File: _gb.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (1655 lines) | stat: -rw-r--r-- 69,729 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
"""Gradient Boosted Regression Trees

This module contains methods for fitting gradient boosted regression trees for
both classification and regression.

The module structure is the following:

- The ``BaseGradientBoosting`` base class implements a common ``fit`` method
  for all the estimators in the module. Regression and classification
  only differ in the concrete ``LossFunction`` used.

- ``GradientBoostingClassifier`` implements gradient boosting for
  classification problems.

- ``GradientBoostingRegressor`` implements gradient boosting for
  regression problems.
"""

# Authors: Peter Prettenhofer, Scott White, Gilles Louppe, Emanuele Olivetti,
#          Arnaud Joly, Jacob Schreiber
# License: BSD 3 clause

from abc import ABCMeta
from abc import abstractmethod
import warnings

from ._base import BaseEnsemble
from ..base import ClassifierMixin
from ..base import RegressorMixin
from ..base import BaseEstimator
from ..base import is_classifier

from ._gradient_boosting import predict_stages
from ._gradient_boosting import predict_stage
from ._gradient_boosting import _random_sample_mask

import numbers
import numpy as np

from scipy.sparse import csc_matrix
from scipy.sparse import csr_matrix
from scipy.sparse import issparse

from time import time
from ..model_selection import train_test_split
from ..tree import DecisionTreeRegressor
from ..tree._tree import DTYPE, DOUBLE
from . import _gb_losses

from ..utils import check_random_state
from ..utils import check_array
from ..utils import column_or_1d
from ..utils.validation import check_is_fitted, _check_sample_weight
from ..utils.multiclass import check_classification_targets
from ..exceptions import NotFittedError
from ..utils.validation import _deprecate_positional_args


class VerboseReporter:
    """Reports verbose output to stdout.

    Parameters
    ----------
    verbose : int
        Verbosity level. If ``verbose==1`` output is printed once in a while
        (when iteration mod verbose_mod is zero).; if larger than 1 then output
        is printed for each update.
    """
    def __init__(self, verbose):
        self.verbose = verbose

    def init(self, est, begin_at_stage=0):
        """Initialize reporter

        Parameters
        ----------
        est : Estimator
            The estimator

        begin_at_stage : int, default=0
            stage at which to begin reporting
        """
        # header fields and line format str
        header_fields = ['Iter', 'Train Loss']
        verbose_fmt = ['{iter:>10d}', '{train_score:>16.4f}']
        # do oob?
        if est.subsample < 1:
            header_fields.append('OOB Improve')
            verbose_fmt.append('{oob_impr:>16.4f}')
        header_fields.append('Remaining Time')
        verbose_fmt.append('{remaining_time:>16s}')

        # print the header line
        print(('%10s ' + '%16s ' *
               (len(header_fields) - 1)) % tuple(header_fields))

        self.verbose_fmt = ' '.join(verbose_fmt)
        # plot verbose info each time i % verbose_mod == 0
        self.verbose_mod = 1
        self.start_time = time()
        self.begin_at_stage = begin_at_stage

    def update(self, j, est):
        """Update reporter with new iteration.

        Parameters
        ----------
        j : int
            The new iteration
        est : Estimator
            The estimator
        """
        do_oob = est.subsample < 1
        # we need to take into account if we fit additional estimators.
        i = j - self.begin_at_stage  # iteration relative to the start iter
        if (i + 1) % self.verbose_mod == 0:
            oob_impr = est.oob_improvement_[j] if do_oob else 0
            remaining_time = ((est.n_estimators - (j + 1)) *
                              (time() - self.start_time) / float(i + 1))
            if remaining_time > 60:
                remaining_time = '{0:.2f}m'.format(remaining_time / 60.0)
            else:
                remaining_time = '{0:.2f}s'.format(remaining_time)
            print(self.verbose_fmt.format(iter=j + 1,
                                          train_score=est.train_score_[j],
                                          oob_impr=oob_impr,
                                          remaining_time=remaining_time))
            if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0):
                # adjust verbose frequency (powers of 10)
                self.verbose_mod *= 10


class BaseGradientBoosting(BaseEnsemble, metaclass=ABCMeta):
    """Abstract base class for Gradient Boosting. """

    @abstractmethod
    def __init__(self, *, loss, learning_rate, n_estimators, criterion,
                 min_samples_split, min_samples_leaf, min_weight_fraction_leaf,
                 max_depth, min_impurity_decrease, min_impurity_split,
                 init, subsample, max_features, ccp_alpha,
                 random_state, alpha=0.9, verbose=0, max_leaf_nodes=None,
                 warm_start=False, presort='deprecated',
                 validation_fraction=0.1, n_iter_no_change=None,
                 tol=1e-4):

        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        self.loss = loss
        self.criterion = criterion
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.subsample = subsample
        self.max_features = max_features
        self.max_depth = max_depth
        self.min_impurity_decrease = min_impurity_decrease
        self.min_impurity_split = min_impurity_split
        self.ccp_alpha = ccp_alpha
        self.init = init
        self.random_state = random_state
        self.alpha = alpha
        self.verbose = verbose
        self.max_leaf_nodes = max_leaf_nodes
        self.warm_start = warm_start
        self.presort = presort
        self.validation_fraction = validation_fraction
        self.n_iter_no_change = n_iter_no_change
        self.tol = tol

    def _fit_stage(self, i, X, y, raw_predictions, sample_weight, sample_mask,
                   random_state, X_idx_sorted, X_csc=None, X_csr=None):
        """Fit another stage of ``n_classes_`` trees to the boosting model. """

        assert sample_mask.dtype == np.bool
        loss = self.loss_
        original_y = y

