File: gradient_boosting.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (1184 lines) | stat: -rw-r--r-- 53,835 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
"""Fast Gradient Boosting decision trees for classification and regression."""
# Author: Nicolas Hug

from abc import ABC, abstractmethod
from functools import partial

import numpy as np
from timeit import default_timer as time
from ...base import (BaseEstimator, RegressorMixin, ClassifierMixin,
                     is_classifier)
from ...utils import check_random_state, check_array, resample
from ...utils.validation import (check_is_fitted,
                                 check_consistent_length,
                                 _check_sample_weight,
                                 _deprecate_positional_args)
from ...utils.multiclass import check_classification_targets
from ...metrics import check_scoring
from ...model_selection import train_test_split
from ...preprocessing import LabelEncoder
from ._gradient_boosting import _update_raw_predictions
from .common import Y_DTYPE, X_DTYPE, X_BINNED_DTYPE

from .binning import _BinMapper
from .grower import TreeGrower
from .loss import _LOSSES
from .loss import BaseLoss


class BaseHistGradientBoosting(BaseEstimator, ABC):
    """Base class for histogram-based gradient boosting estimators."""

    @abstractmethod
    def __init__(self, loss, *, learning_rate, max_iter, max_leaf_nodes,
                 max_depth, min_samples_leaf, l2_regularization, max_bins,
                 monotonic_cst, warm_start, early_stopping, scoring,
                 validation_fraction, n_iter_no_change, tol, verbose,
                 random_state):
        self.loss = loss
        self.learning_rate = learning_rate
        self.max_iter = max_iter
        self.max_leaf_nodes = max_leaf_nodes
        self.max_depth = max_depth
        self.min_samples_leaf = min_samples_leaf
        self.l2_regularization = l2_regularization
        self.max_bins = max_bins
        self.monotonic_cst = monotonic_cst
        self.warm_start = warm_start
        self.early_stopping = early_stopping
        self.scoring = scoring
        self.validation_fraction = validation_fraction
        self.n_iter_no_change = n_iter_no_change
        self.tol = tol
        self.verbose = verbose
        self.random_state = random_state

    def _validate_parameters(self):
        """Validate parameters passed to __init__.

        The parameters that are directly passed to the grower are checked in
        TreeGrower."""

        if (self.loss not in self._VALID_LOSSES and
                not isinstance(self.loss, BaseLoss)):
            raise ValueError(
                "Loss {} is not supported for {}. Accepted losses: "
                "{}.".format(self.loss, self.__class__.__name__,
                             ', '.join(self._VALID_LOSSES)))

        if self.learning_rate <= 0:
            raise ValueError('learning_rate={} must '
                             'be strictly positive'.format(self.learning_rate))
        if self.max_iter < 1:
            raise ValueError('max_iter={} must not be smaller '
                             'than 1.'.format(self.max_iter))
        if self.n_iter_no_change < 0:
            raise ValueError('n_iter_no_change={} must be '
                             'positive.'.format(self.n_iter_no_change))
        if (self.validation_fraction is not None and
                self.validation_fraction <= 0):
            raise ValueError(
                'validation_fraction={} must be strictly '
                'positive, or None.'.format(self.validation_fraction))
        if self.tol is not None and self.tol < 0:
            raise ValueError('tol={} '
                             'must not be smaller than 0.'.format(self.tol))

        if not (2 <= self.max_bins <= 255):
            raise ValueError('max_bins={} should be no smaller than 2 '
                             'and no larger than 255.'.format(self.max_bins))

        if self.monotonic_cst is not None and self.n_trees_per_iteration_ != 1:
            raise ValueError(
                'monotonic constraints are not supported for '
                'multiclass classification.'
                )

    def fit(self, X, y, sample_weight=None):
        """Fit the gradient boosting model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,) default=None
            Weights of training data.

        Returns
        -------
        self : object
        """
        fit_start_time = time()
        acc_find_split_time = 0.  # time spent finding the best splits
        acc_apply_split_time = 0.  # time spent splitting nodes
        acc_compute_hist_time = 0.  # time spent computing histograms
        # time spent predicting X for gradient and hessians update
        acc_prediction_time = 0.
        X, y = self._validate_data(X, y, dtype=[X_DTYPE],
                                   force_all_finite=False)
        y = self._encode_y(y)
        check_consistent_length(X, y)
        # Do not create unit sample weights by default to later skip some
        # computation
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X,
                                                 dtype=np.float64)
            # TODO: remove when PDP suports sample weights
            self._fitted_with_sw = True

        rng = check_random_state(self.random_state)

        # When warm starting, we want to re-use the same seed that was used
        # the first time fit was called (e.g. for subsampling or for the
        # train/val split).
        if not (self.warm_start and self._is_fitted()):
            self._random_seed = rng.randint(np.iinfo(np.uint32).max,
                                            dtype='u8')

        self._validate_parameters()
        n_samples, self.n_features_ = X.shape  # used for validation in predict

        # we need this stateful variable to tell raw_predict() that it was
        # called from fit() (this current method), and that the data it has
        # received is pre-binned.
        # predicting is faster on pre-binned data, so we want early stopping
        # predictions to be made on pre-binned data. Unfortunately the scorer_
        # can only call predict() or predict_proba(), not raw_predict(), and
        # there's no way to tell the scorer that it needs to predict binned
        # data.
        self._in_fit = True

        if isinstance(self.loss, str):
            self.loss_ = self._get_loss(sample_weight=sample_weight)
        elif isinstance(self.loss, BaseLoss):
            self.loss_ = self.loss

        if self.early_stopping == 'auto':
            self.do_early_stopping_ = n_samples > 10000
        else:
            self.do_early_stopping_ = self.early_stopping

