1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
# cython: language_level=3
# Author: Nicolas Hug
cimport cython
from cython.parallel import prange
import numpy as np
cimport numpy as np
from libc.math cimport exp, log
from .common cimport Y_DTYPE_C
from .common cimport G_H_DTYPE_C
np.import_array()
def _update_gradients_least_squares(
G_H_DTYPE_C [::1] gradients, # OUT
const Y_DTYPE_C [::1] y_true, # IN
const Y_DTYPE_C [::1] raw_predictions): # IN
cdef:
int n_samples
int i
n_samples = raw_predictions.shape[0]
for i in prange(n_samples, schedule='static', nogil=True):
# Note: a more correct expression is 2 * (raw_predictions - y_true)
# but since we use 1 for the constant hessian value (and not 2) this
# is strictly equivalent for the leaves values.
gradients[i] = raw_predictions[i] - y_true[i]
def _update_gradients_hessians_least_squares(
G_H_DTYPE_C [::1] gradients, # OUT
G_H_DTYPE_C [::1] hessians, # OUT
const Y_DTYPE_C [::1] y_true, # IN
const Y_DTYPE_C [::1] raw_predictions, # IN
const Y_DTYPE_C [::1] sample_weight): # IN
cdef:
int n_samples
int i
n_samples = raw_predictions.shape[0]
for i in prange(n_samples, schedule='static', nogil=True):
# Note: a more correct exp is 2 * (raw_predictions - y_true) * sample_weight
# but since we use 1 for the constant hessian value (and not 2) this
# is strictly equivalent for the leaves values.
gradients[i] = (raw_predictions[i] - y_true[i]) * sample_weight[i]
hessians[i] = sample_weight[i]
def _update_gradients_hessians_least_absolute_deviation(
G_H_DTYPE_C [::1] gradients, # OUT
G_H_DTYPE_C [::1] hessians, # OUT
const Y_DTYPE_C [::1] y_true, # IN
const Y_DTYPE_C [::1] raw_predictions, # IN
const Y_DTYPE_C [::1] sample_weight): # IN
cdef:
int n_samples
int i
n_samples = raw_predictions.shape[0]
for i in prange(n_samples, schedule='static', nogil=True):
# gradient = sign(raw_predicition - y_pred) * sample_weight
gradients[i] = sample_weight[i] * (2 *
(y_true[i] - raw_predictions[i] < 0) - 1)
hessians[i] = sample_weight[i]
def _update_gradients_least_absolute_deviation(
G_H_DTYPE_C [::1] gradients, # OUT
const Y_DTYPE_C [::1] y_true, # IN
const Y_DTYPE_C [::1] raw_predictions): # IN
cdef:
int n_samples
int i
n_samples = raw_predictions.shape[0]
for i in prange(n_samples, schedule='static', nogil=True):
# gradient = sign(raw_predicition - y_pred)
gradients[i] = 2 * (y_true[i] - raw_predictions[i] < 0) - 1
def _update_gradients_hessians_poisson(
G_H_DTYPE_C [::1] gradients, # OUT
G_H_DTYPE_C [::1] hessians, # OUT
const Y_DTYPE_C [::1] y_true, # IN
const Y_DTYPE_C [::1] raw_predictions, # IN
const Y_DTYPE_C [::1] sample_weight): # IN
cdef:
int n_samples
int i
Y_DTYPE_C y_pred
n_samples = raw_predictions.shape[0]
if sample_weight is None:
for i in prange(n_samples, schedule='static', nogil=True):
# Note: We use only half of the deviance loss. Therefore, there is
# no factor of 2.
y_pred = exp(raw_predictions[i])
gradients[i] = (y_pred - y_true[i])
hessians[i] = y_pred
else:
for i in prange(n_samples, schedule='static', nogil=True):