        # Need to pass a copy of raw_predictions to negative_gradient()
        # because raw_predictions is partially updated at the end of the loop
        # in update_terminal_regions(), and gradients need to be evaluated at
        # iteration i - 1.
        raw_predictions_copy = raw_predictions.copy()

        for k in range(loss.K):
            if loss.is_multi_class:
                y = np.array(original_y == k, dtype=np.float64)

            residual = loss.negative_gradient(y, raw_predictions_copy, k=k,
                                              sample_weight=sample_weight)

            # induce regression tree on residuals
            tree = DecisionTreeRegressor(
                criterion=self.criterion,
                splitter='best',
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                min_impurity_decrease=self.min_impurity_decrease,
                min_impurity_split=self.min_impurity_split,
                max_features=self.max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                random_state=random_state,
                ccp_alpha=self.ccp_alpha)

            if self.subsample < 1.0:
                # no inplace multiplication!
                sample_weight = sample_weight * sample_mask.astype(np.float64)

            X = X_csr if X_csr is not None else X
            tree.fit(X, residual, sample_weight=sample_weight,
                     check_input=False, X_idx_sorted=X_idx_sorted)

            # update tree leaves
            loss.update_terminal_regions(
                tree.tree_, X, y, residual, raw_predictions, sample_weight,
                sample_mask, learning_rate=self.learning_rate, k=k)

            # add tree to ensemble
            self.estimators_[i, k] = tree

        return raw_predictions

    def _check_params(self):
        """Check validity of parameters and raise ValueError if not valid. """
        if self.n_estimators <= 0:
            raise ValueError("n_estimators must be greater than 0 but "
                             "was %r" % self.n_estimators)

        if self.learning_rate <= 0.0:
            raise ValueError("learning_rate must be greater than 0 but "
                             "was %r" % self.learning_rate)

        if (self.loss not in self._SUPPORTED_LOSS
                or self.loss not in _gb_losses.LOSS_FUNCTIONS):
            raise ValueError("Loss '{0:s}' not supported. ".format(self.loss))

        if self.loss == 'deviance':
            loss_class = (_gb_losses.MultinomialDeviance
                          if len(self.classes_) > 2
                          else _gb_losses.BinomialDeviance)
        else:
            loss_class = _gb_losses.LOSS_FUNCTIONS[self.loss]

        if self.loss in ('huber', 'quantile'):
            self.loss_ = loss_class(self.n_classes_, self.alpha)
        else:
            self.loss_ = loss_class(self.n_classes_)

        if not (0.0 < self.subsample <= 1.0):
            raise ValueError("subsample must be in (0,1] but "
                             "was %r" % self.subsample)

        if self.init is not None:
            # init must be an estimator or 'zero'
            if isinstance(self.init, BaseEstimator):
                self.loss_.check_init_estimator(self.init)
            elif not (isinstance(self.init, str) and self.init == 'zero'):
                raise ValueError(
                    "The init parameter must be an estimator or 'zero'. "
                    "Got init={}".format(self.init)
                )

        if not (0.0 < self.alpha < 1.0):
            raise ValueError("alpha must be in (0.0, 1.0) but "
                             "was %r" % self.alpha)

        if isinstance(self.max_features, str):
            if self.max_features == "auto":
                # if is_classification
                if self.n_classes_ > 1:
                    max_features = max(1, int(np.sqrt(self.n_features_)))
                else:
                    # is regression
                    max_features = self.n_features_
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features_)))
            else:
                raise ValueError("Invalid value for max_features: %r. "
                                 "Allowed string values are 'auto', 'sqrt' "
                                 "or 'log2'." % self.max_features)
        elif self.max_features is None:
            max_features = self.n_features_
        elif isinstance(self.max_features, numbers.Integral):
            max_features = self.max_features
        else:  # float
            if 0. < self.max_features <= 1.:
                max_features = max(int(self.max_features *
                                       self.n_features_), 1)
            else:
                raise ValueError("max_features must be in (0, n_features]")

        self.max_features_ = max_features

        if not isinstance(self.n_iter_no_change,
                          (numbers.Integral, type(None))):
            raise ValueError("n_iter_no_change should either be None or an "
                             "integer. %r was passed"
                             % self.n_iter_no_change)

        if self.presort != 'deprecated':
            warnings.warn("The parameter 'presort' is deprecated and has no "
                          "effect. It will be removed in v0.24. You can "
                          "suppress this warning by not passing any value "
                          "to the 'presort' parameter. We also recommend "
                          "using HistGradientBoosting models instead.",
                          FutureWarning)

    def _init_state(self):
        """Initialize model state and allocate model state data structures. """

        self.init_ = self.init
        if self.init_ is None:
            self.init_ = self.loss_.init_estimator()

        self.estimators_ = np.empty((self.n_estimators, self.loss_.K),
                                    dtype=np.object)
        self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64)
        # do oob?
        if self.subsample < 1.0:
            self.oob_improvement_ = np.zeros((self.n_estimators),
                                             dtype=np.float64)