        # create validation data if needed
        self._use_validation_data = self.validation_fraction is not None
        if self.do_early_stopping_ and self._use_validation_data:
            # stratify for classification
            stratify = y if hasattr(self.loss_, 'predict_proba') else None

            # Save the state of the RNG for the training and validation split.
            # This is needed in order to have the same split when using
            # warm starting.

            if sample_weight is None:
                X_train, X_val, y_train, y_val = train_test_split(
                    X, y, test_size=self.validation_fraction,
                    stratify=stratify,
                    random_state=self._random_seed)
                sample_weight_train = sample_weight_val = None
            else:
                # TODO: incorporate sample_weight in sampling here, as well as
                # stratify
                (X_train, X_val, y_train, y_val, sample_weight_train,
                 sample_weight_val) = train_test_split(
                    X, y, sample_weight, test_size=self.validation_fraction,
                    stratify=stratify,
                    random_state=self._random_seed)
        else:
            X_train, y_train, sample_weight_train = X, y, sample_weight
            X_val = y_val = sample_weight_val = None

        has_missing_values = np.isnan(X_train).any(axis=0).astype(np.uint8)

        # Bin the data
        # For ease of use of the API, the user-facing GBDT classes accept the
        # parameter max_bins, which doesn't take into account the bin for
        # missing values (which is always allocated). However, since max_bins
        # isn't the true maximal number of bins, all other private classes
        # (binmapper, histbuilder...) accept n_bins instead, which is the
        # actual total number of bins. Everywhere in the code, the
        # convention is that n_bins == max_bins + 1
        n_bins = self.max_bins + 1  # + 1 for missing values
        self.bin_mapper_ = _BinMapper(n_bins=n_bins,
                                      random_state=self._random_seed)
        X_binned_train = self._bin_data(X_train, is_training_data=True)
        if X_val is not None:
            X_binned_val = self._bin_data(X_val, is_training_data=False)
        else:
            X_binned_val = None

        if self.verbose:
            print("Fitting gradient boosted rounds:")

        n_samples = X_binned_train.shape[0]

        # First time calling fit, or no warm start
        if not (self._is_fitted() and self.warm_start):
            # Clear random state and score attributes
            self._clear_state()

            # initialize raw_predictions: those are the accumulated values
            # predicted by the trees for the training data. raw_predictions has
            # shape (n_trees_per_iteration, n_samples) where
            # n_trees_per_iterations is n_classes in multiclass classification,
            # else 1.
            self._baseline_prediction = self.loss_.get_baseline_prediction(
                y_train, sample_weight_train, self.n_trees_per_iteration_
            )
            raw_predictions = np.zeros(
                shape=(self.n_trees_per_iteration_, n_samples),
                dtype=self._baseline_prediction.dtype
            )
            raw_predictions += self._baseline_prediction

            # predictors is a matrix (list of lists) of TreePredictor objects
            # with shape (n_iter_, n_trees_per_iteration)
            self._predictors = predictors = []

            # Initialize structures and attributes related to early stopping
            self.scorer_ = None  # set if scoring != loss
            raw_predictions_val = None  # set if scoring == loss and use val
            self.train_score_ = []
            self.validation_score_ = []

            if self.do_early_stopping_:
                # populate train_score and validation_score with the
                # predictions of the initial model (before the first tree)

                if self.scoring == 'loss':
                    # we're going to compute scoring w.r.t the loss. As losses
                    # take raw predictions as input (unlike the scorers), we
                    # can optimize a bit and avoid repeating computing the
                    # predictions of the previous trees. We'll re-use
                    # raw_predictions (as it's needed for training anyway) for
                    # evaluating the training loss, and create
                    # raw_predictions_val for storing the raw predictions of
                    # the validation data.

                    if self._use_validation_data:
                        raw_predictions_val = np.zeros(
                            shape=(self.n_trees_per_iteration_,
                                   X_binned_val.shape[0]),
                            dtype=self._baseline_prediction.dtype
                        )

                        raw_predictions_val += self._baseline_prediction

                    self._check_early_stopping_loss(raw_predictions, y_train,
                                                    sample_weight_train,
                                                    raw_predictions_val, y_val,
                                                    sample_weight_val)
                else:
                    self.scorer_ = check_scoring(self, self.scoring)
                    # scorer_ is a callable with signature (est, X, y) and
                    # calls est.predict() or est.predict_proba() depending on
                    # its nature.
                    # Unfortunately, each call to scorer_() will compute
                    # the predictions of all the trees. So we use a subset of
                    # the training set to compute train scores.