# Note: We use only half of the deviance loss. Therefore, there is
# no factor of 2.
y_pred = exp(raw_predictions[i])
gradients[i] = (y_pred - y_true[i]) * sample_weight[i]
hessians[i] = y_pred * sample_weight[i]
def _update_gradients_hessians_binary_crossentropy(
G_H_DTYPE_C [::1] gradients, # OUT
G_H_DTYPE_C [::1] hessians, # OUT
const Y_DTYPE_C [::1] y_true, # IN
const Y_DTYPE_C [::1] raw_predictions, # IN
const Y_DTYPE_C [::1] sample_weight): # IN
cdef:
int n_samples
Y_DTYPE_C p_i # proba that ith sample belongs to positive class
int i
n_samples = raw_predictions.shape[0]
if sample_weight is None:
for i in prange(n_samples, schedule='static', nogil=True):
p_i = _cexpit(raw_predictions[i])
gradients[i] = p_i - y_true[i]
hessians[i] = p_i * (1. - p_i)
else:
for i in prange(n_samples, schedule='static', nogil=True):
p_i = _cexpit(raw_predictions[i])
gradients[i] = (p_i - y_true[i]) * sample_weight[i]
hessians[i] = p_i * (1. - p_i) * sample_weight[i]
def _update_gradients_hessians_categorical_crossentropy(
G_H_DTYPE_C [:, ::1] gradients, # OUT
G_H_DTYPE_C [:, ::1] hessians, # OUT
const Y_DTYPE_C [::1] y_true, # IN
const Y_DTYPE_C [:, ::1] raw_predictions, # IN
const Y_DTYPE_C [::1] sample_weight): # IN
cdef:
int prediction_dim = raw_predictions.shape[0]
int n_samples = raw_predictions.shape[1]
int k # class index
int i # sample index
Y_DTYPE_C sw
# p[i, k] is the probability that class(ith sample) == k.
# It's the softmax of the raw predictions
Y_DTYPE_C [:, ::1] p = np.empty(shape=(n_samples, prediction_dim))
Y_DTYPE_C p_i_k
if sample_weight is None:
for i in prange(n_samples, schedule='static', nogil=True):
# first compute softmaxes of sample i for each class
for k in range(prediction_dim):
p[i, k] = raw_predictions[k, i] # prepare softmax
_compute_softmax(p, i)
# then update gradients and hessians
for k in range(prediction_dim):
p_i_k = p[i, k]
gradients[k, i] = p_i_k - (y_true[i] == k)
hessians[k, i] = p_i_k * (1. - p_i_k)
else:
for i in prange(n_samples, schedule='static', nogil=True):
# first compute softmaxes of sample i for each class
for k in range(prediction_dim):
p[i, k] = raw_predictions[k, i] # prepare softmax
_compute_softmax(p, i)
# then update gradients and hessians
sw = sample_weight[i]
for k in range(prediction_dim):
p_i_k = p[i, k]
gradients[k, i] = (p_i_k - (y_true[i] == k)) * sw
hessians[k, i] = (p_i_k * (1. - p_i_k)) * sw
cdef inline void _compute_softmax(Y_DTYPE_C [:, ::1] p, const int i) nogil:
"""Compute softmaxes of values in p[i, :]."""
# i needs to be passed (and stays constant) because otherwise Cython does
# not generate optimal code
cdef:
Y_DTYPE_C max_value = p[i, 0]
Y_DTYPE_C sum_exps = 0.
unsigned int k
unsigned prediction_dim = p.shape[1]
# Compute max value of array for numerical stability
for k in range(1, prediction_dim):
if max_value < p[i, k]:
max_value = p[i, k]
for k in range(prediction_dim):
p[i, k] = exp(p[i, k] - max_value)
sum_exps += p[i, k]
for k in range(prediction_dim):
p[i, k] /= sum_exps
cdef inline Y_DTYPE_C _cexpit(const Y_DTYPE_C x) nogil:
"""Custom expit (logistic sigmoid function)"""
return 1. / (1. + exp(-x))
|