    def _clear_state(self):
        """Clear the state of the gradient boosting model. """
        if hasattr(self, 'estimators_'):
            self.estimators_ = np.empty((0, 0), dtype=np.object)
        if hasattr(self, 'train_score_'):
            del self.train_score_
        if hasattr(self, 'oob_improvement_'):
            del self.oob_improvement_
        if hasattr(self, 'init_'):
            del self.init_
        if hasattr(self, '_rng'):
            del self._rng

    def _resize_state(self):
        """Add additional ``n_estimators`` entries to all attributes. """
        # self.n_estimators is the number of additional est to fit
        total_n_estimators = self.n_estimators
        if total_n_estimators < self.estimators_.shape[0]:
            raise ValueError('resize with smaller n_estimators %d < %d' %
                             (total_n_estimators, self.estimators_[0]))

        self.estimators_ = np.resize(self.estimators_,
                                     (total_n_estimators, self.loss_.K))
        self.train_score_ = np.resize(self.train_score_, total_n_estimators)
        if (self.subsample < 1 or hasattr(self, 'oob_improvement_')):
            # if do oob resize arrays or create new if not available
            if hasattr(self, 'oob_improvement_'):
                self.oob_improvement_ = np.resize(self.oob_improvement_,
                                                  total_n_estimators)
            else:
                self.oob_improvement_ = np.zeros((total_n_estimators,),
                                                 dtype=np.float64)

    def _is_initialized(self):
        return len(getattr(self, 'estimators_', [])) > 0

    def _check_initialized(self):
        """Check that the estimator is initialized, raising an error if not."""
        check_is_fitted(self)

    def fit(self, X, y, sample_weight=None, monitor=None):
        """Fit the gradient boosting model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        y : array-like of shape (n_samples,)
            Target values (strings or integers in classification, real numbers
            in regression)
            For classification, labels must correspond to classes.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        monitor : callable, default=None
            The monitor is called after each iteration with the current
            iteration, a reference to the estimator and the local variables of
            ``_fit_stages`` as keyword arguments ``callable(i, self,
            locals())``. If the callable returns ``True`` the fitting procedure
            is stopped. The monitor can be used for various things such as
            computing held-out estimates, early stopping, model introspect, and
            snapshoting.

        Returns
        -------
        self : object
        """
        # if not warmstart - clear the estimator state
        if not self.warm_start:
            self._clear_state()

        # Check input
        # Since check_array converts both X and y to the same dtype, but the
        # trees use different types for X and y, checking them separately.

        X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
                                   dtype=DTYPE, multi_output=True)
        n_samples, self.n_features_ = X.shape

        sample_weight_is_none = sample_weight is None

        sample_weight = _check_sample_weight(sample_weight, X)

        y = column_or_1d(y, warn=True)
        y = self._validate_y(y, sample_weight)

        if self.n_iter_no_change is not None:
            stratify = y if is_classifier(self) else None
            X, X_val, y, y_val, sample_weight, sample_weight_val = (
                train_test_split(X, y, sample_weight,
                                 random_state=self.random_state,
                                 test_size=self.validation_fraction,
                                 stratify=stratify))
            if is_classifier(self):
                if self.n_classes_ != np.unique(y).shape[0]:
                    # We choose to error here. The problem is that the init
                    # estimator would be trained on y, which has some missing
                    # classes now, so its predictions would not have the
                    # correct shape.
                    raise ValueError(
                        'The training data after the early stopping split '
                        'is missing some classes. Try using another random '
                        'seed.'
                    )
        else:
            X_val = y_val = sample_weight_val = None

        self._check_params()

        if not self._is_initialized():
            # init state
            self._init_state()

            # fit initial model and initialize raw predictions
            if self.init_ == 'zero':
                raw_predictions = np.zeros(shape=(X.shape[0], self.loss_.K),
                                           dtype=np.float64)
            else:
                # XXX clean this once we have a support_sample_weight tag
                if sample_weight_is_none:
                    self.init_.fit(X, y)
                else:
                    msg = ("The initial estimator {} does not support sample "
                           "weights.".format(self.init_.__class__.__name__))
                    try:
                        self.init_.fit(X, y, sample_weight=sample_weight)
                    except TypeError:  # regular estimator without SW support
                        raise ValueError(msg)
                    except ValueError as e:
                        if "pass parameters to specific steps of "\
                           "your pipeline using the "\
                           "stepname__parameter" in str(e):  # pipeline
                            raise ValueError(msg) from e
                        else:  # regular estimator whose input checking failed
                            raise

                raw_predictions = \
                    self.loss_.get_init_raw_predictions(X, self.init_)

            begin_at_stage = 0

            # The rng state must be preserved if warm_start is True
            self._rng = check_random_state(self.random_state)

        else:
            # add more estimators to fitted model
            # invariant: warm_start = True
            if self.n_estimators < self.estimators_.shape[0]:
                raise ValueError('n_estimators=%d must be larger or equal to '
                                 'estimators_.shape[0]=%d when '
                                 'warm_start==True'
                                 % (self.n_estimators,
                                    self.estimators_.shape[0]))
            begin_at_stage = self.estimators_.shape[0]
            # The requirements of _decision_function (called in two lines
            # below) are more constrained than fit. It accepts only CSR
            # matrices.
            X = check_array(X, dtype=DTYPE, order="C", accept_sparse='csr')
            raw_predictions = self._raw_predict(X)
            self._resize_state()