                    # Compute the subsample set
                    (X_binned_small_train,
                     y_small_train,
                     sample_weight_small_train) = self._get_small_trainset(
                        X_binned_train, y_train, sample_weight_train,
                        self._random_seed)

                    self._check_early_stopping_scorer(
                        X_binned_small_train, y_small_train,
                        sample_weight_small_train,
                        X_binned_val, y_val, sample_weight_val,
                    )
            begin_at_stage = 0

        # warm start: this is not the first time fit was called
        else:
            # Check that the maximum number of iterations is not smaller
            # than the number of iterations from the previous fit
            if self.max_iter < self.n_iter_:
                raise ValueError(
                    'max_iter=%d must be larger than or equal to '
                    'n_iter_=%d when warm_start==True'
                    % (self.max_iter, self.n_iter_)
                )

            # Convert array attributes to lists
            self.train_score_ = self.train_score_.tolist()
            self.validation_score_ = self.validation_score_.tolist()

            # Compute raw predictions
            raw_predictions = self._raw_predict(X_binned_train)
            if self.do_early_stopping_ and self._use_validation_data:
                raw_predictions_val = self._raw_predict(X_binned_val)
            else:
                raw_predictions_val = None

            if self.do_early_stopping_ and self.scoring != 'loss':
                # Compute the subsample set
                (X_binned_small_train,
                 y_small_train,
                 sample_weight_small_train) = self._get_small_trainset(
                    X_binned_train, y_train, sample_weight_train,
                    self._random_seed)

            # Get the predictors from the previous fit
            predictors = self._predictors

            begin_at_stage = self.n_iter_

        # initialize gradients and hessians (empty arrays).
        # shape = (n_trees_per_iteration, n_samples).
        gradients, hessians = self.loss_.init_gradients_and_hessians(
            n_samples=n_samples,
            prediction_dim=self.n_trees_per_iteration_,
            sample_weight=sample_weight_train
        )

        for iteration in range(begin_at_stage, self.max_iter):

            if self.verbose:
                iteration_start_time = time()
                print("[{}/{}] ".format(iteration + 1, self.max_iter),
                      end='', flush=True)

            # Update gradients and hessians, inplace
            self.loss_.update_gradients_and_hessians(gradients, hessians,
                                                     y_train, raw_predictions,
                                                     sample_weight_train)

            # Append a list since there may be more than 1 predictor per iter
            predictors.append([])

            # Build `n_trees_per_iteration` trees.
            for k in range(self.n_trees_per_iteration_):
                grower = TreeGrower(
                    X_binned_train, gradients[k, :], hessians[k, :],
                    n_bins=n_bins,
                    n_bins_non_missing=self.bin_mapper_.n_bins_non_missing_,
                    has_missing_values=has_missing_values,
                    monotonic_cst=self.monotonic_cst,
                    max_leaf_nodes=self.max_leaf_nodes,
                    max_depth=self.max_depth,
                    min_samples_leaf=self.min_samples_leaf,
                    l2_regularization=self.l2_regularization,
                    shrinkage=self.learning_rate)
                grower.grow()

                acc_apply_split_time += grower.total_apply_split_time
                acc_find_split_time += grower.total_find_split_time
                acc_compute_hist_time += grower.total_compute_hist_time

                if self.loss_.need_update_leaves_values:
                    self.loss_.update_leaves_values(grower, y_train,
                                                    raw_predictions[k, :],
                                                    sample_weight_train)

                predictor = grower.make_predictor(
                    bin_thresholds=self.bin_mapper_.bin_thresholds_
                )
                predictors[-1].append(predictor)

                # Update raw_predictions with the predictions of the newly
                # created tree.
                tic_pred = time()
                _update_raw_predictions(raw_predictions[k, :], grower)
                toc_pred = time()
                acc_prediction_time += toc_pred - tic_pred

            should_early_stop = False
            if self.do_early_stopping_:
                if self.scoring == 'loss':
                    # Update raw_predictions_val with the newest tree(s)
                    if self._use_validation_data:
                        for k, pred in enumerate(self._predictors[-1]):
                            raw_predictions_val[k, :] += (
                                pred.predict_binned(
                                    X_binned_val,
                                    self.bin_mapper_.missing_values_bin_idx_
                                )
                            )

                    should_early_stop = self._check_early_stopping_loss(
                        raw_predictions, y_train, sample_weight_train,
                        raw_predictions_val, y_val, sample_weight_val
                    )

                else:
                    should_early_stop = self._check_early_stopping_scorer(
                        X_binned_small_train, y_small_train,
                        sample_weight_small_train,
                        X_binned_val, y_val, sample_weight_val
                    )

            if self.verbose:
                self._print_iteration_stats(iteration_start_time)

            # maybe we could also early stop if all the trees are stumps?
            if should_early_stop:
                break

        if self.verbose:
            duration = time() - fit_start_time
            n_total_leaves = sum(
                predictor.get_n_leaf_nodes()
                for predictors_at_ith_iteration in self._predictors
                for predictor in predictors_at_ith_iteration
            )
            n_predictors = sum(
                len(predictors_at_ith_iteration)
                for predictors_at_ith_iteration in self._predictors)
            print("Fit {} trees in {:.3f} s, ({} total leaves)".format(
                n_predictors, duration, n_total_leaves))
            print("{:<32} {:.3f}s".format('Time spent computing histograms:',
                                          acc_compute_hist_time))
            print("{:<32} {:.3f}s".format('Time spent finding best splits:',
                                          acc_find_split_time))
            print("{:<32} {:.3f}s".format('Time spent applying splits:',
                                          acc_apply_split_time))
            print("{:<32} {:.3f}s".format('Time spent predicting:',
                                          acc_prediction_time))

        self.train_score_ = np.asarray(self.train_score_)
        self.validation_score_ = np.asarray(self.validation_score_)
        del self._in_fit  # hard delete so we're sure it can't be used anymore
        return self

    def _is_fitted(self):
        return len(getattr(self, '_predictors', [])) > 0

    def _clear_state(self):
        """Clear the state of the gradient boosting model."""
        for var in ('train_score_', 'validation_score_'):
            if hasattr(self, var):
                delattr(self, var)

    def _get_small_trainset(self, X_binned_train, y_train, sample_weight_train,
                            seed):
        """Compute the indices of the subsample set and return this set.

