1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
# cython: nonecheck=False
# cython: language_level=3
# Author: Nicolas Hug
cimport cython
import numpy as np
cimport numpy as np
from numpy.math cimport INFINITY
from cython.parallel import prange
from libc.math cimport isnan
from .common cimport X_DTYPE_C, X_BINNED_DTYPE_C
np.import_array()
def _map_to_bins(const X_DTYPE_C [:, :] data,
list binning_thresholds,
const unsigned char missing_values_bin_idx,
X_BINNED_DTYPE_C [::1, :] binned):
"""Bin numerical values to discrete integer-coded levels.
Parameters
----------
data : ndarray, shape (n_samples, n_features)
The numerical data to bin.
binning_thresholds : list of arrays
For each feature, stores the increasing numeric values that are
used to separate the bins.
binned : ndarray, shape (n_samples, n_features)
Output array, must be fortran aligned.
"""
cdef:
int feature_idx
for feature_idx in range(data.shape[1]):
_map_num_col_to_bins(data[:, feature_idx],
binning_thresholds[feature_idx],
missing_values_bin_idx,
binned[:, feature_idx])
cdef void _map_num_col_to_bins(const X_DTYPE_C [:] data,
const X_DTYPE_C [:] binning_thresholds,
const unsigned char missing_values_bin_idx,
X_BINNED_DTYPE_C [:] binned):
"""Binary search to find the bin index for each value in the data."""
cdef:
int i
int left
int right
int middle
for i in prange(data.shape[0], schedule='static', nogil=True):
if isnan(data[i]):
binned[i] = missing_values_bin_idx
else:
# for known values, use binary search
left, right = 0, binning_thresholds.shape[0]
while left < right:
middle = (right + left - 1) // 2
if data[i] <= binning_thresholds[middle]:
right = middle
else:
left = middle + 1
binned[i] = left
|