        X_idx_sorted = None

        # fit the boosting stages
        n_stages = self._fit_stages(
            X, y, raw_predictions, sample_weight, self._rng, X_val, y_val,
            sample_weight_val, begin_at_stage, monitor, X_idx_sorted)

        # change shape of arrays after fit (early-stopping or additional ests)
        if n_stages != self.estimators_.shape[0]:
            self.estimators_ = self.estimators_[:n_stages]
            self.train_score_ = self.train_score_[:n_stages]
            if hasattr(self, 'oob_improvement_'):
                self.oob_improvement_ = self.oob_improvement_[:n_stages]

        self.n_estimators_ = n_stages
        return self

    def _fit_stages(self, X, y, raw_predictions, sample_weight, random_state,
                    X_val, y_val, sample_weight_val,
                    begin_at_stage=0, monitor=None, X_idx_sorted=None):
        """Iteratively fits the stages.

        For each stage it computes the progress (OOB, train score)
        and delegates to ``_fit_stage``.
        Returns the number of stages fit; might differ from ``n_estimators``
        due to early stopping.
        """
        n_samples = X.shape[0]
        do_oob = self.subsample < 1.0
        sample_mask = np.ones((n_samples, ), dtype=np.bool)
        n_inbag = max(1, int(self.subsample * n_samples))
        loss_ = self.loss_

        if self.verbose:
            verbose_reporter = VerboseReporter(verbose=self.verbose)
            verbose_reporter.init(self, begin_at_stage)

        X_csc = csc_matrix(X) if issparse(X) else None
        X_csr = csr_matrix(X) if issparse(X) else None

        if self.n_iter_no_change is not None:
            loss_history = np.full(self.n_iter_no_change, np.inf)
            # We create a generator to get the predictions for X_val after
            # the addition of each successive stage
            y_val_pred_iter = self._staged_raw_predict(X_val)

        # perform boosting iterations
        i = begin_at_stage
        for i in range(begin_at_stage, self.n_estimators):

            # subsampling
            if do_oob:
                sample_mask = _random_sample_mask(n_samples, n_inbag,
                                                  random_state)
                # OOB score before adding this stage
                old_oob_score = loss_(y[~sample_mask],
                                      raw_predictions[~sample_mask],
                                      sample_weight[~sample_mask])

            # fit next stage of trees
            raw_predictions = self._fit_stage(
                i, X, y, raw_predictions, sample_weight, sample_mask,
                random_state, X_idx_sorted, X_csc, X_csr)

            # track deviance (= loss)
            if do_oob:
                self.train_score_[i] = loss_(y[sample_mask],
                                             raw_predictions[sample_mask],
                                             sample_weight[sample_mask])
                self.oob_improvement_[i] = (
                    old_oob_score - loss_(y[~sample_mask],
                                          raw_predictions[~sample_mask],
                                          sample_weight[~sample_mask]))
            else:
                # no need to fancy index w/ no subsampling
                self.train_score_[i] = loss_(y, raw_predictions, sample_weight)

            if self.verbose > 0:
                verbose_reporter.update(i, self)

            if monitor is not None:
                early_stopping = monitor(i, self, locals())
                if early_stopping:
                    break

            # We also provide an early stopping based on the score from
            # validation set (X_val, y_val), if n_iter_no_change is set
            if self.n_iter_no_change is not None:
                # By calling next(y_val_pred_iter), we get the predictions
                # for X_val after the addition of the current stage
                validation_loss = loss_(y_val, next(y_val_pred_iter),
                                        sample_weight_val)

                # Require validation_score to be better (less) than at least
                # one of the last n_iter_no_change evaluations
                if np.any(validation_loss + self.tol < loss_history):
                    loss_history[i % len(loss_history)] = validation_loss
                else:
                    break

        return i + 1

    def _make_estimator(self, append=True):
        # we don't need _make_estimator
        raise NotImplementedError()

    def _raw_predict_init(self, X):
        """Check input and compute raw predictions of the init estimator."""
        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
        if X.shape[1] != self.n_features_:
            raise ValueError("X.shape[1] should be {0:d}, not {1:d}.".format(
                self.n_features_, X.shape[1]))
        if self.init_ == 'zero':
            raw_predictions = np.zeros(shape=(X.shape[0], self.loss_.K),
                                       dtype=np.float64)
        else:
            raw_predictions = self.loss_.get_init_raw_predictions(
                X, self.init_).astype(np.float64)
        return raw_predictions

    def _raw_predict(self, X):
        """Return the sum of the trees raw predictions (+ init estimator)."""
        raw_predictions = self._raw_predict_init(X)
        predict_stages(self.estimators_, X, self.learning_rate,
                       raw_predictions)
        return raw_predictions

    def _staged_raw_predict(self, X):
        """Compute raw predictions of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        raw_predictions : generator of ndarray of shape (n_samples, k)
            The raw predictions of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        X = check_array(X, dtype=DTYPE, order="C", accept_sparse='csr')
        raw_predictions = self._raw_predict_init(X)
        for i in range(self.estimators_.shape[0]):
            predict_stage(self.estimators_, i, X, self.learning_rate,
                          raw_predictions)
            yield raw_predictions.copy()

    @property
    def feature_importances_(self):
        """The impurity-based feature importances.