        For efficiency, we need to subsample the training set to compute scores
        with scorers.
        """
        # TODO: incorporate sample_weights here in `resample`
        subsample_size = 10000
        if X_binned_train.shape[0] > subsample_size:
            indices = np.arange(X_binned_train.shape[0])
            stratify = y_train if is_classifier(self) else None
            indices = resample(indices, n_samples=subsample_size,
                               replace=False, random_state=seed,
                               stratify=stratify)
            X_binned_small_train = X_binned_train[indices]
            y_small_train = y_train[indices]
            if sample_weight_train is not None:
                sample_weight_small_train = sample_weight_train[indices]
            else:
                sample_weight_small_train = None
            X_binned_small_train = np.ascontiguousarray(X_binned_small_train)
            return (X_binned_small_train, y_small_train,
                    sample_weight_small_train)
        else:
            return X_binned_train, y_train, sample_weight_train

    def _check_early_stopping_scorer(self, X_binned_small_train, y_small_train,
                                     sample_weight_small_train,
                                     X_binned_val, y_val, sample_weight_val):
        """Check if fitting should be early-stopped based on scorer.

        Scores are computed on validation data or on training data.
        """
        if is_classifier(self):
            y_small_train = self.classes_[y_small_train.astype(int)]

        if sample_weight_small_train is None:
            self.train_score_.append(
                self.scorer_(self, X_binned_small_train, y_small_train)
            )
        else:
            self.train_score_.append(
                self.scorer_(self, X_binned_small_train, y_small_train,
                             sample_weight=sample_weight_small_train)
            )

        if self._use_validation_data:
            if is_classifier(self):
                y_val = self.classes_[y_val.astype(int)]
            if sample_weight_val is None:
                self.validation_score_.append(
                    self.scorer_(self, X_binned_val, y_val)
                )
            else:
                self.validation_score_.append(
                    self.scorer_(self, X_binned_val, y_val,
                                 sample_weight=sample_weight_val)
                )
            return self._should_stop(self.validation_score_)
        else:
            return self._should_stop(self.train_score_)

    def _check_early_stopping_loss(self,
                                   raw_predictions,
                                   y_train,
                                   sample_weight_train,
                                   raw_predictions_val,
                                   y_val,
                                   sample_weight_val):
        """Check if fitting should be early-stopped based on loss.

        Scores are computed on validation data or on training data.
        """

        self.train_score_.append(
            -self.loss_(y_train, raw_predictions, sample_weight_train)
        )

        if self._use_validation_data:
            self.validation_score_.append(
                -self.loss_(y_val, raw_predictions_val, sample_weight_val)
            )
            return self._should_stop(self.validation_score_)
        else:
            return self._should_stop(self.train_score_)

    def _should_stop(self, scores):
        """
        Return True (do early stopping) if the last n scores aren't better
        than the (n-1)th-to-last score, up to some tolerance.
        """
        reference_position = self.n_iter_no_change + 1
        if len(scores) < reference_position:
            return False

        # A higher score is always better. Higher tol means that it will be
        # harder for subsequent iteration to be considered an improvement upon
        # the reference score, and therefore it is more likely to early stop
        # because of the lack of significant improvement.
        tol = 0 if self.tol is None else self.tol
        reference_score = scores[-reference_position] + tol
        recent_scores = scores[-reference_position + 1:]
        recent_improvements = [score > reference_score
                               for score in recent_scores]
        return not any(recent_improvements)

    def _bin_data(self, X, is_training_data):
        """Bin data X.

        If is_training_data, then set the bin_mapper_ attribute.
        Else, the binned data is converted to a C-contiguous array.
        """

        description = 'training' if is_training_data else 'validation'
        if self.verbose:
            print("Binning {:.3f} GB of {} data: ".format(
                X.nbytes / 1e9, description), end="", flush=True)
        tic = time()
        if is_training_data:
            X_binned = self.bin_mapper_.fit_transform(X)  # F-aligned array
        else:
            X_binned = self.bin_mapper_.transform(X)  # F-aligned array
            # We convert the array to C-contiguous since predicting is faster
            # with this layout (training is faster on F-arrays though)
            X_binned = np.ascontiguousarray(X_binned)
        toc = time()
        if self.verbose:
            duration = toc - tic
            print("{:.3f} s".format(duration))

        return X_binned

    def _print_iteration_stats(self, iteration_start_time):
        """Print info about the current fitting iteration."""
        log_msg = ''

        predictors_of_ith_iteration = [
            predictors_list for predictors_list in self._predictors[-1]
            if predictors_list
        ]
        n_trees = len(predictors_of_ith_iteration)
        max_depth = max(predictor.get_max_depth()
                        for predictor in predictors_of_ith_iteration)
        n_leaves = sum(predictor.get_n_leaf_nodes()
                       for predictor in predictors_of_ith_iteration)

