1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
""" Test the graphical_lasso module.
"""
import sys
import numpy as np
from scipy import linalg
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_less
from sklearn.covariance import (graphical_lasso, GraphicalLasso,
GraphicalLassoCV, empirical_covariance)
from sklearn.datasets import make_sparse_spd_matrix
from io import StringIO
from sklearn.utils import check_random_state
from sklearn import datasets
def test_graphical_lasso(random_state=0):
# Sample data from a sparse multivariate normal
dim = 20
n_samples = 100
random_state = check_random_state(random_state)
prec = make_sparse_spd_matrix(dim, alpha=.95,
random_state=random_state)
cov = linalg.inv(prec)
X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples)
emp_cov = empirical_covariance(X)
for alpha in (0., .1, .25):
covs = dict()
icovs = dict()
for method in ('cd', 'lars'):
cov_, icov_, costs = graphical_lasso(emp_cov, return_costs=True,
alpha=alpha, mode=method)
covs[method] = cov_
icovs[method] = icov_
costs, dual_gap = np.array(costs).T
# Check that the costs always decrease (doesn't hold if alpha == 0)
if not alpha == 0:
assert_array_less(np.diff(costs), 0)
# Check that the 2 approaches give similar results
assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4)
assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4)
# Smoke test the estimator
model = GraphicalLasso(alpha=.25).fit(X)
model.score(X)
assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4)
assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4)
# For a centered matrix, assume_centered could be chosen True or False
# Check that this returns indeed the same result for centered data
Z = X - X.mean(0)
precs = list()
for assume_centered in (False, True):
prec_ = GraphicalLasso(
assume_centered=assume_centered).fit(Z).precision_
precs.append(prec_)
assert_array_almost_equal(precs[0], precs[1])
def test_graphical_lasso_iris():
# Hard-coded solution from R glasso package for alpha=1.0
# (need to set penalize.diagonal to FALSE)
cov_R = np.array([
[0.68112222, 0.0000000, 0.265820, 0.02464314],
[0.00000000, 0.1887129, 0.000000, 0.00000000],
[0.26582000, 0.0000000, 3.095503, 0.28697200],
[0.02464314, 0.0000000, 0.286972, 0.57713289]
])
icov_R = np.array([
[1.5190747, 0.000000, -0.1304475, 0.0000000],
[0.0000000, 5.299055, 0.0000000, 0.0000000],
[-0.1304475, 0.000000, 0.3498624, -0.1683946],
[0.0000000, 0.000000, -0.1683946, 1.8164353]
])
X = datasets.load_iris().data
emp_cov = empirical_covariance(X)
for method in ('cd', 'lars'):
cov, icov = graphical_lasso(emp_cov, alpha=1.0, return_costs=False,
mode=method)
assert_array_almost_equal(cov, cov_R)
assert_array_almost_equal(icov, icov_R)
def test_graph_lasso_2D():
# Hard-coded solution from Python skggm package
# obtained by calling `quic(emp_cov, lam=.1, tol=1e-8)`
cov_skggm = np.array([[3.09550269, 1.186972],
[1.186972, 0.57713289]])
icov_skggm = np.array([[1.52836773, -3.14334831],
[-3.14334831, 8.19753385]])
X = datasets.load_iris().data[:, 2:]
emp_cov = empirical_covariance(X)
for method in ('cd', 'lars'):
cov, icov = graphical_lasso(emp_cov, alpha=.1, return_costs=False,
mode=method)
assert_array_almost_equal(cov, cov_skggm)
assert_array_almost_equal(icov, icov_skggm)
def test_graphical_lasso_iris_singular():
# Small subset of rows to test the rank-deficient case
# Need to choose samples such that none of the variances are zero
indices = np.arange(10, 13)
# Hard-coded solution from R glasso package for alpha=0.01
cov_R = np.array([
[0.08, 0.056666662595, 0.00229729713223, 0.00153153142149],
[0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222],
[0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009],
[0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222]
])
icov_R = np.array([
[24.42244057, -16.831679593, 0.0, 0.0],
[-16.83168201, 24.351841681, -6.206896552, -12.5],
[0.0, -6.206896171, 153.103448276, 0.0],
[0.0, -12.499999143, 0.0, 462.5]
])
X = datasets.load_iris().data[indices, :]
emp_cov = empirical_covariance(X)
for method in ('cd', 'lars'):
cov, icov = graphical_lasso(emp_cov, alpha=0.01, return_costs=False,
mode=method)
assert_array_almost_equal(cov, cov_R, decimal=5)
assert_array_almost_equal(icov, icov_R, decimal=5)
def test_graphical_lasso_cv(random_state=1):
# Sample data from a sparse multivariate normal
dim = 5
n_samples = 6
random_state = check_random_state(random_state)
prec = make_sparse_spd_matrix(dim, alpha=.96,
random_state=random_state)
cov = linalg.inv(prec)
X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples)
# Capture stdout, to smoke test the verbose mode
orig_stdout = sys.stdout
try:
sys.stdout = StringIO()
# We need verbose very high so that Parallel prints on stdout
GraphicalLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X)
finally:
sys.stdout = orig_stdout
# Smoke test with specified alphas
GraphicalLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
|