        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

        Returns
        -------
        feature_importances_ : array, shape (n_features,)
            The values of this array sum to 1, unless all trees are single node
            trees consisting of only the root node, in which case it will be an
            array of zeros.
        """
        self._check_initialized()

        relevant_trees = [tree
                          for stage in self.estimators_ for tree in stage
                          if tree.tree_.node_count > 1]
        if not relevant_trees:
            # degenerate case where all trees have only one node
            return np.zeros(shape=self.n_features_, dtype=np.float64)

        relevant_feature_importances = [
            tree.tree_.compute_feature_importances(normalize=False)
            for tree in relevant_trees
        ]
        avg_feature_importances = np.mean(relevant_feature_importances,
                                          axis=0, dtype=np.float64)
        return avg_feature_importances / np.sum(avg_feature_importances)

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray of shape (n_samples, n_target_features)
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray of shape (n_target_features,)
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray of shape \
                (n_trees_per_iteration, n_samples)
            The value of the partial dependence function on each grid point.
        """
        if self.init is not None:
            warnings.warn(
                'Using recursion method with a non-constant init predictor '
                'will lead to incorrect partial dependence values. '
                'Got init=%s.' % self.init,
                UserWarning
            )
        grid = np.asarray(grid, dtype=DTYPE, order='C')
        n_estimators, n_trees_per_stage = self.estimators_.shape
        averaged_predictions = np.zeros((n_trees_per_stage, grid.shape[0]),
                                        dtype=np.float64, order='C')
        for stage in range(n_estimators):
            for k in range(n_trees_per_stage):
                tree = self.estimators_[stage, k].tree_
                tree.compute_partial_dependence(grid, target_features,
                                                averaged_predictions[k])
        averaged_predictions *= self.learning_rate

        return averaged_predictions

    def _validate_y(self, y, sample_weight):
        # 'sample_weight' is not utilised but is used for
        # consistency with similar method _validate_y of GBC
        self.n_classes_ = 1
        if y.dtype.kind == 'O':
            y = y.astype(DOUBLE)
        # Default implementation
        return y

    def apply(self, X):
        """Apply trees in the ensemble to X, return leaf indices.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will
            be converted to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array-like of shape (n_samples, n_estimators, n_classes)
            For each datapoint x in X and for each tree in the ensemble,
            return the index of the leaf x ends up in each estimator.
            In the case of binary classification n_classes is 1.
        """

        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)

        # n_classes will be equal to 1 in the binary classification or the
        # regression case.
        n_estimators, n_classes = self.estimators_.shape
        leaves = np.zeros((X.shape[0], n_estimators, n_classes))

        for i in range(n_estimators):
            for j in range(n_classes):
                estimator = self.estimators_[i, j]
                leaves[:, i, j] = estimator.apply(X, check_input=False)

        return leaves


class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):
    """Gradient Boosting for classification.

    GB builds an additive model in a
    forward stage-wise fashion; it allows for the optimization of
    arbitrary differentiable loss functions. In each stage ``n_classes_``
    regression trees are fit on the negative gradient of the
    binomial or multinomial deviance loss function. Binary classification
    is a special case where only a single regression tree is induced.

    Read more in the :ref:`User Guide <gradient_boosting>`.

    Parameters
    ----------
    loss : {'deviance', 'exponential'}, default='deviance'
        loss function to be optimized. 'deviance' refers to
        deviance (= logistic regression) for classification
        with probabilistic outputs. For loss 'exponential' gradient
        boosting recovers the AdaBoost algorithm.

    learning_rate : float, default=0.1
        learning rate shrinks the contribution of each tree by `learning_rate`.
        There is a trade-off between learning_rate and n_estimators.

    n_estimators : int, default=100
        The number of boosting stages to perform. Gradient boosting
        is fairly robust to over-fitting so a large number usually
        results in better performance.

    subsample : float, default=1.0
        The fraction of samples to be used for fitting the individual base
        learners. If smaller than 1.0 this results in Stochastic Gradient
        Boosting. `subsample` interacts with the parameter `n_estimators`.
        Choosing `subsample < 1.0` leads to a reduction of variance
        and an increase in bias.

    criterion : {'friedman_mse', 'mse', 'mae'}, default='friedman_mse'
        The function to measure the quality of a split. Supported criteria
        are 'friedman_mse' for the mean squared error with improvement
        score by Friedman, 'mse' for mean squared error, and 'mae' for
        the mean absolute error. The default value of 'friedman_mse' is
        generally the best as it can provide a better approximation in
        some cases.