        if n_trees == 1:
            log_msg += ("{} tree, {} leaves, ".format(n_trees, n_leaves))
        else:
            log_msg += ("{} trees, {} leaves ".format(n_trees, n_leaves))
            log_msg += ("({} on avg), ".format(int(n_leaves / n_trees)))

        log_msg += "max depth = {}, ".format(max_depth)

        if self.do_early_stopping_:
            if self.scoring == 'loss':
                factor = -1  # score_ arrays contain the negative loss
                name = 'loss'
            else:
                factor = 1
                name = 'score'
            log_msg += "train {}: {:.5f}, ".format(name, factor *
                                                   self.train_score_[-1])
            if self._use_validation_data:
                log_msg += "val {}: {:.5f}, ".format(
                    name, factor * self.validation_score_[-1])

        iteration_time = time() - iteration_start_time
        log_msg += "in {:0.3f}s".format(iteration_time)

        print(log_msg)

    def _raw_predict(self, X):
        """Return the sum of the leaves values over all predictors.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        raw_predictions : array, shape (n_samples * n_trees_per_iteration,)
            The raw predicted values.
        """
        X = check_array(X, dtype=[X_DTYPE, X_BINNED_DTYPE],
                        force_all_finite=False)
        check_is_fitted(self)
        if X.shape[1] != self.n_features_:
            raise ValueError(
                'X has {} features but this estimator was trained with '
                '{} features.'.format(X.shape[1], self.n_features_)
            )
        is_binned = getattr(self, '_in_fit', False)
        n_samples = X.shape[0]
        raw_predictions = np.zeros(
            shape=(self.n_trees_per_iteration_, n_samples),
            dtype=self._baseline_prediction.dtype
        )
        raw_predictions += self._baseline_prediction
        for predictors_of_ith_iteration in self._predictors:
            for k, predictor in enumerate(predictors_of_ith_iteration):
                if is_binned:
                    predict = partial(
                        predictor.predict_binned,
                        missing_values_bin_idx=self.bin_mapper_.missing_values_bin_idx_  # noqa
                    )
                else:
                    predict = predictor.predict
                raw_predictions[k, :] += predict(X)

        return raw_predictions

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray, shape (n_samples, n_target_features)
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray, shape (n_target_features)
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray, shape \
                (n_trees_per_iteration, n_samples)
            The value of the partial dependence function on each grid point.
        """

        if getattr(self, '_fitted_with_sw', False):
            raise NotImplementedError("{} does not support partial dependence "
                                      "plots with the 'recursion' method when "
                                      "sample weights were given during fit "
                                      "time.".format(self.__class__.__name__))

        grid = np.asarray(grid, dtype=X_DTYPE, order='C')
        averaged_predictions = np.zeros(
            (self.n_trees_per_iteration_, grid.shape[0]), dtype=Y_DTYPE)

        for predictors_of_ith_iteration in self._predictors:
            for k, predictor in enumerate(predictors_of_ith_iteration):
                predictor.compute_partial_dependence(grid, target_features,
                                                     averaged_predictions[k])
        # Note that the learning rate is already accounted for in the leaves
        # values.

        return averaged_predictions

    def _more_tags(self):
        return {'allow_nan': True}

    @abstractmethod
    def _get_loss(self, sample_weight):
        pass

    @abstractmethod
    def _encode_y(self, y=None):
        pass

    @property
    def n_iter_(self):
        check_is_fitted(self)
        return len(self._predictors)


class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting):
    """Histogram-based Gradient Boosting Regression Tree.

    This estimator is much faster than
    :class:`GradientBoostingRegressor<sklearn.ensemble.GradientBoostingRegressor>`
    for big datasets (n_samples >= 10 000).

    This estimator has native support for missing values (NaNs). During
    training, the tree grower learns at each split point whether samples
    with missing values should go to the left or right child, based on the
    potential gain. When predicting, samples with missing values are
    assigned to the left or right child consequently. If no missing values
    were encountered for a given feature during training, then samples with
    missing values are mapped to whichever child has the most samples.

    This implementation is inspired by
    `LightGBM <https://github.com/Microsoft/LightGBM>`_.

    .. note::

      This estimator is still **experimental** for now: the predictions
      and the API might change without any deprecation cycle. To use it,
      you need to explicitly import ``enable_hist_gradient_boosting``::

        >>> # explicitly require this experimental feature
        >>> from sklearn.experimental import enable_hist_gradient_boosting  # noqa
        >>> # now you can import normally from ensemble
        >>> from sklearn.ensemble import HistGradientBoostingClassifier

    Read more in the :ref:`User Guide <histogram_based_gradient_boosting>`.

