
cdef void _average_centers(
floating[:, ::1] centers, # INOUT
floating[::1] weight_in_clusters): # IN
"""Average new centers wrt weights."""
cdef:
int n_clusters = centers.shape[0]
int n_features = centers.shape[1]
int j, k
floating alpha
for j in range(n_clusters):
if weight_in_clusters[j] > 0:
alpha = 1.0 / weight_in_clusters[j]
for k in range(n_features):
centers[j, k] *= alpha
cdef void _center_shift(
floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # IN
floating[::1] center_shift): # OUT
"""Compute shift between old and new centers."""
cdef:
int n_clusters = centers_old.shape[0]
int n_features = centers_old.shape[1]
int j
for j in range(n_clusters):
center_shift[j] = _euclidean_dense_dense(
¢ers_new[j, 0], ¢ers_old[j, 0], n_features, False)
def _mini_batch_update_csr(X, np.ndarray[floating, ndim=1] sample_weight,
np.ndarray[floating, ndim=1] x_squared_norms,
np.ndarray[floating, ndim=2] centers,
np.ndarray[floating, ndim=1] weight_sums,
np.ndarray[INT, ndim=1] nearest_center,
np.ndarray[floating, ndim=1] old_center,
int compute_squared_diff):
"""Incremental update of the centers for sparse MiniBatchKMeans.
Parameters
----------
X : CSR matrix, dtype float
The complete (pre allocated) training set as a CSR matrix.
centers : array, shape (n_clusters, n_features)
The cluster centers
counts : array, shape (n_clusters,)
The vector in which we keep track of the numbers of elements in a
cluster
Returns
-------
inertia : float
The inertia of the batch prior to centers update, i.e. the sum
of squared distances to the closest center for each sample. This
is the objective function being minimized by the k-means algorithm.
squared_diff : float
The sum of squared update (squared norm of the centers position
change). If compute_squared_diff is 0, this computation is skipped and
0.0 is returned instead.
Both squared diff and inertia are commonly used to monitor the convergence
of the algorithm.
"""
cdef:
np.ndarray[floating, ndim=1] X_data = X.data
np.ndarray[int, ndim=1] X_indices = X.indices
np.ndarray[int, ndim=1] X_indptr = X.indptr
unsigned int n_samples = X.shape[0]
unsigned int n_clusters = centers.shape[0]
unsigned int n_features = centers.shape[1]
unsigned int sample_idx, center_idx, feature_idx
unsigned int k
DOUBLE old_weight_sum, new_weight_sum
DOUBLE center_diff
DOUBLE squared_diff = 0.0
# move centers to the mean of both old and newly assigned samples
for center_idx in range(n_clusters):
old_weight_sum = weight_sums[center_idx]
new_weight_sum = old_weight_sum
# count the number of samples assigned to this center
for sample_idx in range(n_samples):
if nearest_center[sample_idx] == center_idx:
new_weight_sum += sample_weight[sample_idx]
if new_weight_sum == old_weight_sum:
# no new sample: leave this center as it stands
continue
# rescale the old center to reflect it previous accumulated weight
# with regards to the new data that will be incrementally contributed
if compute_squared_diff:
old_center[:] = centers[center_idx]
centers[center_idx] *= old_weight_sum
# iterate of over samples assigned to this cluster to move the center
# location by inplace summation
for sample_idx in range(n_samples):
if nearest_center[sample_idx] != center_idx:
continue
# inplace sum with new samples that are members of this cluster
# and update of the incremental squared difference update of the
# center position
for k in range(X_indptr[sample_idx], X_indptr[sample_idx + 1]):
centers[center_idx, X_indices[k]] += X_data[k]
# inplace rescale center with updated count
if new_weight_sum > old_weight_sum:
# update the count statistics for this center
weight_sums[center_idx] = new_weight_sum
# re-scale the updated center with the total new counts
centers[center_idx] /= new_weight_sum
# update the incremental computation of the squared total
# centers position change
if compute_squared_diff:
for feature_idx in range(n_features):
squared_diff += (old_center[feature_idx]
- centers[center_idx, feature_idx]) ** 2
return squared_diff
|