        .. versionadded:: 0.18

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_depth : int, default=3
        maximum depth of the individual regression estimators. The maximum
        depth limits the number of nodes in the tree. Tune this parameter
        for best performance; the best value depends on the interaction
        of the input variables.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    init : estimator or 'zero', default=None
        An estimator object that is used to compute the initial predictions.
        ``init`` has to provide :meth:`fit` and :meth:`predict_proba`. If
        'zero', the initial raw predictions are set to zero. By default, a
        ``DummyEstimator`` predicting the classes priors is used.

    random_state : int or RandomState, default=None
        Controls the random seed given to each Tree estimator at each
        boosting iteration.
        In addition, it controls the random permutation of the features at
        each split (see Notes for more details).
        It also controls the random spliting of the training data to obtain a
        validation set if `n_iter_no_change` is not None.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    max_features : {'auto', 'sqrt', 'log2'}, int or float, default=None
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If 'auto', then `max_features=sqrt(n_features)`.
        - If 'sqrt', then `max_features=sqrt(n_features)`.
        - If 'log2', then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Choosing `max_features < n_features` leads to a reduction of variance
        and an increase in bias.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    verbose : int, default=0
        Enable verbose output. If 1 then it prints progress and performance
        once in a while (the more trees the lower the frequency). If greater
        than 1 then it prints progress and performance for every tree.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just erase the
        previous solution. See :term:`the Glossary <warm_start>`.

    presort : deprecated, default='deprecated'
        This parameter is deprecated and will be removed in v0.24.

        .. deprecated :: 0.22

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if ``n_iter_no_change`` is set to an integer.

        .. versionadded:: 0.20

    n_iter_no_change : int, default=None
        ``n_iter_no_change`` is used to decide if early stopping will be used
        to terminate training when validation score is not improving. By
        default it is set to None to disable early stopping. If set to a
        number, it will set aside ``validation_fraction`` size of the training
        data as validation and terminate training when validation score is not
        improving in all of the previous ``n_iter_no_change`` numbers of
        iterations. The split is stratified.

        .. versionadded:: 0.20

    tol : float, default=1e-4
        Tolerance for the early stopping. When the loss is not improving
        by at least tol for ``n_iter_no_change`` iterations (if set to a
        number), the training stops.

        .. versionadded:: 0.20

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    Attributes
    ----------
    n_estimators_ : int
        The number of estimators as selected by early stopping (if
        ``n_iter_no_change`` is specified). Otherwise it is set to
        ``n_estimators``.

        .. versionadded:: 0.20

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    oob_improvement_ : ndarray of shape (n_estimators,)
        The improvement in loss (= deviance) on the out-of-bag samples
        relative to the previous iteration.
        ``oob_improvement_[0]`` is the improvement in
        loss of the first stage over the ``init`` estimator.
        Only available if ``subsample < 1.0``

    train_score_ : ndarray of shape (n_estimators,)
        The i-th score ``train_score_[i]`` is the deviance (= loss) of the
        model at iteration ``i`` on the in-bag sample.
        If ``subsample == 1`` this is the deviance on the training data.

    loss_ : LossFunction
        The concrete ``LossFunction`` object.

    init_ : estimator
        The estimator that provides the initial predictions.
        Set via the ``init`` argument or ``loss.init_estimator``.

    estimators_ : ndarray of DecisionTreeRegressor of \
shape (n_estimators, ``loss_.K``)
        The collection of fitted sub-estimators. ``loss_.K`` is 1 for binary
        classification, otherwise n_classes.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    n_features_ : int
        The number of data features.

    n_classes_ : int
        The number of classes.

    max_features_ : int
        The inferred value of max_features.

    Notes
    -----
    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data and
    ``max_features=n_features``, if the improvement of the criterion is
    identical for several splits enumerated during the search of the best
    split. To obtain a deterministic behaviour during fitting,
    ``random_state`` has to be fixed.

    Examples
    --------
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.ensemble import GradientBoostingClassifier
    >>> from sklearn.model_selection import train_test_split
    >>> X, y = make_classification(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> clf = GradientBoostingClassifier(random_state=0)
    >>> clf.fit(X_train, y_train)
    GradientBoostingClassifier(random_state=0)
    >>> clf.predict(X_test[:2])
    array([1, 0])
    >>> clf.score(X_test, y_test)
    0.88

    See also
    --------
    sklearn.ensemble.HistGradientBoostingClassifier,
    sklearn.tree.DecisionTreeClassifier, RandomForestClassifier
    AdaBoostClassifier

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

    J. Friedman, Stochastic Gradient Boosting, 1999

    T. Hastie, R. Tibshirani and J. Friedman.
    Elements of Statistical Learning Ed. 2, Springer, 2009.
    """

    _SUPPORTED_LOSS = ('deviance', 'exponential')

    @_deprecate_positional_args
    def __init__(self, *, loss='deviance', learning_rate=0.1, n_estimators=100,
                 subsample=1.0, criterion='friedman_mse', min_samples_split=2,
                 min_samples_leaf=1, min_weight_fraction_leaf=0.,
                 max_depth=3, min_impurity_decrease=0.,
                 min_impurity_split=None, init=None,
                 random_state=None, max_features=None, verbose=0,
                 max_leaf_nodes=None, warm_start=False,
                 presort='deprecated', validation_fraction=0.1,
                 n_iter_no_change=None, tol=1e-4, ccp_alpha=0.0):

        super().__init__(
            loss=loss, learning_rate=learning_rate, n_estimators=n_estimators,
            criterion=criterion, min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth, init=init, subsample=subsample,
            max_features=max_features,
            random_state=random_state, verbose=verbose,
            max_leaf_nodes=max_leaf_nodes,
            min_impurity_decrease=min_impurity_decrease,
            min_impurity_split=min_impurity_split,
            warm_start=warm_start, presort=presort,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change, tol=tol, ccp_alpha=ccp_alpha)