    .. versionadded:: 0.21

    Parameters
    ----------
    loss : {'least_squares', 'least_absolute_deviation', 'poisson'}, \
            optional (default='least_squares')
        The loss function to use in the boosting process. Note that the
        "least squares" and "poisson" losses actually implement
        "half least squares loss" and "half poisson deviance" to simplify the
        computation of the gradient. Furthermore, "poisson" loss internally
        uses a log-link and requires ``y >= 0``
    learning_rate : float, optional (default=0.1)
        The learning rate, also known as *shrinkage*. This is used as a
        multiplicative factor for the leaves values. Use ``1`` for no
        shrinkage.
    max_iter : int, optional (default=100)
        The maximum number of iterations of the boosting process, i.e. the
        maximum number of trees.
    max_leaf_nodes : int or None, optional (default=31)
        The maximum number of leaves for each tree. Must be strictly greater
        than 1. If None, there is no maximum limit.
    max_depth : int or None, optional (default=None)
        The maximum depth of each tree. The depth of a tree is the number of
        edges to go from the root to the deepest leaf.
        Depth isn't constrained by default.
    min_samples_leaf : int, optional (default=20)
        The minimum number of samples per leaf. For small datasets with less
        than a few hundred samples, it is recommended to lower this value
        since only very shallow trees would be built.
    l2_regularization : float, optional (default=0)
        The L2 regularization parameter. Use ``0`` for no regularization
        (default).
    max_bins : int, optional (default=255)
        The maximum number of bins to use for non-missing values. Before
        training, each feature of the input array `X` is binned into
        integer-valued bins, which allows for a much faster training stage.
        Features with a small number of unique values may use less than
        ``max_bins`` bins. In addition to the ``max_bins`` bins, one more bin
        is always reserved for missing values. Must be no larger than 255.
    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonic constraint to enforce on each feature. -1, 1
        and 0 respectively correspond to a positive constraint, negative
        constraint and no constraint. Read more in the :ref:`User Guide
        <monotonic_cst_gbdt>`.
    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble. For results to be valid, the
        estimator should be re-trained on the same data only.
        See :term:`the Glossary <warm_start>`.
    early_stopping : 'auto' or bool (default='auto')
        If 'auto', early stopping is enabled if the sample size is larger than
        10000. If True, early stopping is enabled, otherwise early stopping is
        disabled.
    scoring : str or callable or None, optional (default='loss')
        Scoring parameter to use for early stopping. It can be a single
        string (see :ref:`scoring_parameter`) or a callable (see
        :ref:`scoring`). If None, the estimator's default scorer is used. If
        ``scoring='loss'``, early stopping is checked w.r.t the loss value.
        Only used if early stopping is performed.
    validation_fraction : int or float or None, optional (default=0.1)
        Proportion (or absolute size) of training data to set aside as
        validation data for early stopping. If None, early stopping is done on
        the training data. Only used if early stopping is performed.
    n_iter_no_change : int, optional (default=10)
        Used to determine when to "early stop". The fitting process is
        stopped when none of the last ``n_iter_no_change`` scores are better
        than the ``n_iter_no_change - 1`` -th-to-last one, up to some
        tolerance. Only used if early stopping is performed.
    tol : float or None, optional (default=1e-7)
        The absolute tolerance to use when comparing scores during early
        stopping. The higher the tolerance, the more likely we are to early
        stop: higher tolerance means that it will be harder for subsequent
        iterations to be considered an improvement upon the reference score.
    verbose: int, optional (default=0)
        The verbosity level. If not zero, print some information about the
        fitting process.
    random_state : int, np.random.RandomStateInstance or None, \
        optional (default=None)
        Pseudo-random number generator to control the subsampling in the
        binning process, and the train/validation data split if early stopping
        is enabled.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    n_iter_ : int
        The number of iterations as selected by early stopping, depending on
        the `early_stopping` parameter. Otherwise it corresponds to max_iter.
    n_trees_per_iteration_ : int
        The number of tree that are built at each iteration. For regressors,
        this is always 1.
    train_score_ : ndarray, shape (n_iter_+1,)
        The scores at each iteration on the training data. The first entry
        is the score of the ensemble before the first iteration. Scores are
        computed according to the ``scoring`` parameter. If ``scoring`` is
        not 'loss', scores are computed on a subset of at most 10 000
        samples. Empty if no early stopping.
    validation_score_ : ndarray, shape (n_iter_+1,)
        The scores at each iteration on the held-out validation data. The
        first entry is the score of the ensemble before the first iteration.
        Scores are computed according to the ``scoring`` parameter. Empty if
        no early stopping or if ``validation_fraction`` is None.

    Examples
    --------
    >>> # To use this experimental feature, we need to explicitly ask for it:
    >>> from sklearn.experimental import enable_hist_gradient_boosting  # noqa
    >>> from sklearn.ensemble import HistGradientBoostingRegressor
    >>> from sklearn.datasets import load_diabetes
    >>> X, y = load_diabetes(return_X_y=True)
    >>> est = HistGradientBoostingRegressor().fit(X, y)
    >>> est.score(X, y)
    0.92...
    """

    _VALID_LOSSES = ('least_squares', 'least_absolute_deviation',
                     'poisson')

    @_deprecate_positional_args
    def __init__(self, loss='least_squares', *, learning_rate=0.1,
                 max_iter=100, max_leaf_nodes=31, max_depth=None,
                 min_samples_leaf=20, l2_regularization=0., max_bins=255,
                 monotonic_cst=None, warm_start=False, early_stopping='auto',
                 scoring='loss', validation_fraction=0.1,
                 n_iter_no_change=10, tol=1e-7,
                 verbose=0, random_state=None):
        super(HistGradientBoostingRegressor, self).__init__(
            loss=loss, learning_rate=learning_rate, max_iter=max_iter,
            max_leaf_nodes=max_leaf_nodes, max_depth=max_depth,
            min_samples_leaf=min_samples_leaf,
            l2_regularization=l2_regularization, max_bins=max_bins,
            monotonic_cst=monotonic_cst, early_stopping=early_stopping,
            warm_start=warm_start, scoring=scoring,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change, tol=tol, verbose=verbose,
            random_state=random_state)