    def _validate_y(self, y, sample_weight):
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)
        n_trim_classes = np.count_nonzero(np.bincount(y, sample_weight))
        if n_trim_classes < 2:
            raise ValueError("y contains %d class after sample_weight "
                             "trimmed classes with zero weights, while a "
                             "minimum of 2 classes are required."
                             % n_trim_classes)
        self.n_classes_ = len(self.classes_)
        return y

    def decision_function(self, X):
        """Compute the decision function of ``X``.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        score : ndarray of shape (n_samples, n_classes) or (n_samples,)
            The decision function of the input samples, which corresponds to
            the raw values predicted from the trees of the ensemble . The
            order of the classes corresponds to that in the attribute
            :term:`classes_`. Regression and binary classification produce an
            array of shape [n_samples].
        """
        X = check_array(X, dtype=DTYPE, order="C", accept_sparse='csr')
        raw_predictions = self._raw_predict(X)
        if raw_predictions.shape[1] == 1:
            return raw_predictions.ravel()
        return raw_predictions

    def staged_decision_function(self, X):
        """Compute decision function of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        score : generator of ndarray of shape (n_samples, k)
            The decision function of the input samples, which corresponds to
            the raw values predicted from the trees of the ensemble . The
            classes corresponds to that in the attribute :term:`classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        yield from self._staged_raw_predict(X)

    def predict(self, X):
        """Predict class for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted values.
        """
        raw_predictions = self.decision_function(X)
        encoded_labels = \
            self.loss_._raw_prediction_to_decision(raw_predictions)
        return self.classes_.take(encoded_labels, axis=0)

    def staged_predict(self, X):
        """Predict class at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        for raw_predictions in self._staged_raw_predict(X):
            encoded_labels = \
                self.loss_._raw_prediction_to_decision(raw_predictions)
            yield self.classes_.take(encoded_labels, axis=0)

    def predict_proba(self, X):
        """Predict class probabilities for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Raises
        ------
        AttributeError
            If the ``loss`` does not support probabilities.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        raw_predictions = self.decision_function(X)
        try:
            return self.loss_._raw_prediction_to_proba(raw_predictions)
        except NotFittedError:
            raise
        except AttributeError:
            raise AttributeError('loss=%r does not support predict_proba' %
                                 self.loss)

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Raises
        ------
        AttributeError
            If the ``loss`` does not support probabilities.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        proba = self.predict_proba(X)
        return np.log(proba)

    def staged_predict_proba(self, X):
        """Predict class probabilities at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        try:
            for raw_predictions in self._staged_raw_predict(X):
                yield self.loss_._raw_prediction_to_proba(raw_predictions)
        except NotFittedError:
            raise
        except AttributeError:
            raise AttributeError('loss=%r does not support predict_proba' %
                                 self.loss)


class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
    """Gradient Boosting for regression.

    GB builds an additive model in a forward stage-wise fashion;
    it allows for the optimization of arbitrary differentiable loss functions.
    In each stage a regression tree is fit on the negative gradient of the
    given loss function.

    Read more in the :ref:`User Guide <gradient_boosting>`.

    Parameters
    ----------
    loss : {'ls', 'lad', 'huber', 'quantile'}, default='ls'
        loss function to be optimized. 'ls' refers to least squares
        regression. 'lad' (least absolute deviation) is a highly robust
        loss function solely based on order information of the input
        variables. 'huber' is a combination of the two. 'quantile'
        allows quantile regression (use `alpha` to specify the quantile).

    learning_rate : float, default=0.1
        learning rate shrinks the contribution of each tree by `learning_rate`.
        There is a trade-off between learning_rate and n_estimators.

    n_estimators : int, default=100
        The number of boosting stages to perform. Gradient boosting
        is fairly robust to over-fitting so a large number usually
        results in better performance.

    subsample : float, default=1.0
        The fraction of samples to be used for fitting the individual base
        learners. If smaller than 1.0 this results in Stochastic Gradient
        Boosting. `subsample` interacts with the parameter `n_estimators`.
        Choosing `subsample < 1.0` leads to a reduction of variance
        and an increase in bias.

    criterion : {'friedman_mse', 'mse', 'mae'}, default='friedman_mse'
        The function to measure the quality of a split. Supported criteria
        are "friedman_mse" for the mean squared error with improvement
        score by Friedman, "mse" for mean squared error, and "mae" for
        the mean absolute error. The default value of "friedman_mse" is
        generally the best as it can provide a better approximation in
        some cases.

        .. versionadded:: 0.18

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_depth : int, default=3
        maximum depth of the individual regression estimators. The maximum
        depth limits the number of nodes in the tree. Tune this parameter
        for best performance; the best value depends on the interaction
        of the input variables.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    init : estimator or 'zero', default=None
        An estimator object that is used to compute the initial predictions.
        ``init`` has to provide :term:`fit` and :term:`predict`. If 'zero', the
        initial raw predictions are set to zero. By default a
        ``DummyEstimator`` is used, predicting either the average target value
        (for loss='ls'), or a quantile for the other losses.

    random_state : int or RandomState, default=None
        Controls the random seed given to each Tree estimator at each
        boosting iteration.
        In addition, it controls the random permutation of the features at
        each split (see Notes for more details).
        It also controls the random spliting of the training data to obtain a
        validation set if `n_iter_no_change` is not None.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    max_features : {'auto', 'sqrt', 'log2'}, int or float, default=None
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Choosing `max_features < n_features` leads to a reduction of variance
        and an increase in bias.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    alpha : float, default=0.9
        The alpha-quantile of the huber loss function and the quantile
        loss function. Only if ``loss='huber'`` or ``loss='quantile'``.

    verbose : int, default=0
        Enable verbose output. If 1 then it prints progress and performance
        once in a while (the more trees the lower the frequency). If greater
        than 1 then it prints progress and performance for every tree.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just erase the
        previous solution. See :term:`the Glossary <warm_start>`.

    presort : deprecated, default='deprecated'
        This parameter is deprecated and will be removed in v0.24.