    def predict(self, X):
        """Predict values for X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            The predicted values.
        """
        check_is_fitted(self)
        # Return inverse link of raw predictions after converting
        # shape (n_samples, 1) to (n_samples,)
        return self.loss_.inverse_link_function(self._raw_predict(X).ravel())

    def _encode_y(self, y):
        # Just convert y to the expected dtype
        self.n_trees_per_iteration_ = 1
        y = y.astype(Y_DTYPE, copy=False)
        if self.loss == 'poisson':
            # Ensure y >= 0 and sum(y) > 0
            if not (np.all(y >= 0) and np.sum(y) > 0):
                raise ValueError("loss='poisson' requires non-negative y and "
                                 "sum(y) > 0.")
        return y

    def _get_loss(self, sample_weight):
        return _LOSSES[self.loss](sample_weight=sample_weight)


class HistGradientBoostingClassifier(BaseHistGradientBoosting,
                                     ClassifierMixin):
    """Histogram-based Gradient Boosting Classification Tree.

    This estimator is much faster than
    :class:`GradientBoostingClassifier<sklearn.ensemble.GradientBoostingClassifier>`
    for big datasets (n_samples >= 10 000).

    This estimator has native support for missing values (NaNs). During
    training, the tree grower learns at each split point whether samples
    with missing values should go to the left or right child, based on the
    potential gain. When predicting, samples with missing values are
    assigned to the left or right child consequently. If no missing values
    were encountered for a given feature during training, then samples with
    missing values are mapped to whichever child has the most samples.

    This implementation is inspired by
    `LightGBM <https://github.com/Microsoft/LightGBM>`_.

    .. note::

      This estimator is still **experimental** for now: the predictions
      and the API might change without any deprecation cycle. To use it,
      you need to explicitly import ``enable_hist_gradient_boosting``::

        >>> # explicitly require this experimental feature
        >>> from sklearn.experimental import enable_hist_gradient_boosting  # noqa
        >>> # now you can import normally from ensemble
        >>> from sklearn.ensemble import HistGradientBoostingClassifier

    Read more in the :ref:`User Guide <histogram_based_gradient_boosting>`.

    .. versionadded:: 0.21

    Parameters
    ----------
    loss : {'auto', 'binary_crossentropy', 'categorical_crossentropy'}, \
            optional (default='auto')
        The loss function to use in the boosting process. 'binary_crossentropy'
        (also known as logistic loss) is used for binary classification and
        generalizes to 'categorical_crossentropy' for multiclass
        classification. 'auto' will automatically choose either loss depending
        on the nature of the problem.
    learning_rate : float, optional (default=0.1)
        The learning rate, also known as *shrinkage*. This is used as a
        multiplicative factor for the leaves values. Use ``1`` for no
        shrinkage.
    max_iter : int, optional (default=100)
        The maximum number of iterations of the boosting process, i.e. the
        maximum number of trees for binary classification. For multiclass
        classification, `n_classes` trees per iteration are built.
    max_leaf_nodes : int or None, optional (default=31)
        The maximum number of leaves for each tree. Must be strictly greater
        than 1. If None, there is no maximum limit.
    max_depth : int or None, optional (default=None)
        The maximum depth of each tree. The depth of a tree is the number of
        edges to go from the root to the deepest leaf.
        Depth isn't constrained by default.
    min_samples_leaf : int, optional (default=20)
        The minimum number of samples per leaf. For small datasets with less
        than a few hundred samples, it is recommended to lower this value
        since only very shallow trees would be built.
    l2_regularization : float, optional (default=0)
        The L2 regularization parameter. Use 0 for no regularization.
    max_bins : int, optional (default=255)
        The maximum number of bins to use for non-missing values. Before
        training, each feature of the input array `X` is binned into
        integer-valued bins, which allows for a much faster training stage.
        Features with a small number of unique values may use less than
        ``max_bins`` bins. In addition to the ``max_bins`` bins, one more bin
        is always reserved for missing values. Must be no larger than 255.
    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonic constraint to enforce on each feature. -1, 1
        and 0 respectively correspond to a positive constraint, negative
        constraint and no constraint. Read more in the :ref:`User Guide
        <monotonic_cst_gbdt>`.
    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble. For results to be valid, the
        estimator should be re-trained on the same data only.
        See :term:`the Glossary <warm_start>`.
    early_stopping : 'auto' or bool (default='auto')
        If 'auto', early stopping is enabled if the sample size is larger than
        10000. If True, early stopping is enabled, otherwise early stopping is
        disabled.
    scoring : str or callable or None, optional (default='loss')
        Scoring parameter to use for early stopping. It can be a single
        string (see :ref:`scoring_parameter`) or a callable (see
        :ref:`scoring`). If None, the estimator's default scorer
        is used. If ``scoring='loss'``, early stopping is checked
        w.r.t the loss value. Only used if early stopping is performed.
    validation_fraction : int or float or None, optional (default=0.1)
        Proportion (or absolute size) of training data to set aside as
        validation data for early stopping. If None, early stopping is done on
        the training data. Only used if early stopping is performed.
    n_iter_no_change : int, optional (default=10)
        Used to determine when to "early stop". The fitting process is
        stopped when none of the last ``n_iter_no_change`` scores are better
        than the ``n_iter_no_change - 1`` -th-to-last one, up to some
        tolerance. Only used if early stopping is performed.
    tol : float or None, optional (default=1e-7)
        The absolute tolerance to use when comparing scores. The higher the
        tolerance, the more likely we are to early stop: higher tolerance
        means that it will be harder for subsequent iterations to be
        considered an improvement upon the reference score.
    verbose: int, optional (default=0)
        The verbosity level. If not zero, print some information about the
        fitting process.
    random_state : int, np.random.RandomStateInstance or None, \
        optional (default=None)
        Pseudo-random number generator to control the subsampling in the
        binning process, and the train/validation data split if early stopping
        is enabled.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    classes_ : array, shape = (n_classes,)
        Class labels.
    n_iter_ : int
        The number of iterations as selected by early stopping, depending on
        the `early_stopping` parameter. Otherwise it corresponds to max_iter.
    n_trees_per_iteration_ : int
        The number of tree that are built at each iteration. This is equal to 1
        for binary classification, and to ``n_classes`` for multiclass
        classification.
    train_score_ : ndarray, shape (n_iter_+1,)
        The scores at each iteration on the training data. The first entry
        is the score of the ensemble before the first iteration. Scores are
        computed according to the ``scoring`` parameter. If ``scoring`` is
        not 'loss', scores are computed on a subset of at most 10 000
        samples. Empty if no early stopping.
    validation_score_ : ndarray, shape (n_iter_+1,)
        The scores at each iteration on the held-out validation data. The
        first entry is the score of the ensemble before the first iteration.
        Scores are computed according to the ``scoring`` parameter. Empty if
        no early stopping or if ``validation_fraction`` is None.