        .. deprecated :: 0.22

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if ``n_iter_no_change`` is set to an integer.

        .. versionadded:: 0.20

    n_iter_no_change : int, default=None
        ``n_iter_no_change`` is used to decide if early stopping will be used
        to terminate training when validation score is not improving. By
        default it is set to None to disable early stopping. If set to a
        number, it will set aside ``validation_fraction`` size of the training
        data as validation and terminate training when validation score is not
        improving in all of the previous ``n_iter_no_change`` numbers of
        iterations.

        .. versionadded:: 0.20

    tol : float, default=1e-4
        Tolerance for the early stopping. When the loss is not improving
        by at least tol for ``n_iter_no_change`` iterations (if set to a
        number), the training stops.

        .. versionadded:: 0.20

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    Attributes
    ----------
    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    oob_improvement_ : ndarray of shape (n_estimators,)
        The improvement in loss (= deviance) on the out-of-bag samples
        relative to the previous iteration.
        ``oob_improvement_[0]`` is the improvement in
        loss of the first stage over the ``init`` estimator.
        Only available if ``subsample < 1.0``

    train_score_ : ndarray of shape (n_estimators,)
        The i-th score ``train_score_[i]`` is the deviance (= loss) of the
        model at iteration ``i`` on the in-bag sample.
        If ``subsample == 1`` this is the deviance on the training data.

    loss_ : LossFunction
        The concrete ``LossFunction`` object.

    init_ : estimator
        The estimator that provides the initial predictions.
        Set via the ``init`` argument or ``loss.init_estimator``.

    estimators_ : ndarray of DecisionTreeRegressor of shape (n_estimators, 1)
        The collection of fitted sub-estimators.

    n_features_ : int
        The number of data features.

    max_features_ : int
        The inferred value of max_features.

    Notes
    -----
    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data and
    ``max_features=n_features``, if the improvement of the criterion is
    identical for several splits enumerated during the search of the best
    split. To obtain a deterministic behaviour during fitting,
    ``random_state`` has to be fixed.

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.ensemble import GradientBoostingRegressor
    >>> from sklearn.model_selection import train_test_split
    >>> X, y = make_regression(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> reg = GradientBoostingRegressor(random_state=0)
    >>> reg.fit(X_train, y_train)
    GradientBoostingRegressor(random_state=0)
    >>> reg.predict(X_test[1:2])
    array([-61...])
    >>> reg.score(X_test, y_test)
    0.4...

    See also
    --------
    sklearn.ensemble.HistGradientBoostingRegressor,
    sklearn.tree.DecisionTreeRegressor, RandomForestRegressor

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

    J. Friedman, Stochastic Gradient Boosting, 1999

    T. Hastie, R. Tibshirani and J. Friedman.
    Elements of Statistical Learning Ed. 2, Springer, 2009.
    """

    _SUPPORTED_LOSS = ('ls', 'lad', 'huber', 'quantile')

    @_deprecate_positional_args
    def __init__(self, *, loss='ls', learning_rate=0.1, n_estimators=100,
                 subsample=1.0, criterion='friedman_mse', min_samples_split=2,
                 min_samples_leaf=1, min_weight_fraction_leaf=0.,
                 max_depth=3, min_impurity_decrease=0.,
                 min_impurity_split=None, init=None, random_state=None,
                 max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None,
                 warm_start=False, presort='deprecated',
                 validation_fraction=0.1,
                 n_iter_no_change=None, tol=1e-4, ccp_alpha=0.0):

        super().__init__(
            loss=loss, learning_rate=learning_rate, n_estimators=n_estimators,
            criterion=criterion, min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth, init=init, subsample=subsample,
            max_features=max_features,
            min_impurity_decrease=min_impurity_decrease,
            min_impurity_split=min_impurity_split,
            random_state=random_state, alpha=alpha, verbose=verbose,
            max_leaf_nodes=max_leaf_nodes, warm_start=warm_start,
            presort=presort, validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change, tol=tol, ccp_alpha=ccp_alpha)

    def predict(self, X):
        """Predict regression target for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted values.
        """
        X = check_array(X, dtype=DTYPE, order="C", accept_sparse='csr')
        # In regression we can directly return the raw value from the trees.
        return self._raw_predict(X).ravel()

    def staged_predict(self, X):
        """Predict regression target at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        for raw_predictions in self._staged_raw_predict(X):
            yield raw_predictions.ravel()

    def apply(self, X):
        """Apply trees in the ensemble to X, return leaf indices.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will
            be converted to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array-like of shape (n_samples, n_estimators)
            For each datapoint x in X and for each tree in the ensemble,
            return the index of the leaf x ends up in each estimator.
        """

        leaves = super().apply(X)
        leaves = leaves.reshape(X.shape[0], self.estimators_.shape[0])
        return leaves