    Examples
    --------
    >>> # To use this experimental feature, we need to explicitly ask for it:
    >>> from sklearn.experimental import enable_hist_gradient_boosting  # noqa
    >>> from sklearn.ensemble import HistGradientBoostingClassifier
    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = HistGradientBoostingClassifier().fit(X, y)
    >>> clf.score(X, y)
    1.0
    """

    _VALID_LOSSES = ('binary_crossentropy', 'categorical_crossentropy',
                     'auto')

    @_deprecate_positional_args
    def __init__(self, loss='auto', *, learning_rate=0.1, max_iter=100,
                 max_leaf_nodes=31, max_depth=None, min_samples_leaf=20,
                 l2_regularization=0., max_bins=255, monotonic_cst=None,
                 warm_start=False, early_stopping='auto', scoring='loss',
                 validation_fraction=0.1, n_iter_no_change=10, tol=1e-7,
                 verbose=0, random_state=None):
        super(HistGradientBoostingClassifier, self).__init__(
            loss=loss, learning_rate=learning_rate, max_iter=max_iter,
            max_leaf_nodes=max_leaf_nodes, max_depth=max_depth,
            min_samples_leaf=min_samples_leaf,
            l2_regularization=l2_regularization, max_bins=max_bins,
            monotonic_cst=monotonic_cst, warm_start=warm_start,
            early_stopping=early_stopping, scoring=scoring,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change, tol=tol, verbose=verbose,
            random_state=random_state)

    def predict(self, X):
        """Predict classes for X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            The predicted classes.
        """
        # TODO: This could be done in parallel
        encoded_classes = np.argmax(self.predict_proba(X), axis=1)
        return self.classes_[encoded_classes]

    def predict_proba(self, X):
        """Predict class probabilities for X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        p : ndarray, shape (n_samples, n_classes)
            The class probabilities of the input samples.
        """
        raw_predictions = self._raw_predict(X)
        return self.loss_.predict_proba(raw_predictions)

    def decision_function(self, X):
        """Compute the decision function of X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        decision : ndarray, shape (n_samples,) or \
                (n_samples, n_trees_per_iteration)
            The raw predicted values (i.e. the sum of the trees leaves) for
            each sample. n_trees_per_iteration is equal to the number of
            classes in multiclass classification.
        """
        decision = self._raw_predict(X)
        if decision.shape[0] == 1:
            decision = decision.ravel()
        return decision.T

    def _encode_y(self, y):
        # encode classes into 0 ... n_classes - 1 and sets attributes classes_
        # and n_trees_per_iteration_
        check_classification_targets(y)

        label_encoder = LabelEncoder()
        encoded_y = label_encoder.fit_transform(y)
        self.classes_ = label_encoder.classes_
        n_classes = self.classes_.shape[0]
        # only 1 tree for binary classification. For multiclass classification,
        # we build 1 tree per class.
        self.n_trees_per_iteration_ = 1 if n_classes <= 2 else n_classes
        encoded_y = encoded_y.astype(Y_DTYPE, copy=False)
        return encoded_y

    def _get_loss(self, sample_weight):
        if (self.loss == 'categorical_crossentropy' and
                self.n_trees_per_iteration_ == 1):
            raise ValueError("'categorical_crossentropy' is not suitable for "
                             "a binary classification problem. Please use "
                             "'auto' or 'binary_crossentropy' instead.")

        if self.loss == 'auto':
            if self.n_trees_per_iteration_ == 1:
                return _LOSSES['binary_crossentropy'](
                    sample_weight=sample_weight)
            else:
                return _LOSSES['categorical_crossentropy'](
                    sample_weight=sample_weight)

        return _LOSSES[self.loss](sample_weight=sample_weight)